

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (11): 5379-5388.doi: 10.11843/j.issn.0366-6964.2025.11.004
白慧涛1(
), 孙健2, 解伟纯1, 王雪莹1, 王晓娜1,3,*(
), 唐丽杰1,3,*(
)
收稿日期:2024-09-10
出版日期:2025-11-23
发布日期:2025-11-27
通讯作者:
王晓娜,唐丽杰
E-mail:bht17077876222@163.com;xiaonawang0319@163.com;tanglijie@163.com
作者简介:白慧涛(2001-),男,黑龙江大庆人,硕士生,主要从事微生物与免疫学研究,E-mail: bht17077876222@163.com
基金资助:
BAI Huitao1(
), SUN Jian2, XIE Weichun1, WANG Xueying1, WANG Xiaona1,3,*(
), TANG Lijie1,3,*(
)
Received:2024-09-10
Online:2025-11-23
Published:2025-11-27
Contact:
WANG Xiaona, TANG Lijie
E-mail:bht17077876222@163.com;xiaonawang0319@163.com;tanglijie@163.com
摘要:
肠道菌群是宿主防御机制的重要组成部分,在动物健康及其宿主防御病原微生物感染中起着至关重要的作用,肠道菌群失衡会导致多种肠道疾病的发生。粪菌移植(fecal microbiota transplantation,FMT)是调节肠道微生物群、治疗肠道疾病最有效的方法之一。肠道菌群失衡引起的肠道功能障碍可以通过FMT得到改善。本文从仔猪肠道微生物屏障、化学屏障、物理屏障和免疫屏障的角度对FMT改善早期断奶仔猪肠道屏障功能的潜在机制及FMT的发展前景进行综述,以期为促进养猪生产上的FMT规范应用提供参考。
中图分类号:
白慧涛, 孙健, 解伟纯, 王雪莹, 王晓娜, 唐丽杰. 粪菌移植改善仔猪断奶早期肠道屏障功能的作用机制研究进展[J]. 畜牧兽医学报, 2025, 56(11): 5379-5388.
BAI Huitao, SUN Jian, XIE Weichun, WANG Xueying, WANG Xiaona, TANG Lijie. Research Progress on the Mechanism of Fecal Bacteria Transplantation to Improve Intestinal Barrier Function in Early Weaning Piglets[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(11): 5379-5388.
表 1
供体菌移植试验"
| 供体菌 Donor bacteria | 仔猪品种(日龄) Piglet specices (days of age) | 处理方式 Processing mode | 结果 Result | 参考文献 Reference |
| 粪肠球菌 Enterococcus faecalis | 杜×长×大(28日龄) | 每日一次(2.5×109 CFU·kg-1),连续饲喂28 d | 提高仔猪生长性能和肠道微生物菌群多样性,并增加乳酸菌丰度 | Hu等[ |
| 植物乳植杆菌 Lactiplantibacillus plantarum | 杜×长×大(4日龄) | 每日一次(5.0×1010 CFU·kg-1),连续饲喂15 d | 改善肠道形态;促进肠道紧密连接蛋白TJs表达 | Yang等[ |
| 德氏乳杆菌 Lactobacillus delbrueckii | 杜×长×大(21日龄) | 1、3、7和14日龄分别口服1、2、3和4 mL(5×109 CFU·mL-1) | 促进肠道ZO-1和闭锁蛋白的表达,并改善肠绒毛形态 | Li等[ |
| 丁酸梭菌 Clostridium butyricum | 杜×长×约(28日龄) | 每日一次(1.0×109 CFU·kg-1),连续饲喂14 d | 促进肠道TJs蛋白和黏蛋白的表达,并增加乳酸菌丰度 | Fu等[ |
| 罗伊氏黏液乳杆菌 Limosilactobacillus reuteri | 杜×长×大(21日龄) | 每日一次(5.0×1010 CFU·kg-1),连续饲喂15 d | 提高仔猪生长性能;改善肠道形态和屏障功能 | Yi等[ |
图 1
粪菌移植作用机制(Figdraw 2.0软件绘制) A. 益生菌和免疫球蛋白A(IgA)与病原菌争夺资源,抑制病原菌生长,噬菌体通过破坏肠道细菌来影响细菌的易位,改变其毒力,并抑制病原菌引起的肠道炎症;B. 益生菌、短链脂肪酸(SCFAs)调控IEC中紧密连接(TJ)的表达,加强肠顶端连接,降低肠上皮的通透性并上调TJ蛋白来促进肠道屏障的修复;C. 益生菌、SCFAs、胆汁酸与杯状细胞(Goblet cell)内相应受体模式识别受体(PRR)、G蛋白偶联胆汁酸受体(GPBAR)、G蛋白偶联受体(GPCR)结合,介导黏蛋白(MCU)分泌;D. SCFAs通过肠上皮细胞(IEC)上的GPCR调控NLRP3炎症小体,将白介素-18前体转化为白介素18(IL-18),促进T细胞活化,增强免疫应答;E. 益生菌通过抑制核因子-κB(NF-κB)和丝裂原活化蛋白激酶(MAPK)信号通路,降低炎性细胞因子(Cytokines)"
| 1 |
TURNERJ.Intestinal mucosal barrier function in health and disease[J].Nat Rev Immunol,2009,9(11):799-809.
doi: 10.1038/nri2653 |
| 2 |
AMARJ,CHABOC,WAGETA.Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment[J].EMBO Mol Med,2011,3(9):559-572.
doi: 10.1002/emmm.201100159 |
| 3 |
ZHERNAKOVAA,KURILSHIKOVA,BONDERM J.Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity[J].Science,2016,352(6285):565-569.
doi: 10.1126/science.aad3369 |
| 4 |
GUEVARRAR B,HONGS H,CHOJ H.The dynamics of the piglet gut microbiome during the weaning transition in association with health and nutrition[J].J Anim Sci Biotechnol,2018,9,1-9.
doi: 10.1186/s40104-017-0217-x |
| 5 |
GRESSER,CHAUCHEYRAS-DURANDF,FLEURYM A.Gut microbiota dysbiosis in postweaning piglets: understanding the keys to health[J].Trends Microbiol,2017,25(10):851-873.
doi: 10.1016/j.tim.2017.05.004 |
| 6 |
NGUYENQ N,HIMESJ E,MARTINEZD R,et al.The impact of the gut microbiota on humoral immunity to pathogens and vaccination in early infancy[J].PLoS Pathog,2016,12(12):e1005997.
doi: 10.1371/journal.ppat.1005997 |
| 7 | LIK,YANGJ,ZHOUX.The mechanism of important components in canine fecal microbiota transplantation[J].Vet Sci,2022,9(12):695. |
| 8 | 田玉,杨玲媛,黄兴国,等.粪菌移植改善猪肠道屏障功能的研究进展[J].动物营养学报,2023,35(4):2072-2080. |
| TIANY,YANGL Y,HUANGX G,et al.Research Progress of Fecal Microbiota Transplantation in Improving Intestinal Barrier Function in Pigs[J].Chinese Journal of Animal Nutrition,2023,35(4):2072-2080. | |
| 9 | 张卓,蒋谦,刘作华,等.粪菌移植及其在猪上的应用研究进展[J].动物营养学报,2022,34(8):4793-4801. |
| ZHANGZ,JIANGQ,LIUZ H,et al.Fecal microbiota transplantation and its application research progress in pigs[J].Chinese Journal of Animal Nutrition,2022,34(8):4793-4801. | |
| 10 |
HUY,DUNY,LIS.Dietary Enterococcus faecalis LAB31 improves growth performance, reduces diarrhea, and increases fecal Lactobacillus number of weaned piglets[J].PLoS One,2015,10(1):e0116635.
doi: 10.1371/journal.pone.0116635 |
| 11 |
YANGK,JIANGZ,ZHENGC,et al.Effect of Lactobacillus plantarum on diarrhea and intestinal barrier function of young piglets challenged with enterotoxigenic Escherichia coli K88[J].J Anim Sci,2014,92(4):1496-1503.
doi: 10.2527/jas.2013-6619 |
| 12 |
LIY,HOUS,CHENJ,et al.Oral administration of Lactobacillus delbrueckii during the suckling period improves intestinal integrity after weaning in piglets[J].J Funct Foods,2019,63,103591.
doi: 10.1016/j.jff.2019.103591 |
| 13 |
FUJ,WANGT,XIAOX,et al.Clostridium butyricum ZJU-F1 benefits the intestinal barrier function and immune response associated with its modulation of gut microbiota in weaned piglets[J].Cells,2021,10(3):527.
doi: 10.3390/cells10030527 |
| 14 |
YIH,WANGL,XIONGY,et al.Effects of Lactobacillus reuteri LR1 on the growth performance, intestinal morphology, and intestinal barrier function in weaned pigs[J].J Anim Sci,2018,96(6):2342-2351.
doi: 10.1093/jas/sky129 |
| 15 |
KHORUTSA,SADOWSKYM J.Understanding the mechanisms of faecal microbiota transplantation[J].Nat Rev Gastroenterol Hepatol,2016,13(9):508-516.
doi: 10.1038/nrgastro.2016.98 |
| 16 | 左斌,李娜,王诗岚,等.仔猪肠道微生物早期定植特征及其调控的研究进展[J].中国畜牧杂志,2020,56(11):1-7. |
| ZUOB,LIN,WANGS L,et al.Research progress on early-life colonization and regulation of gut microbiota in neonatal piglets[J].Chinese Journal of Animal Science,2020,56(11):1-7. | |
| 17 | 石宝明,钊阳,孙国栋.民猪肠道微生物功能发掘与利用研究进展[J].饲料工业,2023,44(11):1-7. |
| SHIB M,ZHAOY,SUNG D.Research progress on gut microbial function discovery and utilization in Min pigs[J].Feed Industry,2023,44(11):1-7. | |
| 18 |
DIAOH,XIAOY,YANH,et al.Effects of early transplantation of the faecal microbiota from tibetan pigs on the gut development of DSS-challenged piglets[J].Biomed Res Int,2021,2021,9823969.
doi: 10.1155/2021/9823969 |
| 19 |
MAX,XUT,QIANM,et al.Faecal microbiota transplantation alleviates early-life antibiotic-induced gut microbiota dysbiosis and mucosa injuries in a neonatal piglet model[J].Microbiol Res,2022,255,126942.
doi: 10.1016/j.micres.2021.126942 |
| 20 | CHENGS,MAX,GENGS,et al.Fecal microbiota transplantation beneficially regulates intestinal mucosal autophagy and alleviates gut barrier injury[J].mSystems,2018,3(5):e00137-18. |
| 21 |
KCD,SUMNERR,LIPPMANNS.Gut microbiota and health[J].Postgrad Med,2020,132(3):274-274.
doi: 10.1080/00325481.2019.1662711 |
| 22 |
KRÖGERS,VAHJENW,ZENTEKJ.Influence of lignocellulose and low or high levels of sugar beet pulp on nutrient digestibility and the fecal microbiota in dogs[J].J Anim Sci,2017,95(4):1598-1605.
doi: 10.2527/jas.2016.0873 |
| 23 |
LOZUPONEC A,STOMBAUGHJ I,GORDONJ I,et al.Diversity, stability and resilience of the human gut microbiota[J].Nature,2012,489(7415):220-230.
doi: 10.1038/nature11550 |
| 24 |
YOUS,MAY,YANB,et al.The promotion mechanism of prebiotics for probiotics: A review[J].Front Nutr,2022,9,1000517.
doi: 10.3389/fnut.2022.1000517 |
| 25 |
WIEËRSG,BELKHIRL,ENAUDR,et al.How probiotics affect the microbiota[J].Front Cell Infect Microbiol,2020,9,454.
doi: 10.3389/fcimb.2019.00454 |
| 26 |
BOJANOVAD P,BORDENSTEINS R.Fecal transplants: what is being transferred?[J].PLoS Biol,2016,14(7):e1002503.
doi: 10.1371/journal.pbio.1002503 |
| 27 |
SALAMM A.Probiotics: concept and applications[J].Bangladesh J Med Sci,2014,13(4):373.
doi: 10.3329/bjms.v13i4.20550 |
| 28 | ZHANGW,ZHUY H,ZHOUD,et al.Oral administration of a select mixture of Bacillus probiotics affects the gut microbiota and goblet cell function following Escherichia coli challenge in newly weaned pigs of genotype MUC4 that are supposed to be enterotoxigenic E. coli F4ab/ac receptor negative[J].Appl Environ Microbiol,2017,83(3):e02747-16. |
| 29 |
PRALL P,FACHIJ L,CORRÊAR O,et al.Hypoxia and HIF-1 as key regulators of gut microbiota and host interactions[J].Trends Immunol,2021,42(7):604-621.
doi: 10.1016/j.it.2021.05.004 |
| 30 |
ZUPPIM,HENDRICKSONH L,O'SULLIVANJ M,et al.Phages in the gut ecosystem[J].Front Cell Infect Microbiol,2022,11,822562.
doi: 10.3389/fcimb.2021.822562 |
| 31 | LEÓNM,BASTÍASR.Virulence reduction in bacteriophage resistant bacteria[J].Front Microbiol,2015,6,343. |
| 32 |
MILLSS,SHANAHANF,STANTONC,et al.Movers and shakers: Influence of bacteriophages in shaping the mammalian gut microbiota[J].Gut Microbes,2013,4(1):4-16.
doi: 10.4161/gmic.22371 |
| 33 |
ZENGY,WANGZ,ZOUT,et al.Bacteriophage as an alternative to antibiotics promotes growth performance by regulating intestinal inflammation, intestinal barrier function and gut microbiota in weaned piglets[J].Front Vet Sci,2021,8,623899.
doi: 10.3389/fvets.2021.623899 |
| 34 |
ZHANGJ,LIZ,CAOZ,et al.Bacteriophages as antimicrobial agents against major pathogens in swine: a review[J].J Anim Sci Biotechnol,2015,6(1):39.
doi: 10.1186/s40104-015-0039-7 |
| 35 | CHEHOUDC,DRYGAA,HWANGY,et al.Transfer of viral communities between human individuals during fecal microbiota transplantation[J].MBio,2016,7(2):e00322. |
| 36 |
ŁUSIAK-SZELACHOWSKAM,WEBER-DBROWSKAB,JOŃCZYK-MATYSIAKE,et al.Bacteriophages in the gastrointestinal tract and their implications[J].Gut Pathog,2017,9(1):44.
doi: 10.1186/s13099-017-0196-7 |
| 37 |
KIMN,GUM J,KYEY-C,et al.Bacteriophage EK99P-1 alleviates enterotoxigenic Escherichia coli K99-induced barrier dysfunction and inflammation[J].Sci Rep,2022,12(1):941.
doi: 10.1038/s41598-022-04861-4 |
| 38 |
PARADA VENEGASD,DE LA FUENTEM K,LANDSKRONG,et al.Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases[J].Front Immunol,2019,10,277.
doi: 10.3389/fimmu.2019.00277 |
| 39 |
MARTIN-GALLAUSIAUXC,MARINELLIL,BLOTTIōREH M,et al.SCFA: Mechanisms and functional importance in the gut[J].Proc Nutr Soc,2021,80(1):37-49.
doi: 10.1017/S0029665120006916 |
| 40 |
FENGW,WUY,CHENG,et al.Sodium butyrate attenuates diarrhea in weaned piglets and promotes tight junction protein expression in colon in a GPR109A-dependent manner[J].Cell Physiol Biochem,2018,47(4):1617-1629.
doi: 10.1159/000490981 |
| 41 |
CHIANGJ Y.Bile acid metabolism and signaling[J].Compr Physiol,2013,3(3):1191-1212.
doi: 10.1002/j.2040-4603.2013.tb00517.x |
| 42 |
ZHOUY,CHENY,HEH,et al.The role of the indoles in microbiota-gut-brain axis and potential therapeutic targets: A focus on human neurological and neuropsychiatric diseases[J].Neuropharmacology,2023,239,109690.
doi: 10.1016/j.neuropharm.2023.109690 |
| 43 |
RANDAL BOLLINGERR,EVERETTM L,PALESTRANTD,et al.Human secretory immunoglobulin A may contribute to biofilm formation in the gut[J].Immunology,2003,109(4):580-587.
doi: 10.1046/j.1365-2567.2003.01700.x |
| 44 |
DONALDSONG P,LADINSKYM,YUK,et al.Gut microbiota utilize immunoglobulin A for mucosal colonization[J].Science,2018,360(6390):795-800.
doi: 10.1126/science.aaq0926 |
| 45 |
NGS C,KAMMM A,YEOHY K,et al.Scientific frontiers in faecal microbiota transplantation: joint document of Asia-Pacific Association of Gastroenterology (APAGE) and Asia-Pacific Society for Digestive Endoscopy (APSDE)[J].Gut,2020,69(1):83-91.
doi: 10.1136/gutjnl-2019-319407 |
| 46 |
LID,CUIL,GAOY,et al.Fecal microbiota transplantation improves intestinal inflammation in mice with ulcerative colitis by modulating intestinal flora composition and down-regulating NF-κB signaling pathway[J].Microb Pathog,2022,173,105803.
doi: 10.1016/j.micpath.2022.105803 |
| 47 |
MAX,XUT,QIANM,et al.Faecal microbiota transplantation alleviates early-life antibiotic-induced gut microbiota dysbiosis and mucosa injuries in a neonatal piglet model[J].Microbiol Res,2022,255,126942.
doi: 10.1016/j.micres.2021.126942 |
| 48 |
BALDAM S,MATTERK.Tight junctions as regulators of tissue remodelling[J].Curr Opin Cell Biol,2016,42,94-101.
doi: 10.1016/j.ceb.2016.05.006 |
| 49 |
LANDYJ,RONDEE,ENGLISHN,et al.Tight junctions in inflammatory bowel diseases and inflammatory bowel disease associated colorectal cancer[J].World J Gastroenterol,2016,22(11):3117-3126.
doi: 10.3748/wjg.v22.i11.3117 |
| 50 |
PORITZL S,HARRISL R,KELLYA A,et al.Increase in the tight junction protein claudin-1 in intestinal inflammation[J].Dig Dis Sci,2011,56(10):2802-2809.
doi: 10.1007/s10620-011-1688-9 |
| 51 |
HUL,GENGS,LIY,et al.Exogenous fecal microbiota transplantation from local adult pigs to crossbred newborn piglets[J].Front Microbiol,2018,8,2663.
doi: 10.3389/fmicb.2017.02663 |
| 52 |
SUNW,CHENW,MENGK,et al.Dietary supplementation with probiotic Bacillus licheniformis S6 improves intestinal integrity via modulating intestinal barrier function and microbial diversity in weaned piglets[J].Biology,2023,12(2):238.
doi: 10.3390/biology12020238 |
| 53 |
XUH M,HUANGH L,XUJ,et al.Cross-talk between butyric acid and gut microbiota in ulcerative colitis following fecal microbiota transplantation[J].Front Microbiol,2021,12,658292.
doi: 10.3389/fmicb.2021.658292 |
| 54 | TANJ,MCKENZIEC,POTAMITISM,et al.The role of short-chain fatty acids in health and disease[J].Adv Immunol,2014,121,91-119. |
| 55 | DUANX,XINGH,SANGF,et al.Research Progress on mechanism of traditional Chinese medicine on intestinal mucosal barrier[J].Chin J Modern Appl Pharmacy,2019,36(16):2106-2111. |
| 56 | 赵美华,龚陈,楼江明,等.黏蛋白与炎症性肠病关系的研究进展[J].世界华人消化杂志,2014,22(27):4100-4106. |
| ZHAOM H,GONGC,LOUJ M,et al.Relationship between mucins and inflammatory bowel disease[J].World Chinese Journal of Digestology,2014,22(27):4100-4106. | |
| 57 | MAX,LIM,XUT,et al.Akkermansia muciniphila identified as key strain to function in pathogen invasion and intestinal stem cell proliferation through Wnt signaling pathway[J].Elife,2023,12,RP92906. |
| 58 |
ZHAOY,CHENF,WUW,et al.GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3[J].Mucosal Immunol,2018,11(3):752-762.
doi: 10.1038/mi.2017.118 |
| 59 |
HUJ,MAL,NIEY,et al.A microbiota-derived bacteriocin targets the host to confer diarrhea resistance in early-weaned piglets[J].Cell Host Microbe,2018,24(6):817-832.
doi: 10.1016/j.chom.2018.11.006 |
| 60 |
ZHENY,ZHANGH.NLRP3 inflammasome and inflammatory bowel disease[J].Front Immunol,2019,10,276.
doi: 10.3389/fimmu.2019.00276 |
| 61 |
MACIAL,TANJ,VIEIRAA T,et al.Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome[J].Nat Commun,2015,6(1):6734.
doi: 10.1038/ncomms7734 |
| 62 |
CONGJ,ZHOUP,ZHANGR.Intestinal microbiota-derived short chain fatty acids in host health and disease[J].Nutrients,2022,14(9):1977.
doi: 10.3390/nu14091977 |
| 63 |
ZHANGW,ZOUG,LIB,et al.Fecal microbiota transplantation (FMT) alleviates experimental colitis in mice by gut microbiota regulation[J].J Microbiol Biotechnol,2020,30(8):1132-1141.
doi: 10.4014/jmb.2002.02044 |
| 64 |
WUY,ZHUC,CHENZ,et al.Protective effects of Lactobacillus plantarum on epithelial barrier disruption caused by enterotoxigenic Escherichia coli in intestinal porcine epithelial cells[J].Vet Immunol Immunopathol,2016,172,55-63.
doi: 10.1016/j.vetimm.2016.03.005 |
| 65 |
WANGK,CHENG,CAOG,et al.Effects of Clostridium butyricum and Enterococcus faecalis on growth performance, intestinal structure, and inflammation in lipopolysaccharide-challenged weaned piglets[J].J Anim Sci,2019,97(10):4140-4151.
doi: 10.1093/jas/skz235 |
| 66 |
GURRAMB,SUEP K.Fecal microbiota transplantation in children: current concepts[J].Curr Opin Pediatr,2019,31(5):623-629.
doi: 10.1097/MOP.0000000000000787 |
| 67 |
SCHEPPERJ D,COLLINSF,RIOS-ARCEN D,et al.Involvement of the gut microbiota and barrier function in glucocorticoid-induced osteoporosis[J].J Bone Miner Res,2020,35(4):801-820.
doi: 10.1002/jbmr.3947 |
| [1] | 覃阳, 夏嗣廷, 何流琴, 王天丽, 刘宇炎, 姜肖翰, 刘智豪, 刘思危, 李铁军, 印遇龙. 慢性氧化应激对断奶仔猪器官组织微量元素含量的影响[J]. 畜牧兽医学报, 2025, 56(9): 4452-4460. |
| [2] | 茹敏, 蒋小丰, 罗国升, 武永厚. 饲粮添加枯草芽孢杆菌对大肠杆菌攻毒仔猪生长性能、血清免疫及抗氧化功能、肠道形态和微生物的影响[J]. 畜牧兽医学报, 2025, 56(9): 4461-4471. |
| [3] | 杨宇翔, 王朋朋, 李斌, 谢留威, 修福晓, 刘成武. 益生菌在犬肠道疾病中作用及机制的研究进展[J]. 畜牧兽医学报, 2025, 56(8): 3610-3620. |
| [4] | 孟亚轩, 刘彦, 王晶, 陈国顺, 冯涛. 氨基葡萄糖对断奶仔猪血清抗氧化、炎症指标以及肠道微生物的影响[J]. 畜牧兽医学报, 2025, 56(8): 3908-3921. |
| [5] | 陆乐, 罗贤祖, 黄心昱, 邹辉, 顾建红, 刘学忠, 卞建春, 刘宗平, 袁燕. 镉可通过影响大鼠肠道菌群致大脑皮质氧化应激[J]. 畜牧兽医学报, 2025, 56(7): 3540-3547. |
| [6] | 张燕敏, 刘帅, 滕战伟, 谢红兵, 夏小静, 贺永惠, 常美楠. 功能性寡糖缓解犊牛腹泻的机理研究进展[J]. 畜牧兽医学报, 2025, 56(3): 979-994. |
| [7] | 王卓, 赵雨薇, 屠焰, 刁其玉, 崔凯. β-防御素的生物学特性及其在调控动物肠道屏障中的研究进展[J]. 畜牧兽医学报, 2025, 56(3): 995-1005. |
| [8] | 丁莹莹, 张嘉芸, 唐龙轩, 张少华, 郭小腊, 蒲丽霞, 牟文杰, 王帅. 肠道共生生物对肠道干细胞的调节机制研究进展[J]. 畜牧兽医学报, 2025, 56(3): 1019-1026. |
| [9] | 张萱, 杨雪, 李新科, 郑楠, 孟璐. 丁酸钠对幼鼠回肠发育、炎症因子及物理屏障功能的调控作用[J]. 畜牧兽医学报, 2025, 56(3): 1278-1289. |
| [10] | 周文涛, 王晨昱, 周辉, 刘洪彪, 冯舒锾, 范高升, 李铁军, 何流琴. 单宁酸对免疫应激断奶仔猪肌肉形态、风味氨基酸及肌纤维相关基因表达的影响[J]. 畜牧兽医学报, 2025, 56(3): 1290-1301. |
| [11] | 白国松, 滕春然, 王俊洪, 钟儒清, 马腾, 陈亮, 张宏福. 酶解玉米蛋白粉替代鱼粉和豆粕对断奶仔猪生长性能和肠道健康的影响[J]. 畜牧兽医学报, 2025, 56(2): 953-968. |
| [12] | 谢秀兰, 王建东, 晏仕英, 高海慧, 杨宇为, 赵建. 植物乳杆菌X86对大鼠子代早期发育和肠道菌群的影响[J]. 畜牧兽医学报, 2025, 56(10): 5315-5327. |
| [13] | 范定坤, 张涛, 焦帅, 陆伟, 付域泽, 杨宏, 屠焰, 石玲元, 张乃锋. 基于斜率比法评价断奶仔猪对高温烧结法磷酸三钙的相对生物学利用率[J]. 畜牧兽医学报, 2025, 56(1): 269-280. |
| [14] | 何塔娜, 胡馨匀, 米洁兰, 高立, 张艳萍, 祁小乐, 崔红玉, 杨桂连, 高玉龙. 基于16S rDNA分析饲喂唾液乳杆菌XP132对白羽肉种鸡肠道菌群的影响[J]. 畜牧兽医学报, 2024, 55(9): 4091-4099. |
| [15] | 周佳丽, 丁宝隆, 马子明, 淡新刚, 赵洪喜. 奶牛子宫内膜炎与胃肠微生物相关性及益生菌作用的研究进展[J]. 畜牧兽医学报, 2024, 55(8): 3321-3330. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||