[1] 王紫嫣, 吴 琳, 张钰晗, 等. 单核苷酸多态性检测技术研究进展[J]. 生命的化学, 2025, 45(5): 885-896. WANG Z Y, WU L, ZHANG Y H, et al. Research progress on single nucleotide polymorphism detection technology[J]. Chem Life, 2025, 45(5): 885-896. (in Chinese) [2] WONG G K, LIU B, WANG J, et al. A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms[J].Nature, 2004, 432(7018): 717-722. [3] MOUSTAFA H A M, EL-DAKROURY W A, ASHRAF A, et al. SNP use as a potential chemotoxicity stratification tool in breast cancer: from bench to clinic[J].Funct Integr Genomics, 2025, 25(1): 93. [4] GUL H, HABIB G, KHAN I M, et al. Genetic resilience in chickens against bacterial, viral and protozoal pathogens[J]. Front Vet Sci, 2022, 9: 1032983. [5] 汪佳豪, 赵卿尧, 周月玲,等. 基因芯片在畜禽遗传育种中的应用及展望[J]. 遗传, 2023, 45(12): 1114-1127. WANG J H, ZHAO Q Y, ZHOU Y L, et al. Application and prospect of gene chip in livestock and poultry genetic breeding[J]. Hereditas(Beijing), 2023, 45(12): 1114-1127. (in Chinese) [6] GHILDIYAL K, NAYAK S S, RAJAWAT D, et al. Genomic insights into the conservation of wild and domestic animal diversity: A review[J]. Gene, 2023, 886: 147719. [7] ALEMU A, ÅSTRAND J, MONTESINOS-LÓPEZ O A, et al. Genomic selection in plant breeding: Key factors shaping two decades of progress[J]. Mol Plant, 2024, 17(4): 552-578. [8] 王新越, 乔 贤, 李祥龙. 坝上长尾鸡HNF1A基因多态性及其与腿肌脂肪酸、肌苷酸性状关联分析[J]. 中国畜牧杂志, 2025. 10.19556/j.0258-7033.20241129-03. WANG X Y, QIAO X, LI X L. Polymorphism of HNF1A gene and its association analysis with leg muscle fatty acid and inosinic acid traits in Bashang long-tailed chicken[J]. Chinese Journal of Animal Science, 2025. 10.19556/j.0258-7033.20241129-03. (in Chinese) [9] FODOR S P, READ J L, PIRRUNG M C, et al. Light-directed, spatially addressable parallel chemical synthesis[J]. Science, 1991, 251(4995): 767. [10] NICKERSON D A, TAYLOR S L, WEISS K M, et al. DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene[J]. Nat Genet, 1998, 19(3): 233-240. [11] GUO Z, WANG H, TAO J, et al. Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize[J]. Mol Breeding, 2019, 39(3): 37. [12] 姚 丽, 张 伟, 王妹妹, 等. 液相芯片技术原理及应用简介[J]. 现代肿瘤医学, 2008, 16(12): 2196-2198. YAO L, ZHANG W, WANG M M, et al. Principle and application of liquid phase chip technology[J]. Journal of Modern Oncology, 2008, 16(12): 2196-2198. (in Chinese) [13] 李军玲, 刘燕清, 崔中秋, 等. 水稻重要农艺性状控制基因GBTS液相芯片开发及应用[J]. 分子植物育种,2023, 1-19. LI J L, LIU Y Q, CUI Z Q, et al. Development and application of the liquid-phase chip for GBTS gene controlling important agronomic traits in rice[J]. Molecular Plant Breeding, 2023, 1-19. (in Chinese) [14] 王 攀. 植物分子标记高通量快速检测技术的研究进展[J]. 中国种业, 2024(7): 17-22. WANG P. Research progress on high-throughput rapid detection technology of plant molecular markers[J]. China Seed Industry, 2024, 7(7): 17-22. (in Chinese) [15] 李 欢, 张文洋, 田志强, 等. 高通量分子标记检测方法的研究进展[J]. 玉米科学, 2022, 30(3): 1-9. LI H, ZHANG W Y, TIAN Z Q, et al. Research progress on high-throughput molecular marker detection methods[J]. Journal of Maize Sciences, 2022, 30(3): 1-9. (in Chinese) [16] 徐云碧, 杨泉女, 郑洪建, 等. 靶向测序基因型检测(GBTS)技术及其应用[J]. 中国农业科学, 2020, 53(15): 2983-3004. XU Y B, YANG Q N, ZHENG H J, et al. Genotyping by target sequencing (GBTS) technology and its application[J]. Scientia Agricultura Sinica, 2020, 53(15): 2983-3004. (in Chinese) [17] SAMORODNITSKY E, DATTA J, JEWELL B M, et al. Comparison of custom capture for targeted next-generation DNA sequencing[J]. J Mol Diagn, 2015, 17(1): 64-75. [18] MUIR W M, WONG G K, ZHANG Y, et al. Review of the initial validation and characterization of a 3K chicken SNP array[J]. World’s Poult Sci J, 2008, 64(2): 219-226. [19] GROENEN M A M, MEGENS H J, ZARE Y, et al. The development and characterization of a 60K SNP chip for chicken[J]. BMC Genomics, 2011, 12(1): 274. [20] KRANIS A, GHEYAS A A, BOSCHIERO C, et al. Development of a high density 600K SNP genotyping array for chicken[J]. BMC Genomics, 2013, 14(1): 59. [21] LIU R, XING S, WANG J, et al. A new chicken 55K SNP genotyping array[J]. BMC Genomics, 2019, 20(1): 410. [22] LIU Z, SUN C, YAN Y, et al. Design and evaluation of a custom 50K Infinium SNP array for egg-type chickens[J]. Poult Sci, 2021, 100(5): 101044. [23] 王梦燏, 周成浩, 薛 倩, 等. “酉芯一号”在地方鸡遗传多样性和结构分析中的应用效力研究[J]. 遗传, 2024, 46(8): 640-648. WANG M Y, ZHOU C H, XUE Q, et al. Research on the application efficacy of "Youxin-1" in the analysis of genetic diversity and structure of local chicken breeds[J]. Hereditas, 2024, 46(8): 640-648. (in Chinese) [24] 王 杰,周 艳,刘 杰,等.一种鸡全基因组低密度芯片及其制作方法和应用:202310328998[P]. WANG J, ZHOU Y, LIU J, et al. A low-density whole-genome chip for chickens, its manufacturing method and applications: 202310328998[P].(in Chinese) [25] 康相涛,李文婷,王克君,等.一种地方鸡40K全基因组SNP液相芯片及其应用:202311218054[P]. KANG X T, LI W T, WANG K J, et al. A 40K whole-genome SNP liquid-phase chip for local chicken breeds and its applications: 202311218054[P].(in Chinese) [26] 贺 喜, 马豪杰, 刘会超,等. “湘芯一号”肉鸡60K液相育种芯片的设计及基因组预测效果[J]. 湖南农业大学学报(自然科学版), 2024, 50(6): 1-9. HE X, MA H J, LIU H C, et al. Design of "Xiangxin-1" 60K liquid-phase breeding chip for broilers and its genome prediction effect[J]. Journal of Hunan Agricultural University (Natural Sciences), 2024, 50(6): 1-9. (in Chinese) [27] HILLIER L D W, MILLER W, BIRNEY E, et al. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution[J]. Nature, 2004, 432(7018): 695-716. [28] 陈 懿, 柳 序. 地方鸡遗传资源现状与育种技术的研究进展[J]. 畜牧产业, 2025(5): 32-39. CHEN Y, LIU X. Research progress on the current situation of local chicken genetic resources and breeding techniques[J]. Animal Husbandry Industry, 2025(5): 32-39. (in Chinese) [29] 孙研研, 倪爱心, 杨涵涵, 等. 畜禽杂种优势形成机制与预测方法研究进展[J]. 中国农业科学, 2025, 58(5): 1017-1031. SUN Y Y, NI A X, YANG H H, et al. Research progress on the formation mechanism and prediction methods of heterosis in livestock and poultry[J]. Scientia Agricultura Sinica, 2025, 58(5): 1017-1031.(in Chinese) [30] 刘冉冉, 赵桂苹, 文 杰. 鸡基因组育种和保种用SNP芯片研发及应用[J]. 中国家禽, 2018, 40(15): 1-6. LIU R R, ZHAO G P, WEN J. Research and application of SNP chips for chicken genomic breeding and conservation[J]. China Poultry, 2018, 40(15): 1-6.(in Chinese) [31] 石少磊, 武丽娜, 冯羿方, 等. 基因组检测技术在肉鸡遗传育种中的应用[J]. 中国畜禽种业, 2023, 19(12): 122-128. SHI S L, WU L N, FENG Y F, et al. Application of genomic detection technology in broiler chicken genetic breeding[J]. China Livestock & Poultry Breeding, 2023, 19(12): 122-128.(in Chinese) [32] 王晓峰. 新形势下我国肉鸡种业高质量发展路径[J]. 中国禽业导刊, 2023, 40(12): 19-23. WANG X F. Paths to high-quality development of China’s broiler chicken seed industry under the new situation[J]. Guide to Chinese Poultry, 2023, 40(12): 19-23.(in Chinese) [33] “京芯一号mini”芯片+数字化肉鸡联合育种平台——我国肉鸡育种产业新的里程碑[EB/OL]."Jingxin-1 mini" chip+digital broiler joint breeding platform——a new milestone in China’s broiler breeding industry[EB/OL]. (in Chinese) [34] 谢华玲, 杨艳萍. 我国白羽肉鸡种源供给能力提升初探[J]. 安徽农业科学, 2024, 52(2): 247-249+256. XIE H L, YANG Y P. Preliminary study on improving the supply capacity of white feather broiler breeding resources in China[J]. Journal of Anhui Agricultural Sciences, 2024, 52(2): 247-249, 256. (in Chinese) [35] WOLC A, KRANIS A, ARANGO J, et al. Implementation of genomic selection in the poultry industry[J]. Anim Front, 2016, 6(1): 23-31. [36] 孙从佼, 于爱芝, 汪 洋, 等. 2023年蛋鸡产业发展情况、未来发展趋势及建议[J]. 中国畜牧杂志, 2024, 60(3): 307-311. SUN C J, YU A Z, WANG Y, et al. Development status, future trends and suggestions of the layer industry in 2023[J]. Chinese Journal of Animal Science, 2024, 60(3): 307-311. (in Chinese) [37] SEO D, CHO S, MANJULA P, et al. Identification of target chicken populations by machine learning models using the minimum number of SNPs[J]. Animals, 2021, 11(1): 241. [38] LIU Y, ZHANG M, TU Y, et al. Population structure and genetic diversity of seven Chinese indigenous chicken populations in Guizhou Province[J]. J Poult Sci, 2021, 58(4): 211-215. [39] CHEN L, WANG X, CHENG D, et al. Population genetic analyses of seven Chinese indigenous chicken breeds in a context of global breeds[J]. Anim Genet, 2019, 50(1): 82-86. [40] CENDRON F, MASTRANGELO S, TOLONE M, et al. Genome-wide analysis reveals the patterns of genetic diversity and population structure of 8 Italian local chicken breeds[J]. Poult Sci, 2021, 100(2): 441-451. [41] LI R R, SONG Y F, ZHANG G P, et al. Genome-wide association study identifies loci and candidate genes for body composition and meat quality traits in Beijing-You chickens[J]. PLoS One, 2013, 8(4): e61172. [42] EMRANI H, MASOUDI A A, TORSHIZI R V, et al. Genome-wide association study of shank length and diameter at different developmental stages in chicken F2 resource population[J]. Anim Genet, 2020, 51(5): 722-730. [43] LYU S, ARENDS D, NASSAR M K, et al. High-density genotyping reveals candidate genomic regions for chicken body size in breeds of Asian origin[J]. Poult Sci, 2023, 102(1): 102303. [44] MONTEIRO M G C, BOSCHIERO C, MELLO C A S, et al. A genome-wide association study reveals novel genomic regions and positional candidate genes for fat deposition in broiler chickens[J]. BMC Genomics, 2018, 19(1): 374. [45] ZHANG H, SHEN L Y, XU Z C, et al. Haplotype-based genome-wide association studies for carcass and growth traits in chicken[J]. Poult Sci, 2020, 99(5): 2349-2361. [46] TREVISOLI P A, MOREIRA G C M, BOSCHIERO C, et al. A missense mutation in the MYBPH gene is associated with abdominal fat traits in meat-type chickens[J]. Front Genet, 2021, 12: 698163. [47] LI W, ZHENG M, ZHAO G, et al. Identification of QTL regions and candidate genes for growth and feed efficiency in broilers[J]. Genet Sel Evol, 2021, 53(1): 13. [48] MARCHESI J A P, ONO R K, CANTAO M E, et al. Exploring the genetic architecture of feed efficiency traits in chickens[J]. Sci Rep, 2021, 11(1): 4622. [49] ZHAO X, NIE C, ZHANG J, et al. Identification of candidate genomic regions for chicken egg number traits based on genome-wide association study[J]. BMC Genomics, 2021, 22(1): 610. [50] AZMAL S A, BHUIYAN A A, OMAR A I, et al. Novel polymorphisms in RAPGEF6 gene associated with egg-laying rate in Chinese Jing Hong chicken using genome-wide SNP scan[J]. Genes, 2019, 10(5): 384. [51] TARSANI E, KRANIS A, MANIATIS G, et al. Detection of loci exhibiting pleiotropic effects on body weight and egg number in female broilers[J]. Sci Rep, 2021, 11(1): 7441. [52] DING J, YING F, LI Q, et al. A significant quantitative trait locus on chromosome Z and its impact on egg production traits in seven maternal lines of meat-type chicken[J]. J Anim Sci Biotechnol, 2022, 13(1): 96. [53] ZHUANG L, CONGJIAO S, YIYUAN Y, et al. Genome-Wide Association Analysis of Age-Dependent Egg Weights in Chickens[J]. Front Genet, 2018, 9: 128. [54] LI Q, DUAN Z, SUN C, et al. Genetic variations for the eggshell crystal structure revealed by genome-wide association study in chickens[J]. BMC Genomics, 2021, 22(1): 1-12. [55] 张 锦. 基于免疫细胞功能解析鸡抗沙门氏菌的作用机制[D]. 北京:中国农业科学院, 2023. ZHANG J. Mechanism of chicken resistance to Salmonella based on immune cell function analysis[D]. Beijing: Chinese Academy of Agricultural Sciences, 2023. (in Chinese) [56] ZHU B, LI Q, LIU R, et al. Genome-wide association study of H/L traits in chicken[J]. Animals (Basel), 2019, 9(5): 260. [57] LEI Z, PENG L, RANRAN L, et al. The identification of loci for immune traits in chickens using a genome-wide association study[J]. PLoS ONE, 2015, 10(3): e0117269. [58] SUN Y, LI Q, HU Y, et al. Genome-wide association study of immune traits in chicken F2 resource population[J]. J Anim Breed Genet, 2016, 133(3): 197-206. [59] LI X, NIE C, LIU Y, et al. A genome-wide association study explores the genetic determinism of host resistance to Salmonella pullorum infection in chickens[J]. Genet Sel Evol, 2019, 51(1): 51. [60] SAELAO P, WANG Y, CHANTHAVIXAY G, et al. Genetics and genomic regions affecting response to newcastle disease virus infection under heat stress in layer chickens[J]. Genes (Basel), 2019, 10(1): 61. [61] WALUGEMBE M, MUSHI J R, AMUZU-AWEH E N, et al. Genetic analyses of tanzanian local chicken ecotypes challenged with newcastle disease virus[J]. Genes, 2019, 10(7): 546. [62] 黄嘉源, 张子桦, 吴耀冰, 等. 液相芯片多重检测技术在临床检验应用的研究进展[J]. 齐齐哈尔医学院学报, 2025, 46(2): 159-166. HUANG J Y, ZHANG Z H, WU Y B, et al. Research progress on the application of liquid chip multiplex detection technology in clinical laboratory tests[J]. Journal of Qiqihar Medical University, 2025, 46(2): 159-166. (in Chinese) [63] WANG F, GUO Y, LIU Z, et al. New insights into the novel sequences of the chicken pan-genome by liquid chip[J]. J Anim Sci, 2022, 100(12): skac336. |