畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (4): 1561-1574.doi: 10.11843/j.issn.0366-6964.2025.04.009
收稿日期:
2024-05-14
出版日期:
2025-04-23
发布日期:
2025-04-28
通讯作者:
张红丽
E-mail:1468965900@qq.com;hongli577@163.com
作者简介:
刘爱军(1989-), 男, 江西上饶人, 兽医师, 硕士, 主要从事疫病净化研究, E-mail: 1468965900@qq.com
基金资助:
LIU Aijun(), HUANG Xiaobing, ZHANG Chuanliang, ZHANG Hongli*(
)
Received:
2024-05-14
Online:
2025-04-23
Published:
2025-04-28
Contact:
ZHANG Hongli
E-mail:1468965900@qq.com;hongli577@163.com
摘要:
布鲁氏菌病(brucellosis)是一种由布鲁氏菌(Brucella)感染引起的全球性人兽共患病。近年来,我国布鲁氏菌病防控形势严峻,对牛羊养殖业和公共卫生安全构成较大威胁。天然免疫是抵御病原微生物感染的第一道防线,对维持机体的稳态至关重要。布鲁氏菌能够通过多种策略调节天然免疫信号通路,从而建立持续性感染,也能引起关节炎、肝炎、脑炎、流产等炎症性疾病。全面深入理解布鲁氏菌与天然免疫信号通路相互作用机制,可以为研发安全高效的疫苗或药物提供新的思路。因此,本文综述了Toll样受体(Toll-like receptors,TLRs)、环鸟苷酸腺苷酸合成酶(cyclic guanosine adenylate synthetase,cGAS)、干扰素基因刺激因子(stimulator of interferon genes,STING)、NOD样受体(NOD-like receptors,NLRs)、AIM2样受体(AIM2-like receptors,ALRs)、C型凝集素受体(C-type lectin receptors,CLRs)和RIG-I样受体(RIG-I-like receptors,RLRs)等天然免疫信号通路在抵御布鲁氏菌感染中的作用及机制,并总结了布鲁氏菌逃逸或劫持这些信号通路的策略。
中图分类号:
刘爱军, 黄晓兵, 张传亮, 张红丽. 布鲁氏菌与宿主天然免疫信号通路相互作用的研究进展[J]. 畜牧兽医学报, 2025, 56(4): 1561-1574.
LIU Aijun, HUANG Xiaobing, ZHANG Chuanliang, ZHANG Hongli. Progress on the Interactions of Brucella with Host Innate Immunity Signaling Pathways[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1561-1574.
表 1
天然免疫信号在小鼠布鲁氏菌感染中的作用"
受体 Receptor | 配体 Ligand | 感染途径 Route of infection | 作用 Function |
TLR2 | 脂蛋白[ | 腹腔注射 | TLR2-/-小鼠B. microti、B. abortus易感性均无显著差异[ |
气管内注射 | TLR2-/-小鼠肺泡巨噬细胞B. abortus负荷增高[ | ||
TLR4 | LPS和Omp16[ | 腹腔注射 | TLR4-/-小鼠B. microti、B. abortus易感性无显著差异[ |
TLR3/7 | RNA[ | 腹腔注射 | TLR3-/-和TLR7-/-小鼠B. abortus易感性均无显著差异[ |
TLR6 | 脂蛋白[ | 腹腔注射 | TLR6-/-小鼠B. abortus易感性增加[ |
TLR9 | DNA[ | 腹腔注射 | TLR9-/-小鼠B. abortus感染初期易感性增加[ |
cGAS | DNA[ | 气管内注射 | cGAS-/-小鼠B. abortus易感性增加[ |
腹腔注射 | cGAS-/-小鼠B. abortus易感性无显著性差异[ | ||
STING | c-diGMP和DNA[ | 气管内注射 | STING-/-小鼠B. abortus易感性增加[ |
腹腔注射 | STING-/-小鼠B. abortus易感性增加[ | ||
NLRP3 | DAMPs[ | 气管内注射 | NLRP3-/-小鼠B. abortus易感性增加[ |
腹腔注射 | NLRP3-/-小鼠B. abortus易感性增加[ | ||
AIM2 | DNA[ | 腹腔注射 | AIM2-/-小鼠B. abortus易感性增加[ |
气管内注射 | AIM2-/-小鼠B. abortus易感性增加[ | ||
NLRP6 | 尚不清楚 | 口服感染 | NLRP6-/-小鼠对B. abortus感染抵抗力增加[ |
腹腔注射 | NLRP6-/-小鼠B. abortus易感性无显著差异[ | ||
NLRP12 | 尚不清楚 | 腹腔注射 | NLRP12-/-小鼠对B. abortus感染抵抗力增加[ |
NOD1/2 | 尚不清楚 | 腹腔注射 | NOD1-/-和NOD2-/-小鼠B. abortus易感性无显著差异[ |
NLRC4 | 鞭毛蛋白[ | 腹腔注射 | NLRC4-/-小鼠B. melitensis易感性增加[ |
CASP11 | LPS[ | 腹腔注射 | CASP11-/-小鼠B. abortus易感性增加[ |
1 |
KURMANOVB,ZINCKED,SUW W,et al.Assays for identification and differentiation of Brucella species: a review[J].Microorganisms,2022,10(8):1584.
doi: 10.3390/microorganisms10081584 |
2 | LAINEC G,JOHNSONV E,SCOTTH M,et al.Global estimate of human brucellosis incidence[J].Emerg Infect Dis,2023,29(9):1789-1797. |
3 | 中华人民共和国国家卫生健康委员会. 2018年我国卫生健康事业发展统计公报[EB/OL]. (2019-05-22)[2025-03-13]. http://www.nhc.gov.cn/guihuaxxs/s10748/201905/9b8d52727cf346049de8acce25ffcbd0. shtml. |
National Health Commission of the People's Republic of China. Statistical bulletin on the development of health care in China[EB/OL]. (2019-05-22)[2025-03-13]. http://www.nhc.gov.cn/guihuaxxs/s10748/201905/9b8d52727cf346049de8acce25ffcbd0. shtml. (in Chinese) | |
4 | 中华人民共和国国家卫生健康委员会. 2023年我国卫生健康事业发展统计公报[EB/OL]. (2024-08-29)[2025-03-13]. http://www.nhc.gov.cn/guihuaxxs/s3585u/202408/6c037610b3a54f6c8535c515844fae96/files/58c5d1e9876344e5b1aa5aa2b083a51a.pdf. |
National Health Commission of the People's Republic of China. Statistical bulletin on the development of health care in China[EB/OL]. (2024-08-29)[2025-03-13]. http://www.nhc.gov.cn/guihuaxxs/s3585u/202408/6c037610b3a54f6c8535c515844fae96/files/58c5d1e9876344e5b1aa5aa2b083a51a.pdf. (in Chinese) | |
5 |
CARPENTERS,O'NEILLL A J.From periphery to center stage: 50 years of advancements in innate immunity[J].Cell,2024,187(9):2030-2051.
doi: 10.1016/j.cell.2024.03.036 |
6 |
MAM,JIANGW,ZHOUR B.DAMPs and DAMP-sensing receptors in inflammation and diseases[J].Immunity,2024,57(4):752-771.
doi: 10.1016/j.immuni.2024.03.002 |
7 |
DE CARVALHOT P,DA SILVAL A,CASTANHEIRAT L L,et al.Cell and tissue tropism of Brucella spp.[J].Infect Immun,2023,91(5):e0006223.
doi: 10.1128/iai.00062-23 |
8 | ROOPⅡ R M,BARTONI S,HOPERSBERGERD,et al.Uncovering the hidden credentials of Brucella virulence[J].Microbiol Mol Biol Rev,2021,85(1):e00021-19. |
9 |
MARCHESINIM I,SPERAJ M,COMERCID J.The 'ins and outs'of Brucella intracellular journey[J].Curr Opin Microbiol,2024,78,102427.
doi: 10.1016/j.mib.2024.102427 |
10 |
HUYT X N,NGUYENT T,KIMH,et al.Brucella phagocytosis mediated by pathogen-host interactions and their intracellular survival[J].Microorganisms,2022,10(10):2003.
doi: 10.3390/microorganisms10102003 |
11 |
CELLIJ.The intracellular life cycle of Brucella spp[J].Microbiol Spectr,2019,7(2):10.
doi: 10.1128/microbiolspec.bai-0006-2019 |
12 |
SPERAJ M,GUAIMASF,CZIBENERC,et al.Brucella egresses from host cells exploiting multivesicular bodies[J].mBio,2023,14(1):e0333822.
doi: 10.1128/mbio.03338-22 |
13 |
YANGJ K,WANGY,HOUY P,et al.Evasion of host defense by Brucella[J].Cell Insight,2024,3(1):100143.
doi: 10.1016/j.cellin.2023.100143 |
14 |
KAWAIT,IKEGAWAM,ORID,et al.Decoding toll-like receptors: recent insights and perspectives in innate immunity[J].Immunity,2024,57(4):649-673.
doi: 10.1016/j.immuni.2024.03.004 |
15 |
RODRÍGUEZA M,DELPINOM V,MIRAGLIAM C,et al.Immune mediators of pathology in neurobrucellosis: from blood to central nervous system[J].Neuroscience,2019,410,264-273.
doi: 10.1016/j.neuroscience.2019.05.018 |
16 | CAMPOSP C,GOMESM T R,GUIMARÃESE S,et al.TLR7 and TLR3 sense Brucella abortus RNA to induce proinflammatory cytokine production but they are dispensable for host control of infection[J].Front Immunol,2017,8,28. |
17 |
MILILLOM A,VELÁSQUEZL N,TROTTAA,et al.B. abortus RNA is the component involved in the down-modulation of MHC-I expression on human monocytes via TLR8 and the EGFR pathway[J].PLoS Pathog,2017,13(8):e1006527.
doi: 10.1371/journal.ppat.1006527 |
18 |
GOMESM T,CAMPOSP C,DE SOUSA PEREIRAG,et al.TLR9 is required for MAPK/NF-κB activation but does not cooperate with TLR2 or TLR6 to induce host resistance to Brucella abortus[J].J Leukoc Biol,2016,99(5):771-780.
doi: 10.1189/jlb.4A0815-346R |
19 | PENGY Z,BAIW H,WANGZ L,et al.TLR9/NF-κB Pathway regulates Brucella CpG DNA-mediated cytokine response in human peripheral blood mononuclear cells[J].Iran J Immunol,2021,18(4):268-278. |
20 |
YUH,GUX Y,WANGD F,et al.Brucella infection and Toll-like receptors[J].Front Cell Infect Microbiol,2024,14,1342684.
doi: 10.3389/fcimb.2024.1342684 |
21 |
O'NEILLL A J,GOLENBOCKD,BOWIEA G.The history of Toll-like receptors-redefining innate immunity[J].Nat Rev Immunol,2013,13(6):453-460.
doi: 10.1038/nri3446 |
22 |
DE ALMEIDAL A,MACEDOG C,MARINHOF A V,et al.Toll-like receptor 6 plays an important role in host innate resistance to Brucella abortus infection in mice[J].Infect Immun,2013,81(5):1654-1662.
doi: 10.1128/IAI.01356-12 |
23 |
WEISSD S,TAKEDAK,AKIRAS,et al.MyD88, but not toll-like receptors 4 and 2, is required for efficient clearance of Brucella abortus[J].Infect Immun,2005,73(8):5137-5143.
doi: 10.1128/IAI.73.8.5137-5143.2005 |
24 |
COPINR,DE BAETSELIERP,CARLIERY,et al.MyD88-dependent activation of B220-CD11b+ LY-6C+ dendritic cells during Brucella melitensis infection[J].J Immunol,2007,178(8):5182-5191.
doi: 10.4049/jimmunol.178.8.5182 |
25 |
OLIVEIRAF S,CARVALHON B,BRANDÃOA P M S,et al.Interleukin-1 receptor-associated kinase 4 is essential for initial host control of Brucella abortus infection[J].Infect Immun,2011,79(11):4688-4695.
doi: 10.1128/IAI.05289-11 |
26 |
LACEYC A,PONZILACQUA-SILVAB,CHAMBERSC A,et al.MyD88-dependent glucose restriction and itaconate production control Brucella infection[J].Infect Immun,2021,89(10):e0015621.
doi: 10.1128/IAI.00156-21 |
27 | ARIASM A,SANTIAGOL,COSTAS-RAMONS,et al.Toll-like receptors 2 and 4 cooperate in the control of the emerging pathogen Brucella microti[J].Front Cell Infect Microbiol,2017,6,205. |
28 |
FERREROM C,HIELPOSM S,CARVALHON B,et al.Key role of Toll-like receptor 2 in the inflammatory response and major histocompatibility complex class Ⅱ downregulation in Brucella abortus-infected alveolar macrophages[J].Infect Immun,2014,82(2):626-639.
doi: 10.1128/IAI.01237-13 |
29 |
WANGX L,ZHANGX J,LUT F,et al.Nucleotide variants in the TLR5 gene and promoter methylation with A susceptibility to brucellosis in Chinese goats[J].Folia Biol (Krakow),2022,70(2):55-66.
doi: 10.3409/fb_70-2.07 |
30 |
BYNDLOSSM X,TSOLISR M.Brucella spp. virulence factors and immunity[J].Annu Rev Anim Biosci,2016,4,111-127.
doi: 10.1146/annurev-animal-021815-111326 |
31 |
TERWAGNEM,FEROOZJ,ROLÁNH G,et al.Innate immune recognition of flagellin limits systemic persistence of Brucella[J].Cell Microbiol,2013,15(6):942-960.
doi: 10.1111/cmi.12088 |
32 |
LIJ M,ZHANGG D,ZHIF J,et al.BtpB inhibits innate inflammatory responses in goat alveolar macrophages through the TLR/NF-κB pathway and NLRP3 inflammasome during Brucella infection[J].Microb Pathog,2022,166,105536.
doi: 10.1016/j.micpath.2022.105536 |
33 |
MURUGANS,NANDIB R,MAZUMDARV,et al.Outer membrane protein 25 of Brucella suppresses TLR-mediated expression of proinflammatory cytokines through degradation of TLRs and adaptor proteins[J].J Biol Chem,2023,299(11):105309.
doi: 10.1016/j.jbc.2023.105309 |
34 |
ZHAIY Y,FANGJ Y,ZHENGW F,et al.A potential virulence factor: Brucella flagellin FliK does not affect the main biological properties but inhibits the inflammatory response in RAW264. 7 cells[J].Int Immunopharmacol,2024,133,112119.
doi: 10.1016/j.intimp.2024.112119 |
35 |
LIW N,KEY H,WANGY F,et al.Brucella TIR-like protein TcpB/Btp1 specifically targets the host adaptor protein MAL/TIRAP to promote infection[J].Biochem Biophys Res Commun,2016,477(3):509-514.
doi: 10.1016/j.bbrc.2016.06.064 |
36 |
LUOX M,ZHANGX J,WUX C,et al.Brucella downregulates tumor necrosis factor-α to promote intracellular survival via Omp25 regulation of different microRNAs in porcine and murine macrophages[J].Front Immunol,2018,8,2013.
doi: 10.3389/fimmu.2017.02013 |
37 |
ZHOUY C,BUZ Y,QIANJ,et al.Brucella melitensis UGPase inhibits the activation of NF-κB by modulating the ubiquitination of NEMO[J].BMC Vet Res,2021,17,289.
doi: 10.1186/s12917-021-02993-9 |
38 |
MAZUMDARV,JOSHIK,NANDIB R,et al.Host F-box protein 22 enhances the uptake of Brucella by macrophages and drives a sustained release of proinflammatory cytokines through degradation of the anti-inflammatory effector proteins of Brucella[J].Infect Immun,2022,90(5):e0006022.
doi: 10.1128/iai.00060-22 |
39 | DEGOSC,HYSENAJL,GONZALEZ-ESPINOZAG,et al.Omp25-dependent engagement of SLAMF1 by Brucella abortus in dendritic cells limits acute inflammation and favours bacterial persistence in vivo[J].Cell Microbiol,2020,22(4):e13164. |
40 |
CUIB B,LIUW L,WANGX Y,et al.Brucella Omp25 upregulates miR-155, miR-21-5p, and miR-23b to inhibit interleukin-12 production via modulation of programmed death-1 signaling in human monocyte/macrophages[J].Front Immunol,2017,8,708.
doi: 10.3389/fimmu.2017.00708 |
41 |
DECOUTA,KATZJ D,VENKATRAMANS,et al.The cGAS-STING pathway as a therapeutic target in inflammatory diseases[J].Nat Rev Immunol,2021,21(9):548-569.
doi: 10.1038/s41577-021-00524-z |
42 |
DE ALMEIDAL A,CARVALHON B,OLIVEIRAF S,et al.MyD88 and STING signaling pathways are required for IRF3-mediated IFN-β induction in response to Brucella abortus infection[J].PLoS One,2011,6(8):e23135.
doi: 10.1371/journal.pone.0023135 |
43 |
ALONSO PAIVAI M,A SANTOSR,BRITOC B,et al.Role of the cGAS/STING pathway in the control of Brucella abortus infection acquired through the respiratory route[J].Front Immunol,2023,14,1116811.
doi: 10.3389/fimmu.2023.1116811 |
44 |
COSTAFRANCO M M,MARIMF,GUIMARÃESE S,et al.Brucella abortus triggers a cGAS-independent STING pathway to induce host protection that involves guanylate-binding proteins and inflammasome activation[J].J Immunol,2018,200(2):607-622.
doi: 10.4049/jimmunol.1700725 |
45 |
GOMESM T R,GUIMARÃESE S,MARINHOF V,et al.STING regulates metabolic reprogramming in macrophages via HIF-1α during Brucella infection[J].PLoS Pathog,2021,17(5):e1009597.
doi: 10.1371/journal.ppat.1009597 |
46 |
GUIMARÃESE S,GOMESM T R,CAMPOSP C,et al.Brucella abortus cyclic dinucleotides trigger STING-dependent unfolded protein response that favors bacterial replication[J].J Immunol,2019,202(9):2671-2681.
doi: 10.4049/jimmunol.1801233 |
47 |
WELLSK M,HEK,PANDEYA,et al.Brucella activates the host RIDD pathway to subvert BLOS1-directed immune defense[J].eLife,2022,11,e73625.
doi: 10.7554/eLife.73625 |
48 |
LUIZETJ B,RAYMONDJ,LACERDAT L S,et al.The Brucella effector BspL targets the ER-associated degradation (ERAD) pathway and delays bacterial egress from infected cells[J].Proc Natl Acad Sci U S A,2021,118(32):e2105324118.
doi: 10.1073/pnas.2105324118 |
49 |
GUIMARÃESE S,GOMESM T R,SANCHESR C O,et al.The endoplasmic reticulum stress sensor IRE1α modulates macrophage metabolic function during Brucella abortus infection[J].Front Immunol,2023,13,1063221.
doi: 10.3389/fimmu.2022.1063221 |
50 | DE JONGM F,STARRT,WINTERM G,et al.Sensing of bacterial type Ⅳ secretion via the unfolded protein response[J].mBio,2013,4(1):e00418-12. |
51 |
SMITHJ A,KHANM,MAGNANID D,et al.Brucella induces an unfolded protein response via TcpB that supports intracellular replication in macrophages[J].PLoS Pathog,2013,9(12):e1003785.
doi: 10.1371/journal.ppat.1003785 |
52 |
TAGUCHIY,IMAOKAK,KATAOKAM,et al.Yip1A, a novel host factor for the activation of the IRE1 pathway of the unfolded protein response during Brucella infection[J].PLoS Pathog,2015,11(3):e1004747.
doi: 10.1371/journal.ppat.1004747 |
53 | BYNDLOSSM X,TSAIA Y,WALKERG T,et al.Brucella abortus infection of placental trophoblasts triggers endoplasmic reticulum stress-mediated cell death and fetal loss via type Ⅳ secretion system-dependent activation of CHOP[J].mBio,2019,10(4):e01538-19. |
54 |
LIR Z,LIUW L,YINX R,et al.Brucella spp. Omp25 promotes proteasome-mediated cGAS degradation to attenuate IFN-β production[J].Front Microbiol,2021,12,702881.
doi: 10.3389/fmicb.2021.702881 |
55 | 李瑞珍. 布鲁氏菌Omp25、RicA和BspB抑制cGAS-STING通路活化的分子机制研究[D]. 杨凌: 西北农林科技大学, 2022. |
LI R Z. Molecular mechanism inhibited the activation of cGAS-STING pathway by Brucella Omp25, RicA and BspB[D]. Yangling: Northwest A&F University, 2022. (in Chinese) | |
56 |
KHANM,HARMSJ S,LIUY P,et al.Brucella suppress STING expression via miR-24 to enhance infection[J].PLoS Pathog,2020,16(10):e1009020.
doi: 10.1371/journal.ppat.1009020 |
57 |
SUNDARAMB,TWEEDELLR E,KUMARS P,et al.The NLR family of innate immune and cell death sensors[J].Immunity,2024,57(4):674-699.
doi: 10.1016/j.immuni.2024.03.012 |
58 |
BROZP,DIXITV M.Inflammasomes: mechanism of assembly, regulation and signalling[J].Nat Rev Immunol,2016,16(7):407-420.
doi: 10.1038/nri.2016.58 |
59 |
CERQUEIRAD M,GOMESM T R,SILVAA L N,et al.Guanylate-binding protein 5 licenses caspase-11 for Gasdermin-D mediated host resistance to Brucella abortus infection[J].PLoS Pathog,2018,14(12):e1007519.
doi: 10.1371/journal.ppat.1007519 |
60 |
TUPIKJ D,COUTERMARSH-OTTS L,BENTONA H,et al.ASC-mediated inflammation and pyroptosis attenuates Brucella abortus pathogenesis following the recognition of gDNA[J].Pathogens,2020,9(12):1008.
doi: 10.3390/pathogens9121008 |
61 | LACEYC A,MITCHELLW J,DADELAHIA S,et al.Caspase-1 and caspase-11 mediate pyroptosis, inflammation, and control of Brucella joint infection[J].Infect Immun,2018,86(9):e00361-18. |
62 |
FRANCOM M S C,MARIMF M,ALVES-SILVAJ,et al.AIM2 senses Brucella abortus DNA in dendritic cells to induce IL-1β secretion, pyroptosis and resistance to bacterial infection in mice[J].Microbes Infect,2019,21(2):85-93.
doi: 10.1016/j.micinf.2018.09.001 |
63 |
CAMPOSP C,GOMESM T R,MARINHOF A V,et al.Brucella abortus nitric oxide metabolite regulates inflammasome activation and IL-1β secretion in murine macrophages[J].Eur J Immunol,2019,49(7):1023-1037.
doi: 10.1002/eji.201848016 |
64 |
HIELPOSM S,FERNÁNDEZA G,FALIVENEJ,et al.IL-1R and inflammasomes mediate early pulmonary protective mechanisms in respiratory Brucella abortus infection[J].Front Cell Infect Microbiol,2018,8,391.
doi: 10.3389/fcimb.2018.00391 |
65 |
GOMESM T R,CAMPOSP C,OLIVEIRAF S,et al.Critical role of ASC inflammasomes and bacterial type Ⅳ secretion system in caspase-1 activation and host innate resistance to Brucella abortus infection[J].J Immunol,2013,190(7):3629-3638.
doi: 10.4049/jimmunol.1202817 |
66 |
SANTOSR A,CERQUEIRAD M,ZAMBONID S,et al.Caspase-8 but not caspase-7 influences inflammasome activation to act in control of Brucella abortus infection[J].Front Microbiol,2022,13,1086925.
doi: 10.3389/fmicb.2022.1086925 |
67 |
RENH,YANGH,YANGX,et al.Brucella outer membrane lipoproteins 19 and 16 differentially induce interleukin-18 response or pyroptosis in human monocytic cells[J].J Infect Dis,2021,224(12):2148-2159.
doi: 10.1093/infdis/jiab272 |
68 | 孙灿,魏硕,鄢余静,等.布鲁氏菌BspF蛋白生物信息学分析及其对巨噬细胞炎症因子表达的影响[J].中国畜牧兽医,2024,51(5):1846-1856. |
SUNC,WEIS,YANY J,et al.Bioinformatics analysis of Brucella BspF protein and its effect on expression of inflammatory factors in macrophages[J].China Animal Husbandry & Veterinary Medicine,2024,51(5):1846-1856. | |
69 | 李佳,邓兴梅,陶婷婷,等.布鲁氏菌侵染过程中has-miR-5196-3p对炎症小体的调控作用[J].中国畜牧兽医,2021,48(5):1507-1515. |
LIJ,DENGX M,TAOT T,et al.Regulatory effect of has-miR-5196-3p on inflammasome during Brucella infection[J].China Animal Husbandry & Veterinary Medicine,2021,48(5):1507-1515. | |
70 | 李佳. 非编码RNA p662对布鲁氏菌导致细胞焦亡调节作用研究[D]. 石河子: 石河子大学, 2021. |
LI J. Study on the regulatory effect of non-coding RNA p662 on Brucella induced pyroptosis[D]. Shihezi: Shihezi University, 2021. (in Chinese) | |
71 | 邓兴梅,曹树珠,郭嘉,等.长链非编码RNA Gm35082-202对布鲁氏菌引起的细胞焦亡的影响[J].中国畜牧兽医,2022,49(9):3599-3609. |
DENGX M,CAOS Z,GUOJ,et al.Effect of long non-coding RNA Gm35082-202 on cell pyrodecay induced by Brucella[J].China Animal Husbandry & Veterinary Medicine,2022,49(9):3599-3609. | |
72 |
ARRIOLA BENITEZP C,PESCE VIGLIETTIA I,GOMESM T R,et al.Brucella abortus infection elicited hepatic stellate cell-mediated fibrosis through inflammasome-dependent IL-1β production[J].Front Immunol,2020,10,3036.
doi: 10.3389/fimmu.2019.03036 |
73 |
LACEYC A,CHAMBERSC A,MITCHELLW J,et al.IFN-γ-dependent nitric oxide suppresses Brucella-induced arthritis by inhibition of inflammasome activation[J].J Leukoc Biol,2019,106(1):27-34.
doi: 10.1002/JLB.4MIA1018-409R |
74 |
JAKKAP,NAMANIS,MURUGANS,et al.The Brucella effector protein TcpB induces degradation of inflammatory caspases and thereby subverts non-canonical inflammasome activation in macrophages[J].J Biol Chem,2017,292(50):20613-20627.
doi: 10.1074/jbc.M117.815878 |
75 |
RUNGUEM,MELOV,MARTINSD,et al.NLRP6-associated host microbiota composition impacts in the intestinal barrier to systemic dissemination of Brucella abortus[J].PLoS Negl Trop Dis,2021,15(2):e0009171.
doi: 10.1371/journal.pntd.0009171 |
76 |
SILVEIRAT N,GOMESM T R,OLIVEIRAL S,et al.NLRP12 negatively regulates proinflammatory cytokine production and host defense against Brucella abortus[J].Eur J Immunol,2017,47(1):51-59.
doi: 10.1002/eji.201646502 |
77 |
KEESTRA-GOUNDERA M,BYNDLOSSM X,SEYFFERTN,et al.NOD1 and NOD2 signalling links ER stress with inflammation[J].Nature,2016,532(7599):394-397.
doi: 10.1038/nature17631 |
78 | OLIVEIRAF S,CARVALHON B,ZAMBONID S,et al.Nucleotide-binding oligomerization domain-1 and-2 play no role in controlling Brucella abortus infection in mice[J].Clin Dev Immunol,2012,2012,861426. |
79 |
ZHANGP P,LIUY F,HUL C,et al.NLRC4 inflammasome-dependent cell death occurs by a complementary series of three death pathways and determines lethality in mice[J].Sci Adv,2021,7(43):eabi9471.
doi: 10.1126/sciadv.abi9471 |
80 |
REIS E SOUSAC,YAMASAKIS,BROWNG D.Myeloid C-type lectin receptors in innate immune recognition[J].Immunity,2024,57(4):700-717.
doi: 10.1016/j.immuni.2024.03.005 |
81 |
MNICHM E,VAN DALENR,VAN SORGEN M.C-type lectin receptors in host defense against bacterial pathogens[J].Front Cell Infect Microbiol,2020,10,309.
doi: 10.3389/fcimb.2020.00309 |
82 |
CHENS T,LIF J,HSUT Y,et al.CLEC5A is a critical receptor in innate immunity against Listeria infection[J].Nat Commun,2017,8(1):299.
doi: 10.1038/s41467-017-00356-3 |
83 |
SUNGP S,PENGY C,YANGS P,et al.CLEC5A is critical in Pseudomonas aeruginosa-induced NET formation and acute lung injury[J].JCI Insight,2022,7(18):e156613.
doi: 10.1172/jci.insight.156613 |
84 |
ZHANGL F,LEPENIESB,NAKAMAES,et al.The Vi capsular polysaccharide of Salmonella typhi promotes macrophage phagocytosis by binding the human C-type lectin DC-SIGN[J].mBio,2022,13(6):e0273322.
doi: 10.1128/mbio.02733-22 |
85 |
ZHANGH T,PALMAA S,ZHANGY B,et al.Generation and characterization of β1, 2-gluco-oligosaccharide probes from Brucella abortus cyclic β-glucan and their recognition by C-type lectins of the immune system[J].Glycobiology,2016,26(10):1086-1096.
doi: 10.1093/glycob/cww041 |
86 |
CAMPOSP C,GOMESM T R,GUIMARÃESG,et al.Brucella abortus DNA is a major bacterial agonist to activate the host innate immune system[J].Microbes Infect,2014,16(12):979-984.
doi: 10.1016/j.micinf.2014.08.010 |
87 |
ONOMOTOK,ONOGUCHIK,YONEYAMAM.Regulation of RIG-I-like receptor-mediated signaling: interaction between host and viral factors[J].Cell Mol Immunol,2021,18(3):539-555.
doi: 10.1038/s41423-020-00602-7 |
88 |
LIB B,CHENS,WANGC Q,et al.Integrated mRNA-seq and miRNA-seq analysis of goat fibroblasts response to Brucella Melitensis strain M5-90[J].PeerJ,2021,9,e11679.
doi: 10.7717/peerj.11679 |
89 |
XIONGX,LIB W,ZHOUZ X,et al.The VirB system plays a crucial role in Brucella intracellular infection[J].Int J Mol Sci,2021,22(24):13637.
doi: 10.3390/ijms222413637 |
90 |
ALAKAVUKLARM A,FIEBIGA,CROSSONS.The Brucella cell envelope[J].Annu Rev Microbiol,2023,77,233-253.
doi: 10.1146/annurev-micro-032521-013159 |
91 | 唐新月,朱小洁,武翠香,等.我国已上市动物布鲁氏菌病活疫苗的概况及新型疫苗研究方向[J].中国兽药杂志,2024,58(5):82-88. |
TANGX Y,ZHUX J,WUC X,et al.A comprehensive overview of approved animal brucellosis live attenuated vaccines in China and novel vaccine research direction[J].Chinese Journal of Veterinary Drug,2024,58(5):82-88. | |
92 |
MAJZOOBIM M,HASHEMIS H,MAMANIM,et al.Effect of hydroxychloroquine on treatment and recurrence of acute brucellosis: a single-blind, randomized clinical trial[J].Int J Antimicrob Agents,2018,51(3):365-369.
doi: 10.1016/j.ijantimicag.2017.08.009 |
[1] | 尤留超, 尹号, 陶政宇, 黄蓉, 付磊, 储岳峰. 布鲁氏菌毒力因子与胞内存活机制研究进展[J]. 畜牧兽医学报, 2025, 56(4): 1575-1593. |
[2] | 杨晓雯, 宁文晴, 周师众, 袁雅琴, 侯雪新, 丁家波. 一种羊种布鲁氏菌复方新诺明耐药株荧光定量PCR检测方法的建立[J]. 畜牧兽医学报, 2025, 56(3): 1465-1472. |
[3] | 王恒泰, 吕浪, 蒋卉, 程君生, 刘铭赫, 储岳峰, 许健, 李朋, 丁家波. 牛种布鲁氏菌MgtC蛋白在抵抗低Mg2+环境中的生物学功能研究[J]. 畜牧兽医学报, 2025, 56(1): 365-377. |
[4] | 何松, 汤德元, 曾智勇, 王彬, 黄涛, 毛茵茗, 周飘, 廖正波, 陈旭, 袁盛林, 胡雯雯, 周敏. 日本脑炎病毒免疫逃逸分子机制研究进展[J]. 畜牧兽医学报, 2024, 55(6): 2368-2378. |
[5] | 徐朕宇, 邓肖玉, 王月丽, 孙灿, 吴澳迪, 曹剑, 易继海, 王勇, 王震, 陈创夫. 牛种布鲁氏菌A19ΔBtpA缺失株生物学特性及其免疫原性研究[J]. 畜牧兽医学报, 2024, 55(5): 2135-2145. |
[6] | 赵灿奇, 冯宇, 吕浪, 李彦军, 魏玉磊, 丁家波, 陈祥, 蒋卉. 竞争ELISA和间接ELISA方法应用于牛布鲁氏菌病净化的研究[J]. 畜牧兽医学报, 2024, 55(5): 2146-2153. |
[7] | 武上杰, 栾园园, 王明坤, 张贺春, 于波, 马月辉, 蒋琳, 何晓红. 绵羊布鲁氏菌病抗病育种研究进展[J]. 畜牧兽医学报, 2024, 55(3): 882-893. |
[8] | 马淑娟, 徐祎洁, 何珂, 马瑞丰, 朱英. 反刍动物Toll样受体多基因家族的分子进化及表达模式分析[J]. 畜牧兽医学报, 2023, 54(9): 3722-3734. |
[9] | 龙琴琴, 魏敏, 王雨婷, 文明, 庞峰. 羊口疮病毒与宿主的博弈:免疫应答与病毒免疫逃逸机制[J]. 畜牧兽医学报, 2023, 54(5): 1845-1853. |
[10] | 翟云逸, 袁野, 李俊玫, 田路路, 刁梓洋, 李彬, 陈家露, 周栋, 靳亚平, 王爱华. 布鲁氏菌外膜蛋白16单克隆抗体的制备及初步应用[J]. 畜牧兽医学报, 2023, 54(5): 2083-2091. |
[11] | 相彩霞, 王相国, 李俊玫, 支飞杰, 房姣阳, 郑维芳, 陈家露, 靳亚平, 王爱华. 布鲁氏菌Ⅳ型分泌系统效应蛋白VceC对山羊滋养层细胞内质网应激和性腺激素分泌的影响[J]. 畜牧兽医学报, 2023, 54(3): 1210-1220. |
[12] | 王洋, 崔帅, 鑫婷, 王西西, 于海男, 陈世钰, 蒋亚君, 高新桃, 庞忠宝, 姜一曈, 郭晓宇, 贾红, 朱鸿飞. 非洲猪瘟病毒MGF360-14L靶向MAVS抑制Ⅰ型干扰素的产生[J]. 畜牧兽医学报, 2022, 53(9): 3272-3278. |
[13] | 李杨, 周栋, 尹彦龙, 张广冻, 相彩霞, 支飞杰, 白芙蓉, 林鹏飞, 靳亚平, 王爱华. 布鲁氏菌OMP16对RAW264.7细胞凋亡与免疫活性的影响[J]. 畜牧兽医学报, 2022, 53(8): 2642-2651. |
[14] | 赵旭阳, 靳家鑫, 路闻龙, 张帅, 黄丽, 张改平, 孙爱军, 庄国庆. 非洲猪瘟病毒免疫逃逸分子机制研究进展[J]. 畜牧兽医学报, 2022, 53(7): 2074-2082. |
[15] | 杨琴, 邓肖玉, 谢珊珊, 易继海, 王勇, 张倩, 王震, 陈创夫. 牛种布鲁氏菌Ⅳ型分泌系统对巨噬细胞内质网应激和细胞凋亡的影响[J]. 畜牧兽医学报, 2022, 53(4): 1192-1200. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||