畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (2): 523-533.doi: 10.11843/j.issn.0366-6964.2025.02.005
李案本1(), 符娜娜1, 罗晓平2, 李军燕2, 刘阳1,*(
)
收稿日期:
2024-04-07
出版日期:
2025-02-23
发布日期:
2025-02-26
通讯作者:
刘阳
E-mail:19143240787@139.com;liuyangnihao@139.com
作者简介:
李案本(2002-),男,云南富源人,硕士生,主要从事病原生物与宿主免疫研究,E-mail: 19143240787@139.com
基金资助:
LI Anben1(), FU Nana1, LUO Xiaoping2, LI Junyan2, LIU Yang1,*(
)
Received:
2024-04-07
Online:
2025-02-23
Published:
2025-02-26
Contact:
LIU Yang
E-mail:19143240787@139.com;liuyangnihao@139.com
摘要:
捻转血矛线虫对伊维菌素、阿苯达唑等驱虫药物的耐药性愈发严重,给全球多数国家和地区的养殖业带来巨大损失。目前,对捻转血矛线虫耐药性的研究多集中于流行病学调查、耐药机制及耐药性干预,并取得一定进展。本文针对捻转血矛线虫的耐药性分布及其影响因素,耐药机制以及基于细胞膜泵、自噬水平、细胞呼吸链、寄生虫替换、植物提取物与驱虫药联合驱虫、抗性宿主培育等途径逆转耐药性进行综述,以期为捻转血矛线虫的耐药性研究提供新的思路,同时为捻转血矛线虫病的科学防治、合理用药以及新药开发提供参考依据。
中图分类号:
李案本, 符娜娜, 罗晓平, 李军燕, 刘阳. 捻转血矛线虫的耐药性及其干预途径研究进展[J]. 畜牧兽医学报, 2025, 56(2): 523-533.
LI Anben, FU Nana, LUO Xiaoping, LI Junyan, LIU Yang. Progress in the Study of Drug Resistance and Its Reversal in Haemonchus contortus[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 523-533.
表 1
捻转血矛线虫伊维菌素(IVM)、阿苯达唑(ABZ)耐药性在中国的报道"
地区 Area | 驱虫药 Anthelmintic drug | 来源 Source |
内蒙古乌兰浩特市科尔沁右翼前旗 | ABZ、IVM | 王腾宇等(2021) |
内蒙古乌兰察布市察右后旗 | IVM、ABZ | 赵学亮等(2019) |
内蒙古兴安盟科右前旗 | ABZ | 石雅琴(2021) |
内蒙古察哈尔右翼后旗 | ABZ | 刘晓磊(2019) |
内蒙古锡林郭勒盟辖旗西乌珠穆沁旗 | ABZ、IVM | 其力木格等(2020)、何秀玲等(2020) |
内蒙古巴彦淖尔 | ABZ | 罗晓平(2021) |
内蒙古呼盟、和林、萨拉齐地区 | ABZ、IVM | 敖登高娃(2017) |
内蒙古乌审旗 | ABZ、IVM | 赵学亮(2019)、额叶勒德格等(2018) |
黑龙江鹤岗市 | ABZ | 李莹(2018) |
新疆昭君县 | IVM | 瓦热斯·吐尔松(2022) |
新疆博乐市、阿勒泰市、塔城市 | ABZ | 李泽华(2020)、肖培培等(2020) |
新疆乌鲁木齐 | IVM、ABZ | 赵江山等(2010) |
陕西 | ABZ、IVM | 冯向阳等(2016) |
江苏、安徽、河南、吉林、辽宁 | ABZ | 李泽华(2020) |
河北坝上高原地区 | ABZ | 赵月兰等(2004) |
青海民和县、互助县、湟中县、化隆县、湟源县、共和县 | ABZ | 宁鹏等(2018) |
宁夏灵武、贺兰、盐池、吴忠、中卫、水宁 | ABZ、IVM | 蔡葵蒸(2007) |
湖北 | ABZ | 杨新(2018) |
四川 | ABZ | 罗伏林(2005) |
湖南环洞庭湖区地区 | ABZ | 成钢等(2015) |
表 2
捻转血矛线虫伊维菌素(IVM)、阿苯达唑(ABZ)耐药性全球分布"
地区 Area | 驱虫药 Anthelmintic drug | 来源 Source |
丹麦 | ABZ、IVM | Holm等(2014) |
乌拉圭 | ABZ | Munguía等(2018) |
肯尼亚 | ABZ、IVM | Waruiru等(1997) |
印度 | ABZ、IVM | Singh等(2021),Chandra等(2015) |
荷兰 | ABZ、IVM | Ploeger等(2018) |
新西兰 | ABZ、IVM | Sutherland等(2008),Vickers等(2001) |
澳大利亚 | ABZ、IVM | Lamb等(2017) |
莫桑比克 | ABZ | Atanásio-Nhacumbe等(2018) |
巴西 | ABZ、IVM | Ramos等(2016),Lambert等(2017) |
美国南方 | ABZ、IVM | Gasbarre等(2009) |
瑞士和德国南部 | ABZ | Scheuerle等(2009) |
加拿大 | ABZ | Barrere等(2013) |
波兰 | ABZ | Mickiewicz等(2021) |
圣埃斯皮里图 | IVM、ABZ | Viana等(2021) |
哥伦比亚 | IVM、ABZ | Chaparro等(2017) |
表 3
捻转血矛线虫驱虫植物提取物"
科 Family | 植物及提取物 Plants & Extracts |
豆科Leguminosae | 相思豆(Abrus precatorius Linn.)[ |
菊科Asteraceae | 青蒿(Artemisia carvifolia Buch.-Ham. ex Roxb.)[ |
蔷薇科Rosaceae | 地榆(Sanguisorba officinalis Linn.)、紫色悬钩子(Rubus irritans Focke)[ |
夹竹桃科Apocynaceae | 狗牙花(Ervatamia divaricata (L.) Burk. cv. Gouyahua)[ |
杨梅科Myricaceae | 乌兰杜瓦杨梅(Myrica rubra Siebold et Zuccarini) |
楝科Meliaceae | 苦楝(Melia azedarace L.)[ |
芸香科Rutaceae | 芸香(Ruta graveolens Linn.) |
使君子科Combretaceae | 毗黎勒(Terminalia bellirica (Gaertn.) Roxb.)[ |
卫矛科Celastraceae | 塞内加尔美登木(Maytenus hookeri Loes.)[ |
凤梨Bromeliaceae | 凤梨(Ananas comosus (Linn.) Merr.)[ |
麻黄科Ephedraceae | 麻黄(Ephedra sinica Stapf)[ |
漆树科Anacardiaceae | 腰果壳(Anacardium occidentale Linn.) |
五味子科Schisandraceae | 八角果(Illicium verum Hook. f.)[ |
报春花科Primulaceae | 过路黄(Lysimachia christinae Hance) |
松科Pinaceae | 雪松(Cedrus deodara (Roxburgh) G. Don) |
芭蕉科Musaceae | 香蕉(Musa nana Lour.)[ |
马钱科Loganiaceae | 石竹参(Spigelia anthelmia L.)[ |
1 |
WANG T , MA G X , ANG C S , et al. Somatic proteome of Haemonchus contortus[J]. Int J Parasitol, 2019, 49 (3-4): 311- 320.
doi: 10.1016/j.ijpara.2018.12.003 |
2 |
CALLANAN M K , HABIBI S A , LAW W J , et al. Investigating the function and possible biological role of an acetylcholine-gated chloride channel subunit (ACC-1) from the parasitic nematode Haemonchus contortus[J]. Int J Parasitol Drugs Drug Resist, 2018, 8 (3): 526- 533.
doi: 10.1016/j.ijpddr.2018.10.010 |
3 |
ATIF M , ESTRADA-MONDRAGON A , NGUYEN B , et al. Effects of glutamate and ivermectin on single glutamate-gated chloride channels of the parasitic nematode H. contortus[J]. PLoS Pathog, 2017, 13 (10): e1006663.
doi: 10.1371/journal.ppat.1006663 |
4 |
BÁRTÍKOVÁ H , PODLIPNÁ R , SKÁLOVÁ L . Veterinary drugs in the environment and their toxicity to plants[J]. Chemosphere, 2016, 144, 2290- 2301.
doi: 10.1016/j.chemosphere.2015.10.137 |
5 |
MORELLET N , VAN MOORTER B , CARGNELUTTI B , et al. Landscape composition influences roe deer habitat selection at both home range and landscape scales[J]. Landscape Ecol, 2011, 26 (7): 999- 1010.
doi: 10.1007/s10980-011-9624-0 |
6 |
WALKER J G , MORGAN E R . Generalists at the interface: nematode transmission between wild and domestic ungulates[J]. Int J Parasitol Parasites Wildl, 2014, 3 (3): 242- 250.
doi: 10.1016/j.ijppaw.2014.08.001 |
7 |
BROWN T L , AIRS P M , PORTER S , et al. Understanding the role of wild ruminants in anthelmintic resistance in livestock[J]. Biol Lett, 2022, 18 (5): 20220057.
doi: 10.1098/rsbl.2022.0057 |
8 |
GEORGE M M , VATTA A F , HOWELL S B , et al. Evaluation of changes in drug susceptibility and population genetic structure in Haemonchus contortus following worm replacement as a means to reverse the impact of multiple-anthelmintic resistance on a sheep farm[J]. Int J Parasitol Drugs Drug Resist, 2021, 15, 134- 143.
doi: 10.1016/j.ijpddr.2021.02.004 |
9 |
FOSTER J , COCHRANE E , KHATAMI M H , et al. A mutational and molecular dynamics study of the cys-loop GABA receptor Hco-UNC-49 from Haemonchus contortus: agonist recognition in the nematode GABA receptor family[J]. Int J Parasitol Drugs Drug Resist, 2018, 8 (3): 534- 539.
doi: 10.1016/j.ijpddr.2018.10.001 |
10 |
RIOU M , GUÉGNARD F , LE VERN Y , et al. Effects of cholesterol content on activity of P-glycoproteins and membrane physical state, and consequences for anthelmintic resistance in the nematode Haemonchus contortus[J]. Parasite, 2020, 27, 3.
doi: 10.1051/parasite/2019079 |
11 | 罗晓平, 李军燕, 高娃, 等. 捻转血矛线虫耐伊维菌素候选基因的多态性分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40 (4): 536-539, 544. |
LUO X P , LI J Y , GAO W , et al. Polymorphism analysis of candidate genes for ivermectin resistance in Haemonchus contortus[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2022, 40 (4): 536-539, 544. | |
12 |
BARRÈRE V , ALVAREZ L , SUAREZ G , et al. Relationship between increased albendazole systemic exposure and changes in single nucleotide polymorphisms on the β-tubulin isotype 1 encoding gene in Haemonchus contortus[J]. Vet Parasitol, 2012, 186 (3-4): 344- 349.
doi: 10.1016/j.vetpar.2011.11.068 |
13 |
BLACKHALL W J , PRICHARD R K , BEECH R N . P-glycoprotein selection in strains of Haemonchus contortus resistant to benzimidazoles[J]. Vet Parasitol, 2008, 152 (1-2): 101- 107.
doi: 10.1016/j.vetpar.2007.12.001 |
14 |
CHEN X D , WANG T Y , GUO W R , et al. Transcriptome reveals the roles and potential mechanisms of lncRNAs in the regulation of albendazole resistance in Haemonchus contortus[J]. BMC Genomics, 2024, 25 (1): 188.
doi: 10.1186/s12864-024-10096-6 |
15 |
ZHOU C X , TUERSONG W , LIU L , et al. Non-coding RNA in the gut of the blood-feeding parasitic worm, Haemonchus contortus[J]. Vet Res, 2024, 55 (1): 1.
doi: 10.1186/s13567-023-01254-x |
16 | 温海峰, 张艳敏, 张海龙, 等. 捻转血矛线虫伊维菌素敏感虫株与耐药虫株差异miRNA的转录组学分析[J]. 中国预防兽医学报, 2023, 45 (3): 245- 252. |
WEN H F , ZHANG Y M , ZHANG H L , et al. Transcriptomic analysis of miRNAs between ivermectin sensitive and resistant strains of Haemonchus contortus[J]. Chinese Journal of Preventive Veterinary Medicine, 2023, 45 (3): 245- 252. | |
17 |
GILLAN V , MAITLAND K , LAING R , et al. Increased expression of a MicroRNA correlates with anthelmintic resistance in parasitic nematodes[J]. Front Cell Infect Microbiol, 2017, 7, 452.
doi: 10.3389/fcimb.2017.00452 |
18 | 陈昕迪, 王腾宇, 刘春霞, 等. 捻转血矛线虫伊维菌素耐药相关长链非编码RNA及其调控功能分析[J]. 中国农业大学学报, 2023, 28 (1): 190- 202. |
CHEN X D , WANG T Y , LIU C X , et al. Analysis of long non-coding RNAs associated with ivermectin resistance and its regulatory function in Haemonchus contortus[J]. Journal of China Agricultural University, 2023, 28 (1): 190- 202. | |
19 | 陈昕迪, 王腾宇, 石雅琴, 等. 捻转血矛线虫阿苯达唑耐药相关长链非编码RNA的表达分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40 (4): 540- 544. |
CHEN X D , WANG T Y , SHI Y Q , et al. Analysis of the expressed lncRNA related to albendazole resistance of Haemonchus contortus[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2022, 40 (4): 540- 544. | |
20 |
赵学亮, 王姝懿, 孙柯, 等. 捻转血矛线虫阿苯达唑敏感株和耐药株比较转录组学分析[J]. 畜牧兽医学报, 2019, 50 (9): 1940- 1944.
doi: 10.11843/j.issn.0366-6964.2019.09.024 |
ZHAO X L , WANG S Y , SUN K , et al. Comparative transcriptome analysis of albendazole-susceptible and resistant strains of Haemonchus contortus by RNA-Seq[J]. Journal of Animal Husbandry and Veterinary Science, 2019, 50 (9): 1940- 1944.
doi: 10.11843/j.issn.0366-6964.2019.09.024 |
|
21 |
MATE L , BALLENT M , CANTÓN C , et al. ABC-transporter gene expression in ivermectin-susceptible and resistant Haemonchus contortus isolates[J]. Vet Parasitol, 2022, 302, 109647.
doi: 10.1016/j.vetpar.2022.109647 |
22 | 刘阳. 捻转血矛线虫转录组和蛋白组学分析及耐IVM候选基因功能研究[D]. 呼和浩特: 内蒙古农业大学, 2021. |
LIU Y. Analysis of transcriptomics and proteomics and functional reseach of IVM-resistant candidate genes in Haemonchus contortus[D]. Hohhot: Inner Mongolia Agricultural University, 2021. (in Chinese) | |
23 |
EVANS K S , WIT J , STEVENS L , et al. Two novel loci underlie natural differences in Caenorhabditis elegans abamectin responses[J]. Plos Pathog, 2021, 17, e1009297.
doi: 10.1371/journal.ppat.1009297 |
24 |
REYES-GUERRERO D E , JIMÉNEZ-JACINTO V , ALONSO-MORALES R A , et al. Assembly and analysis of Haemonchus contortus transcriptome as a tool for the knowledge of ivermectin resistance mechanisms[J]. Pathogens, 2023, 12 (3): 499.
doi: 10.3390/pathogens12030499 |
25 |
TUERSONG W , ZHOU C X , WU S M , et al. Comparative analysis on transcriptomics of ivermectin resistant and susceptible strains of Haemonchus contortus[J]. Parasit Vectors, 2022, 15 (1): 159.
doi: 10.1186/s13071-022-05274-y |
26 |
DUAN C Y , YU M J , XU J Y , et al. Overcoming Cancer multi-drug Resistance (MDR): reasons, mechanisms, nanotherapeutic solutions, and challenges[J]. Biomed Pharmacother, 2023, 162, 114643.
doi: 10.1016/j.biopha.2023.114643 |
27 |
BARTLEY D J , MCALLISTER H , BARTLEY Y , et al. P-glycoprotein interfering agents potentiate ivermectin susceptibility in ivermectin sensitive and resistant isolates of Teladorsagia circumcincta and Haemonchus contortus[J]. Parasitology, 2009, 136 (9): 1081- 1088.
doi: 10.1017/S0031182009990345 |
28 | LESPINE A , MÉNEZ C , BOURGUINATC , et al. P-glycoproteins and other multidrug resistance transporters in the pharmacology of anthelmintics: prospects for reversing transport-dependent anthelmintic resistance[J]. Int J Parasitol Drugs Drug Resist, 2011, 2, 58- 75. |
29 |
RAZA A , KOPP S R , JABBAR A , et al. Effects of third generation P-glycoprotein inhibitors on the sensitivity of drug-resistant and-susceptible isolates of Haemonchus contortus to anthelmintics in vitro[J]. Vet Parasitol, 2015, 211 (1-2): 80- 88.
doi: 10.1016/j.vetpar.2015.04.025 |
30 |
RAZA A , KOPP S , KOTZE A . Synergism between ivermectin and the tyrosine kinase/P-glycoprotein inhibitor crizotinib against Haemonchus contortus larvae in vitro[J]. Vet Parasitol, 2016, 227, 64- 68.
doi: 10.1016/j.vetpar.2016.07.026 |
31 |
DESHMUKH R R , KIM S , ELGHOUL Y , et al. P-glycoprotein inhibition sensitizes human breast cancer cells to proteasome inhibitors[J]. J Cell Biochem, 2017, 118 (5): 1239- 1248.
doi: 10.1002/jcb.25783 |
32 |
XI G M , WANG M , SUN B , et al. Targeting autophagy augments the activity of DHA-E3 to overcome p-gp mediated multi-drug resistance[J]. Biomed Pharmacother, 2016, 84, 1610- 1616.
doi: 10.1016/j.biopha.2016.10.063 |
33 |
KERBOEUF D , GUÉGNARD F , LE VERN Y . Analysis and partial reversal of multidrug resistance to anthelmintics due to P-glycoprotein in Haemonchus contortus eggs using Lens culinaris lectin[J]. Parasitol Res, 2002, 88 (9): 816- 821.
doi: 10.1007/s00436-002-0654-z |
34 |
BORGES D G L , DE ARAÚJO M A , CAROLLO C A , et al. Combination of quercetin and ivermectin: in vitro and in vivo effects against Haemonchus contortus[J]. Acta Tropica, 2020, 201, 105213.
doi: 10.1016/j.actatropica.2019.105213 |
35 |
PACHECO P A , LOUVANDINI H , GIGLIOTI R , et al. Phytochemical modulation of P-glycoprotein and its gene expression in an ivermectin-resistant Haemonchus contortus isolate in vitro[J]. Vet Parasitol, 2022, 305, 109713.
doi: 10.1016/j.vetpar.2022.109713 |
36 |
ZHENG W , CHEN Q P , WANG C , et al. Inhibition of Cathepsin D (CTSD) enhances radiosensitivity of glioblastoma cells by attenuating autophagy[J]. Mol Carcinog, 2020, 59 (6): 651- 660.
doi: 10.1002/mc.23194 |
37 |
RAMIREZ J A Z , ROMAGNOLI G G , KANENO R . Inhibiting autophagy to prevent drug resistance and improve anti-tumor therapy[J]. Life Sci, 2021, 265, 118745.
doi: 10.1016/j.lfs.2020.118745 |
38 | 胡丹丹. 紫檀茋抗白念珠菌生物被膜的作用及自噬影响生物被膜的机制研究[D]. 上海: 第二军医大学, 2017. |
HU D D. Mechanism study of pterostilbene against Candida albicans biofilm and autophagy in biofilm[D]. Shanghai: Second Military Medical University, 2017. (in Chinese) | |
39 |
RAY A , MATHUR M , CHOUBEY D , et al. Autophagy underlies the proteostasis mechanisms of artemisinin resistance in P. falciparum Malaria[J]. mBio, 2022, 13 (3): e0063022.
doi: 10.1128/mbio.00630-22 |
40 | 戚南山. 自噬对柔嫩艾美耳球虫子孢子入侵活性及抗药性的影响[D]. 广州: 华南农业大学, 2019. |
QI N S. Study on the mechanism of autophagy on the invasion activityand drug resistance of Eimeria tenella sporozoites[D]. Guangzhou: South China Agricultural University, 2019. (in Chinese) | |
41 |
KAMIL M , ATMACA H N , UNAL S , et al. An alternative autophagy-related mechanism of chloroquine drug resistance in the malaria parasite[J]. Antimicrob Agents Chemother, 2022, 66 (12): e0026922.
doi: 10.1128/aac.00269-22 |
42 |
LAVINE M D , ARRIZABALAGA G . Analysis of monensin sensitivity in Toxoplasma gondii reveals autophagy as a mechanism for drug induced death[J]. PLoS One, 2012, 7 (7): e42107.
doi: 10.1371/journal.pone.0042107 |
43 |
PRESTON S , KORHONEN P K , MOUCHIROUD L , et al. Deguelin exerts potent nematocidal activity via the mitochondrial respiratory chain[J]. FASEB J, 2017, 31 (10): 4515- 4532.
doi: 10.1096/fj.201700288R |
44 |
SALINAS G , LANGELAAN D N , SHEPHERD J N . Rhodoquinone in bacteria and animals: two distinct pathways for biosynthesis of this key electron transporter used in anaerobic bioenergetics[J]. Biochim Biophys Acta Bioenerg, 2020, 1861 (11): 148278.
doi: 10.1016/j.bbabio.2020.148278 |
45 |
ROBERTS BUCETA P M , ROMANELLI-CEDREZ L , BABCOCK S J , et al. The kynurenine pathway is essential for rhodoquinone biosynthesis in Caenorhabditis elegans[J]. J Biol Chem, 2019, 294 (28): 11047- 11053.
doi: 10.1074/jbc.AC119.009475 |
46 |
DEL BORRELLO S , LAUTENS M , DOLAN K , et al. Rhodoquinone biosynthesis in C. elegans requires precursors generated by the kynurenine pathway[J]. eLife, 2019, 8, e48165.
doi: 10.7554/eLife.48165 |
47 | COMAS-GHIERRAR , ALSHAHEEB A , MCREYNOLDS M R , et al. A minimal kynurenine pathway was preserved for rhodoquinone but not for De Novo NAD+ biosynthesis in parasitic worms: the essential role of NAD+ rescue pathways[J]. Antioxid Redox Signal, 2023, 40 (13-15): 737- 750. |
48 |
TAKAMIYA S , MATSUI T , TAKA H , et al. Free-living nematodes Caenorhabditis elegans possess in their mitochondria an additional rhodoquinone, an essential component of the eukaryotic fumarate reductase system[J]. Arch Biochem Biophys, 1999, 371 (2): 284- 289.
doi: 10.1006/abbi.1999.1465 |
49 |
PAREDES G F , VIEHBOECK T , MARKERT S , et al. Differential regulation of degradation and immune pathways underlies adaptation of the ectosymbiotic nematode Laxus oneistus to oxic-anoxic interfaces[J]. Sci Rep, 2022, 12 (1): 9725.
doi: 10.1038/s41598-022-13235-9 |
50 |
VAN HELLEMOND J J , LUIJTEN M , FLESCH F M , et al. Rhodoquinone is synthesized de novo by Fasciola hepatica[J]. Mol Biochem Parasitol, 1996, 82 (2): 217- 226.
doi: 10.1016/0166-6851(96)02738-7 |
51 |
VAN WYK J A , VAN SCHALKWYK P C . A novel approach to the control of anthelmintic-resistant Haemonchus contortus in sheep[J]. Vet Parasitol, 1990, 35 (1-2): 61- 69.
doi: 10.1016/0304-4017(90)90116-S |
52 |
MUCHIUT S M , FERNÁNDEZ A S , LLOBERAS M , et al. Recovery of fenbendazole efficacy on resistant Haemonchus contortus by management of parasite refugia and population replacement[J]. Vet Parasitol, 2019, 271, 31- 37.
doi: 10.1016/j.vetpar.2019.06.003 |
53 |
张艳敏, 赵东旭, 王文龙. 捻转血矛线虫对伊维菌素的耐药机制[J]. 畜牧兽医学报, 2024, 55 (4): 1511- 1520.
doi: 10.11843/j.issn.0366-6964.2024.04.016 |
ZHANG Y M , ZHAO D X , WANG W L . Mechanism of resistance to ivermectin in the Haemonchus contortus[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (4): 1511- 1520.
doi: 10.11843/j.issn.0366-6964.2024.04.016 |
|
54 | MOUSSAVOU-BOUSSOUGOU M , SILVESTRE A , CORTET J , et al. Substitution of benzimidazole-resistant nematodes for susceptible nematodes in grazing lambs[J]. Parasitology, 2006, 134 (4): 553- 560. |
55 | MILLER M, HOWELL S, VATTA A, et al. Evaluation of worm replacement as a means to reverse the impact of multiple-anthelmintic resistant Haemonchus contortus on a sheep farm[C]//25th International Conference of the World Association for the Advancement of Veterinary Parasitology. Liverpool, UK, 2015. |
56 |
LEATHWICK D M . Managing anthelmintic resistance--parasite fitness, drug use strategy and the potential for reversion towards susceptibility[J]. Vet Parasitol, 2013, 198 (1-2): 145- 153.
doi: 10.1016/j.vetpar.2013.08.022 |
57 |
MUCHIUT S , FIEL C , LIRÓN J P , et al. Population replacement of benzimidazole-resistant Haemonchus contortus with susceptible strains: evidence of changes in the resistance status[J]. Parasitol Res, 2022, 121 (9): 2623- 2632.
doi: 10.1007/s00436-022-07582-9 |
58 |
MUCHIUT S M , FERNÁNDEZ A S , STEFFAN P E , et al. Anthelmintic resistance: management of parasite refugia for Haemonchus contortus through the replacement of resistant with susceptible populations[J]. Vet Parasitol, 2018, 254, 43- 48.
doi: 10.1016/j.vetpar.2018.03.004 |
59 |
TADESSE D , EGUALE T , GIDAY M , et al. Ovicidal and larvicidal activity of crude extracts of Maesa lanceolata and Plectranthus punctatus against Haemonchus contortus[J]. J Ethnopharmacol, 2009, 122 (2): 240- 244.
doi: 10.1016/j.jep.2009.01.014 |
60 |
DELGADO-NÚÑEZ E J , LÓPEZ-ARELLANO M E , OLMEDO-JUÁREZ A , et al. Phytochemical profile and nematicidal activity of a hydroalcoholic extract from Cazahuate flowers (Ipomoea pauciflora M. Martens & Galeotti) against Haemonchus contortus infective larvae[J]. Trop Biomed, 2023, 40 (1): 108- 114.
doi: 10.47665/tb.40.1.017 |
61 |
HOSTE H , MARTINEZ-ORTIZ-DE-MONTELLANO C , MANOLARAKI F , et al. Direct and indirect effects of bioactive tannin-rich tropical and temperate legumes against nematode infections[J]. Vet Parasitol, 2012, 186 (1-2): 18- 27.
doi: 10.1016/j.vetpar.2011.11.042 |
62 |
BRITO D R B , COSTA-JÚNIOR L M , GARCIA J L , et al. Supplementation with dry Mimosa caesalpiniifolia leaves can reduce the Haemonchus contortus worm burden of goats[J]. Vet Parasitol, 2018, 252, 47- 51.
doi: 10.1016/j.vetpar.2018.01.014 |
63 |
OLMEDO-JUÁREZ A , ZARZA-ALBARRAN M A , ROJO-RUBIO R , et al. Acacia farnesiana pods (plant: Fabaceae) possesses anti-parasitic compounds against Haemonchus contortus in female lambs[J]. Experimental Parasitology, 2020, 218, 107980.
doi: 10.1016/j.exppara.2020.107980 |
64 |
SARATSI K , HOSTE H , VOUTZOURAKIS N , et al. Feeding of carob (Ceratonia siliqua) to sheep infected with gastrointestinal nematodes reduces faecal egg counts and worm fecundity[J]. Vet Parasitol, 2020, 284, 109200.
doi: 10.1016/j.vetpar.2020.109200 |
65 | BIRHAN M , GESSES T , KENUBIH A , et al. Evaluation of anthelminthic activity of tropical taniferous plant extracts against Haemonchus contortus[J]. Vet Med (Auckl), 2020, 11, 109- 117. |
66 |
ADEMOLA I O , ELOFF J N . Ovicidal and larvicidal activity of Cassia alata leaf acetone extract and fractions on Haemonchus contortus: in vitro studies[J]. Pharm Biol, 2011, 49 (5): 539- 544.
doi: 10.3109/13880209.2010.526948 |
67 |
OLMEDO-JUÁREZ A , DELGADO-NÚÑEZ E J , BAHENA-VICENCIO A , et al. In vitro nematocidal properties from two extracts: Lippia graveolens leaves and Delonix regia flowers against eggs and infective larvae of Haemonchus contortus[J]. J Med Food, 2022, 25 (3): 329- 337.
doi: 10.1089/jmf.2021.0066 |
68 |
ISLAM M K , SIRAJ M A , SARKER A B , et al. In-vitro anthelmintic activity of three Bangladeshi plants against Paramphistomum cervi and Haemonchus contortus[J]. J Complement Integr Med, 2015, 12 (2): 171- 174.
doi: 10.1515/jcim-2014-0059 |
69 |
DELGADO-NÚÑEZ E J , ZAMILPA A , GONZÁLEZ-CORTAZAR M , et al. Isorhamnetin: a nematocidal flavonoid from Prosopis laevigata leaves against Haemonchus contortus eggs and larvae[J]. Biomolecules, 2020, 10 (5): 773.
doi: 10.3390/biom10050773 |
70 |
CALA A C , FERREIRA J F S , CHAGAS A C S , et al. Anthelmintic activity of Artemisia annua L. extracts in vitro and the effect of an aqueous extract and artemisinin in sheep naturally infected with gastrointestinal nematodes[J]. Parasitol Res, 2014, 113 (6): 2345- 2353.
doi: 10.1007/s00436-014-3891-z |
71 |
JASSO DÍAZ G , HERNÁNDEZ G T , ZAMILPA A , et al. In vitro assessment of Argemone mexicana, Taraxacum officinale, Ruta chalepensis and Tagetes filifolia against Haemonchus contortus nematode eggs and infective (L3) larvae[J]. Microb Pathog, 2017, 109, 162- 168.
doi: 10.1016/j.micpath.2017.05.048 |
72 |
MENDONÇA SOARES S , DOMINGUES R , BALDO GASPAR E , et al. In vitro ovicidal effect of a Senecio brasiliensis extract and its fractions on Haemonchus contortus[J]. BMC Vet Res, 2019, 15 (1): 99.
doi: 10.1186/s12917-019-1843-7 |
73 |
AKKARI H , HAJAJI S , B'CHIR F , et al. Correlation of polyphenolic content with radical-scavenging capacity and anthelmintic effects of Rubus ulmifolius (Rosaceae) against Haemonchus contortus[J]. Vet Parasitol, 2016, 221, 46- 53.
doi: 10.1016/j.vetpar.2016.03.007 |
74 |
ALOWANOU G G , OLOUNLADÉ P A , AKOUÈDEGNI G C , et al. In vitro anthelmintic effects of Bridelia ferruginea, Combretum glutinosum, and Mitragyna inermis leaf extracts on Haemonchus contortus, an abomasal nematode of small ruminants[J]. Parasitol Res, 2019, 118 (4): 1215- 1223.
doi: 10.1007/s00436-019-06262-5 |
75 |
MARIE-MAGDELEINE C , MAHIEU M , D'ALEXIS S , et al. In vitro effects of Tabernaemontana citrifolia extracts on Haemonchus contortus[J]. Res Vet Sci, 2010, 89 (1): 88- 92.
doi: 10.1016/j.rvsc.2010.01.002 |
76 |
KAMARAJ C , RAHUMAN A A , BAGAVAN A , et al. Ovicidal and larvicidal activity of crude extracts of Melia azedarach against Haemonchus contortus (Strongylida)[J]. Parasitol Res, 2010, 106 (5): 1071- 1077.
doi: 10.1007/s00436-010-1750-0 |
77 |
CAMARA A , HADDAD M , TRAORE M S , et al. Variation in chemical composition and antimalarial activities of two samples of Terminalia albida collected from separate sites in Guinea[J]. BMC Complement Med Ther, 2021, 21 (1): 64.
doi: 10.1186/s12906-021-03231-3 |
78 |
HUANG Y Y , CHEN L , MA G X , et al. A review on phytochemicals of the genus Maytenus and their bioactive studies[J]. Molecules, 2021, 26 (15): 4563.
doi: 10.3390/molecules26154563 |
79 |
DOMINGUES L F , GIGLIOTI R , FEITOSA K A , et al. In vitro and in vivo evaluation of the activity of pineapple (Ananas comosus) on Haemonchus contortus in Santa Inês sheep[J]. Vet Parasitol, 2013, 197 (1-2): 263- 270.
doi: 10.1016/j.vetpar.2013.04.031 |
80 | MIAO S M , ZHANG Q , BI X B , et al. A review of the phytochemistry and pharmacological activities of Ephedra herb[J]. Chin J Nat Med, 2020, 18 (5): 321- 344. |
81 | DAVULURI T , CHENNURU S , PATHIPATI M , et al. In Vitro anthelmintic activity of three tropical plant extracts on Haemonchus contortus[J]. Acta Parasitol, 2020, 65 (1): 11- 18. |
82 | GREGORY L , YOSHIHARA E , RIBEIRO B L M , et al. Dried, ground banana plant leaves (Musa spp. ) for the control of Haemonchus contortus and Trichostrongylus colubriformis infections in sheep[J]. Parasitol Res, 2015, 114 (12): 4545- 4551. |
83 | ARAÚJO S A , SOARES A M D S , SILVA C R , et al. In vitro anthelmintic effects of Spigelia anthelmia protein fractions against Haemonchus contortus[J]. PLoS One, 2017, 12 (12): e0189803. |
84 | GUO Z Y , GONZÁLEZ J F , HERNANDEZ J N , et al. Possible mechanisms of host resistance to Haemonchus contortus infection in sheep breeds native to the Canary Islands[J]. Sci Rep, 2016, 6 (1): 26200. |
85 | ANDRONICOS N , HUNT P , WINDON R . Expression of genes in gastrointestinal and lymphatic tissues during parasite infection in sheep genetically resistant or susceptible to Trichostrongylus colubriformis and Haemonchus contortus[J]. Int J Parasitol, 2010, 40 (4): 417- 429. |
86 | SALLÉG , DEISS V , MARQUIS C , et al. Genetic×environment variation in sheep lines bred for divergent resistance to strongyle infection[J]. Evol Appl, 2021, 14 (11): 2591- 2602. |
[1] | 张艳敏, 赵东旭, 王文龙. 捻转血矛线虫对伊维菌素的耐药机制[J]. 畜牧兽医学报, 2024, 55(4): 1511-1520. |
[2] | 张少华, 王帅, 邹扬, 刘仲藜, 才学鹏. 羊捻转血矛线虫病检测方法研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1499-1510. |
[3] | 谢欣然, 张玥, 陆明敏, 徐立新, 宋小凯, 李祥瑞, 严若峰. 捻转血矛线虫重组磷脂酰肌醇转移蛋白对山羊外周血单个核细胞模式识别受体和细胞因子转录水平的影响[J]. 畜牧兽医学报, 2023, 54(1): 252-262. |
[4] | 梁高星, 荣诗琪, 王俊伟, 李媛, 杨新, 赵光辉, 宋军科. 山羊源3种不同形态阴门盖捻转血矛线虫雌虫的多位点序列分析[J]. 畜牧兽医学报, 2022, 53(9): 3140-3148. |
[5] | 赵学亮, 王姝懿, 孙柯, 苏倩, 王文龙, 刘春霞. 捻转血矛线虫阿苯达唑敏感株和耐药株比较转录组学分析[J]. 畜牧兽医学报, 2019, 50(9): 1940-1944. |
[6] | 赵学亮, 王姝懿, 呼和巴特尔, 孙柯, 苏倩, 吕旭, 王文龙, 刘春霞. 捻转血矛线虫阿苯达唑耐药株给药前后比较转录组学分析[J]. 畜牧兽医学报, 2019, 50(3): 637-644. |
[7] | 胡孟娟, 周丽娜, 牛延萍, 徐立新, 宋小凯, 李祥瑞, 严若峰. 捻转血矛线虫半胱氨酸蛋白酶对山羊PBMCs免疫功能的影响[J]. 畜牧兽医学报, 2018, 49(4): 804-810. |
[8] | 周丽娜, 胡孟娟, 孙伟, 李祥瑞, 徐立新, 宋小凯, 严若峰. 捻转血矛线虫脂肪酶基因表达与生物学特性分析[J]. 畜牧兽医学报, 2018, 49(3): 580-587. |
[9] | 吴玲燕, 王玉俭, 温玉玲, 严若峰, 徐立新, 宋小凯, 李祥瑞. 捻转血矛线虫NADH:泛醌氧化还原酶结构域包含蛋白基因的克隆表达及功能分析[J]. 畜牧兽医学报, 2017, 48(4): 722-730. |
[10] | 严若峰;宋小凯;徐立新;李祥瑞. 基于ITS序列的捻转血矛线虫系统进化分析[J]. 畜牧兽医学报, 2012, 43(7): 1117-1122. |
[11] | 陈琳;刘健华;张俊丰;陈杖榴;曾振灵. 猪肠道菌氨基糖苷类药物耐药基因分析[J]. 畜牧兽医学报, 2009, 40(7): 1088-1096. |
[12] | 严若峰;赵光伟;徐立新;孙延鸣;李祥瑞. 捻转血矛线虫免疫调节型DNA疫苗的构建及在山羊体内表达研究[J]. 畜牧兽医学报, 2007, 38(9): 954-958. |
[13] | 杜爱芳;李孝军;侯玉慧;王素华. 捻转血矛线虫(H.contortus)ZJ株H11蛋白基因的克隆及序列分析[J]. 畜牧兽医学报, 2005, 36(4): 387-390. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||