

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (9): 4156-4164.doi: 10.11843/j.issn.0366-6964.2025.09.003
王彦博1,2(
), 张笑梦1, 景秀娟2, 冯肖艺1, 张元庆2,*(
), 赵学明1,*(
)
收稿日期:2025-01-16
出版日期:2025-09-23
发布日期:2025-09-30
通讯作者:
张元庆,赵学明
E-mail:wyb19834362834@163.com;yuanqing_zhang@163.com;zhaoxueming@caas.cn
作者简介:王彦博(2000-),男,山西长治人,硕士生,主要从事动物繁殖研究,E-mail: wyb19834362834@163.com
基金资助:
WANG Yanbo1,2(
), ZHANG Xiaomeng1, JING Xiujuan2, FENG Xiaoyi1, ZHANG Yuanqing2,*(
), ZHAO Xueming1,*(
)
Received:2025-01-16
Online:2025-09-23
Published:2025-09-30
Contact:
ZHANG Yuanqing, ZHAO Xueming
E-mail:wyb19834362834@163.com;yuanqing_zhang@163.com;zhaoxueming@caas.cn
摘要:
我国地方品种通过不断地进化与演变已经能够很好地适应当地的农业生态环境,虽然在一些生产性能方面表现较差,但其仍具有环境适应性高、耐粗饲、抗病能力强等诸多优点,对杂交改良培育新品种而言有着不可或缺的重要作用。近些年来,随着人们对经济效益及生产效率的盲目追求,国外优良品种被大量引入,导致许多国内地方品种逐步走下了历史舞台,被国外优良品种所取代,使得国内地方品种资源受到了严重的威胁。随着低温生物学的发展,利用冷冻保存的生物样本库对种质资源进行保种育种得到了广泛推广。但在冷冻保存动物种质资源过程中,由于氧化应激使得种质资源长期保存受到制约。有人研究一些抗氧化化合物的添加可以有效降低氧化应激从而防止细胞冻伤,但是传统的抗氧化化合生物利用度低,临床应用效果差。纳米粒子作为一种新兴材料,由于其独特的物理结构,可以提高生物利用度,使其被广泛应用于辅助生殖技术、生物医学、生物药学、化妆品等领域。因此,本综述重在回顾纳米粒子在冷冻保存中的新兴应用的效果,总结了一些最有前途的研究进展,并全面讨论了纳米粒子在冷冻保存动物种质资源中的局限性和优势,从而为动物种质资源冷冻保存提供新的方案。
中图分类号:
王彦博, 张笑梦, 景秀娟, 冯肖艺, 张元庆, 赵学明. 纳米粒子在动物种质资源冷冻保存的研究进展[J]. 畜牧兽医学报, 2025, 56(9): 4156-4164.
WANG Yanbo, ZHANG Xiaomeng, JING Xiujuan, FENG Xiaoyi, ZHANG Yuanqing, ZHAO Xueming. Advances in Nanoparticle Applications for Animal Germplasm Cryopreservation[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4156-4164.
表 1
纳米粒子在冷冻过程中的作用机制"
| 应用领域 Application area | 功能/效应 Function/Effect | 纳米颗粒作用机制 Action mechanism of nanoparticles | 代表性纳米材料及研究证据 Representative nanomaterials and research evidence |
| 辅助生殖技术(精子/卵母细胞冻存) Assisted reproductive technology (sperm/oocyte cryopreservation) | 冷冻/解冻过程引发氧化应激损伤,导致精子活力下降、质膜损伤、线粒体功能障碍等。 | 作为抗氧化剂载体,利用高比表面积和本征抗氧化性清除活性氧(ROS),维持氧化平衡。 | Türk等[ Liu等[ Abedin等[ |
| 冷冻手术(肿瘤治疗) Cryosurgery (tumor treatment) | 组织内血流热效应阻碍低温彻底破坏癌组织,限制治疗效果。 | 中和血管热源以及热屏障保护,并且通过 靶向递送精准调控局部温度分布。 | Mirkhalili等[ 聚四氟乙烯(PTFE) 纳米颗粒阻止热量扩散,作为热屏障保护邻近健康组织[ |
| 食品贮藏加工(保鲜防腐)Food storage processing(preservation) | 氧化降解与微生物污染导致食品变质,缩短保质期。 | 增强传统包装/保存方法的性能:1. 抗氧 化屏障;2. 抑菌活性 3. 物理阻隔 | 纳米材料改良包装配方: 1. 有效减少氧化与微生物污染[ 2. 有效延长保质期,改善食品感官品质[ 3. 有效降低食物浪费,提升经济效益[ |
| 1 |
SUN Y Y , LI Y L , ZONG Y H , et al. Poultry genetic heritage cryopreservation and reconstruction: advancement and future challenges[J]. J Anim Sci Biotechnol, 2022, 13 (1): 115.
doi: 10.1186/s40104-022-00768-2 |
| 2 | 韩广富, 黄文汇. 习近平关于新时代种业振兴重要论述的形成逻辑、主要内容及时代价值[J]. 江苏大学学报(社会科学版), 2024, 26 (4): 1- 13. |
| HAN G F , HUANG W H . The formation logic, main content and contemporary value of Xi Jinping's important discourse on the revitalization of the seed industry in the new era[J]. Journal of Jiangsu University (Social Sciences Edition), 2024, 26 (4): 1- 13. | |
| 3 | 习近平主持召开中央全面深化改革委员会第二十次会议强调统筹指导构建新发展格局推进种业振兴推动青藏高原生态环境保护和可持续发展[J]. 中国建设信息化, 2021, (15): 2-3. |
| XI Jinping presided over the 20th meeting of the Central Committee for Comprehensively Deepening Reform, emphasizing the need to coordinate and guide the construction of a new development pattern, promote the revitalization of the seed industry, and advance the ecological environment protection and sustainable development of the Qinghai-Tibet Plateau[J]. China Construction Informatization, 2021, (15): 2-3. (in Chinese) | |
| 4 | 李相柏. 我国畜禽遗传资源普查与保护工作探讨[J]. 甘肃畜牧兽医, 2022, 52 (10): 22- 24. |
| LI X B . Discussion on the census and protection of livestock and poultry genetic resources in China[J]. Gansu Animal Husbandry and Veterinary Medicine, 2022, 52 (10): 22- 24. | |
| 5 | 刘占发, 马月辉. 关于畜禽遗传资源认识与保护的思考[J]. 中国畜牧业, 2017 (9): 31- 34. |
| LIU Z F , MA Y H . Thoughts on the understanding and protection of livestock and poultry genetic resources[J]. China Animal Husbandry, 2017 (9): 31- 34. | |
| 6 |
POMEROY K O , COMIZZOLI P , RUSHING J S , et al. The ART of cryopreservation and its changing landscape[J]. Fert Ster, 2022, 117 (3): 469- 476.
doi: 10.1016/j.fertnstert.2022.01.018 |
| 7 | LIU Y , BLACKBURN H , TAYLOR S S , et al. Development of germplasm repositories to assist conservation of endangered fishes: Examples from small-bodied livebearing fishes[J]. Theriogenology, 2019 (135): 138- 151. |
| 8 | MUJITABA M A , TOKÁR A , BALOGH E E , et al. In vitro gene conservation status and the quality of the genetic resources of Native Hungarian sheep breeds[J]. Vet Sci, 2024, 11 (8): 337. |
| 9 | JUDYCKA S , DIETRICH M A , NYNCA J , et al. Preservation of fish male germplasm in Poland[J]. Front Marine Sci, 2024 (11): 1407895. |
| 10 |
SRIKANTH K , JAAFAR M A , NEUPANE M , et al. Assessment of genetic diversity, inbreeding, and collection completeness of Jersey bulls in the US National Animal Germplasm Program[J]. J Dairy Sci, 2024, 107 (12): 11283- 11300.
doi: 10.3168/jds.2024-25032 |
| 11 |
ZHANG L M , SUN Y X , JIANG C Y , et al. Damage to mitochondria during the cryopreservation, causing ROS leakage, leading to oxidative stress and decreased quality of ram sperm[J]. Reprod Domestic Anim, 2024, 59 (10): e14737.
doi: 10.1111/rda.14737 |
| 12 |
DE AQUINO L V C , OLINDO S L , SILVA Y , et al. Cryopreservation and passaging optimization for Galea spixii (Wagler, 1831) adult skin fibroblast lines: A step forward in species management and genetic studies[J]. Acta Histochemica, 2024, 126 (5-7): 152185.
doi: 10.1016/j.acthis.2024.152185 |
| 13 | BORATE G M , MESHRAM A . Cryopreservation of Sperm: A Review[J]. Cureus, 2022, 14 (11): e31402. |
| 14 |
AGARWAL A , MAJZOUB A . Role of antioxidants in assisted reproductive techniques[J]. World J Mens Health, 2017, 35 (2): 77- 93.
doi: 10.5534/wjmh.2017.35.2.77 |
| 15 |
MANUCHEHRABADI N , GAO Z , ZHANG J , et al. Improved tissue cryopreservation using inductive heating of magnetic nanoparticles[J]. Sci Transl Med, 2017, 9 (379): eaah4586.
doi: 10.1126/scitranslmed.aah4586 |
| 16 |
ZANDIYEH S , KALANTARI H , FAKHRI A , et al. A review of recent developments in the application of nanostructures for sperm cryopreservation[J]. Cryobiology, 2024, 115, 104890.
doi: 10.1016/j.cryobiol.2024.104890 |
| 17 | HUNT N , KESTENS V , RASMUSSEN K , et al. Regulatory preparedness for multicomponent nanomaterials: Current state, gaps and challenges of REACH[J]. NanoImpact, 2024, 37, 100538. |
| 18 |
TÜRK G , KOCA R H , GÜNGÖR I H , et al. Effect of hydrated C60 fullerene on lipid, vitamin and amino acid composition in frozen-thawed ram semen[J]. Anim Reprod Sci, 2022, 238, 106939.
doi: 10.1016/j.anireprosci.2022.106939 |
| 19 |
LIU Q , LIU A J , LIU Y C , et al. Hydroxyapatite nanoparticle improves ovine oocyte developmental capacity by alleviating oxidative stress in response to vitrification stimuli[J]. Theriogenology, 2024, 229, 88- 99.
doi: 10.1016/j.theriogenology.2024.08.016 |
| 20 |
ABEDIN S N , BARUAH A , BARUAH K K , et al. In vitro and in vivo studies on the efficacy of zinc-oxide and selenium nanoparticle in cryopreserved goat (Capra hircus) spermatozoa[J]. Biol Trace Elem Res, 2023, 201 (10): 4726- 4745.
doi: 10.1007/s12011-022-03551-6 |
| 21 |
MIRKHALILI S M , RAMAZANI S A A , NAZEMIDASHTARJANDI S . Mathematical study of probe arrangement and nanoparticle injection effects on heat transfer during cryosurgery[J]. Comp Biol Med, 2015, 66, 113- 119.
doi: 10.1016/j.compbiomed.2015.09.001 |
| 22 |
RATHER I A , KOH W Y , PAEK W K , et al. The sources of chemical contaminants in food and their health implications[J]. Front Pharmacol, 2017, 8, 830.
doi: 10.3389/fphar.2017.00830 |
| 23 |
ALFEI S , MARENGO B , ZUCCARI G . Nanotechnology application in food packaging: A plethora of opportunities versus pending risks assessment and public concerns[J]. Food Res Int, 2020, 137, 109664.
doi: 10.1016/j.foodres.2020.109664 |
| 24 |
SUO B , LI H R , WANG Y X , et al. Effects of ZnO nanoparticle-coated packaging film on pork meat quality during cold storage[J]. J Sci Food Agric, 2017, 97 (7): 2023- 2029.
doi: 10.1002/jsfa.8003 |
| 25 |
BRUUN T U J , ANDERSSON A C , DRAPER S J , et al. Engineering a rugged nanoscaffold to enhance plug-and-display vaccination[J]. ACS Nano, 2018, 12 (9): 8855- 8866.
doi: 10.1021/acsnano.8b02805 |
| 26 |
HOU Y , SUN Z , RAO W , et al. Nanoparticle-mediated cryosurgery for tumor therapy[J]. Nanomedicine, 2018, 14 (2): 493- 506.
doi: 10.1016/j.nano.2017.11.018 |
| 27 |
TARZE A , DAUPLAIS M , GRIGORAS I , et al. Extracellular production of hydrogen selenide accounts for thiol-assisted toxicity of selenite against Saccharomyces cerevisiae[J]. J Biol Chem, 2007, 282 (12): 8759- 8767.
doi: 10.1074/jbc.M610078200 |
| 28 |
CHEN N , YAO P , ZHANG W , et al. Selenium nanoparticles: Enhanced nutrition and beyond[J]. Crit Rev Food Sci Nutr, 2023, 63 (33): 12360- 12371.
doi: 10.1080/10408398.2022.2101093 |
| 29 |
ESIN B , KAYA C , AKAR M , et al. Investigation of the protective effects of different forms of selenium in freezing dog semen: Comparison of nanoparticle selenium and sodium selenite[J]. Reprod Domest Anim, 2024, 59 (6): e14652.
doi: 10.1111/rda.14652 |
| 30 |
IFTIKHAR M , NOUREEN A , UZAIR M , et al. Perspectives of nanoparticles in male infertility: Evidence for induced abnormalities in sperm production[J]. Int J Environ Res Public Health, 2021, 18 (4): 1758.
doi: 10.3390/ijerph18041758 |
| 31 |
SILVA M I , BARBOSA A I , COSTA LIMA S A , et al. Freeze-dried SoftisanⓇ 649-based lipid nanoparticles for enhanced skin delivery of cyclosporine A[J]. Nanomaterials (Basel), 2020, 10 (5): 986.
doi: 10.3390/nano10050986 |
| 32 |
HABAS K , DEMIR E , GUO C , et al. Toxicity mechanisms of nanoparticles in the male reproductive system[J]. Drug Metab Rev, 2021, 53 (4): 604- 617.
doi: 10.1080/03602532.2021.1917597 |
| 33 |
HAN J W , JEONG J K , GURUNATHAN S , et al. Male- and female-derived somatic and germ cell-specific toxicity of silver nanoparticles in mouse[J]. Nanotoxicology, 2016, 10 (3): 361- 373.
doi: 10.3109/17435390.2015.1073396 |
| 34 | ZHANG X F , CHOI Y J , HAN J W , et al. Differential nanoreprotoxicity of silver nanoparticles in male somatic cells and spermatogonial stem cells[J]. Int J Nanomedicine, 2015, 10, 1335- 1357. |
| 35 |
LUO M , WANG H , WANG Z , et al. A STING-activating nanovaccine for cancer immunotherapy[J]. Nat Nanotechnol, 2017, 12 (7): 648- 654.
doi: 10.1038/nnano.2017.52 |
| 36 |
SEO E J , JANG I H , DO E K , et al. Efficient production of retroviruses using PLGA/bPEI-DNA nanoparticles and application for reprogramming somatic cells[J]. PLoS One, 2013, 8 (9): e76875.
doi: 10.1371/journal.pone.0076875 |
| 37 |
BIAZAR E , HEIDARI KESHEL S , TAVIRANI M R , et al. Bone reconstruction in rat calvarial defects by chitosan/hydroxyapatite nanoparticles scaffold loaded with unrestricted somatic stem cells[J]. Artif Cells Nanomed Biotechnol, 2015, 43 (2): 112- 116.
doi: 10.3109/21691401.2013.848874 |
| 38 |
BAKHSHANDEH B , SOLEIMANI M , GHAEMI N , et al. Effective combination of aligned nanocomposite nanofibers and human unrestricted somatic stem cells for bone tissue engineering[J]. Acta Pharmacol Sin, 2011, 32 (5): 626- 636.
doi: 10.1038/aps.2011.8 |
| 39 | TAYLOR U , BARCHANSKI A , GARRELS W , et al. Toxicity of gold nanoparticles on somatic and reproductive cells[J]. Adv Exp Med Biol, 2012, 733, 125- 133. |
| 40 |
PIRI M , MAHDAVI A H , HAJIAN M , et al. Effects of nano-berberine and berberine loaded on green synthesized selenium nanoparticles on cryopreservation and in vitro fertilization of goat sperm[J]. Sci Rep, 2024, 14 (1): 24171.
doi: 10.1038/s41598-024-75792-5 |
| 41 |
KARIMI-SABET M J , KHODAEI-MOTLAGH M , MASOUDI R , et al. Zinc oxide nanoparticles preserve the quality and fertility potential of rooster sperm during the cryopreservation process[J]. Reprod Domestic Anim, 2024, 59 (4): e14568.
doi: 10.1111/rda.14568 |
| 42 |
KHALIL W A , EL-HARAIRY M A , ZEIDAN A E B , et al. Impact of selenium nano-particles in semen extender on bull sperm quality after cryopreservation[J]. Theriogenology, 2019, 126, 121- 127.
doi: 10.1016/j.theriogenology.2018.12.017 |
| 43 |
AKHTARSHENAS B , KOWSAR R , HAJIAN M , et al. ρ-coumaric acid-zinc oxide nanoparticles improve post-thaw quality of goat spermatozoa and developmental competence of fertilized oocytes in vitro[J]. Sci Rep, 2024, 14 (1): 31971.
doi: 10.1038/s41598-024-83585-z |
| 44 |
MOUSAVI S M , TOWHIDI A , ZHANDI M , et al. A soy lecithin nanoparticles-based extender effectively cryopreserves Holstein bull sperm[J]. Anim Reprod Sci, 2023, 257, 107326.
doi: 10.1016/j.anireprosci.2023.107326 |
| 45 |
MUKHERJEE A G , GOPALAKRISHNAN A V , MUKHERJEE A . The application of nanomaterials in designing promising diagnostic, preservation, and therapeutic strategies in combating male infertility: A review[J]. J Drug Del Sci Technol, 2024, 92, 105356.
doi: 10.1016/j.jddst.2024.105356 |
| 46 | UNIYAL A , KUMBA K , DHIMAN G , et al. Advanced SPR sensor for human sperm analysis: Leveraging silver and nanomaterials for enhanced performance[J]. Plasmonics, 2025, 20 (6): 3939- 3950. |
| 47 |
TEMERARIO L , MARTINO N A , BENNINK M , et al. Effects of cryoprotectant concentration and exposure time during vitrification of immature pre-pubertal lamb cumulus-oocyte complexes on nuclear and cytoplasmic maturation[J]. Animals, 2024, 14 (16): 2351.
doi: 10.3390/ani14162351 |
| 48 |
LIN H L H , MERMILLOD P , GRASSEAU I , et al. Is glycerol a good cryoprotectant for sperm cells? New exploration of its toxicity using avian model[J]. Anim Reprod Sci, 2023, 258, 107330.
doi: 10.1016/j.anireprosci.2023.107330 |
| 49 | HASSAN M A E , SHEHABELDIN A M , OMAR M E A , et al. Effect of spirulina nanoparticles or selenium-coated spirulina nanoparticles supplemented to freezing extender on bull sperm freezability[J]. Pak Vet J, 2023, 43 (4): 739- 747. |
| 50 |
XU S J , LI P , HAN F , et al. Myofibrillar protein interacting with trehalose elevated the quality of frozen meat[J]. Foods, 2022, 11 (7): 1041.
doi: 10.3390/foods11071041 |
| 51 |
ZHONG Y , MARUF A , QU K , et al. Nanogels with covalently bound and releasable trehalose for autophagy stimulation in atherosclerosis[J]. J Nanobiotechnol, 2023, 21 (1): 472.
doi: 10.1186/s12951-023-02248-9 |
| 52 |
LEE P-C , STEWART S , AMELKINA O , et al. Trehalose delivered by cold-responsive nanoparticles improves tolerance of cumulus-oocyte complexes to microwave drying[J]. J Ass Reprod Genet, 2023, 40 (8): 1817- 1828.
doi: 10.1007/s10815-023-02831-x |
| 53 |
ABBASI Y , HAJIAGHALOU S , BANIASADI F , et al. Fe3O4 magnetic nanoparticles improve the vitrification of mouse immature oocytes and modulate the pluripotent genes expression in derived pronuclear-stage embryos[J]. Cryobiology, 2021, 100, 81- 89.
doi: 10.1016/j.cryobiol.2021.03.006 |
| 54 |
LEE S , KIM H J , CHO H B , et al. Melatonin loaded PLGA nanoparticles effectively ameliorate the in vitro maturation of deteriorated oocytes and the cryoprotective abilities during vitrification process[J]. Biomaters Sci, 2023, 11 (8): 2912- 2923.
doi: 10.1039/D2BM02054H |
| 55 |
JAHANBIN R , YAZDANSHENAS P , RAHIMI M , et al. In vivo and in vitro evaluation of bull semen processed with zinc (Zn) nanoparticles[J]. Biol Trace Elem Res, 2021, 199 (1): 126- 135.
doi: 10.1007/s12011-020-02153-4 |
| 56 |
SADEGHI S , RAHAIE M , OSTAD-HASANZADEH B . Nanostructures in non-invasive prenatal genetic screening[J]. Biomed Eng Lett, 2022, 12 (1): 3- 18.
doi: 10.1007/s13534-021-00208-6 |
| 57 |
LI J , DENG T , CHU X , et al. Rolling circle amplification combined with gold nanoparticle aggregates for highly sensitive identification of single-nucleotide polymorphisms[J]. Anal Chem, 2010, 82 (7): 2811- 2816.
doi: 10.1021/ac100336n |
| 58 |
LIN H Y , YEN S C , KANG C H , et al. How to evaluate the potential toxicity of therapeutic carbon nanomaterials? A comprehensive study of carbonized nanogels with multiple animal toxicity test models[J]. J Hazardous Mater, 2022, 429, 128337.
doi: 10.1016/j.jhazmat.2022.128337 |
| 59 |
NERI G , IARIA C , CAPPARUCCI F , et al. In vivo tracking and biosafety of fluorescent graphene-cyclodextrin nanomaterials on zebrafish embryos[J]. Flatchem, 2022, 35, 100411.
doi: 10.1016/j.flatc.2022.100411 |
| 60 |
GATTO M S , NAJAHI-MISSAOUI W . Lyophilization of nanoparticles, does it really work? Overview of the current status and challenges[J]. Int J Mol Sci, 2023, 24 (18): 14041.
doi: 10.3390/ijms241814041 |
| 61 |
REHMAN N , JABEEN F , ASAD M , et al. Exposure to zinc oxide nanoparticles induced reproductive toxicities in male Sprague Dawley rats[J]. J Trace Elements Med Biol, 2024, 83, 127411.
doi: 10.1016/j.jtemb.2024.127411 |
| 62 |
KOEDRITH P , RAHMAN M M , JANG Y J , et al. Nanoparticles: Weighing the pros and cons from an eco-genotoxicological perspective[J]. J Cancer Pre, 2021, 26 (2): 83- 97.
doi: 10.15430/JCP.2021.26.2.83 |
| [1] | 潘言迪, 张婷婷, 方仁东, 彭练慈. 动物源宿主防御肽抗微生物作用机制研究进展[J]. 畜牧兽医学报, 2025, 56(9): 4294-4302. |
| [2] | 李宇, 别志文, 陈帅, 李炳志, 侯金星, 任科润, 邓彦卓, 吴强, 胡建宏. 家畜精液冷冻保存技术研究进展[J]. 畜牧兽医学报, 2025, 56(8): 3591-3600. |
| [3] | 宗云鹤, 杨宇泽, 孙研研, 陈继兰, 李云雷. 赖氨酸乙酰化修饰在鸡精液冷冻中的保护作用及机制研究进展[J]. 畜牧兽医学报, 2025, 56(7): 3071-3079. |
| [4] | 缪俊杰, 张日泉, 吴厚义, 游新明, 黄奕雯, 黄小英, 郭震洋, 刘建林, 肖卫华, 郭田华, 陈浩, 康冬柳. 全基因组SNPs揭示井冈黑掌鹅种质资源特性与遗传多样性特征[J]. 畜牧兽医学报, 2025, 56(7): 3199-3209. |
| [5] | 吴斯林, 杨本顺, 叶苗苗, 梁恩堂, 李付强, 马伟东, 昝林森, 赵春平, 杨武才. 木犀草素对秦川牛精子冷冻保存的影响[J]. 畜牧兽医学报, 2025, 56(7): 3244-3251. |
| [6] | 吴俊杰, 吕世明, 龙小霞, 王忠, 王立琦. 中药及活性成分抗耐药菌作用及其机制研究进展[J]. 畜牧兽医学报, 2025, 56(4): 1632-1647. |
| [7] | 张鸿岩, 王善鹏, 曹海梁, 闵令江, 周开锋, 朱振东. 猪精子耐冻性与脂肪酸组成的研究[J]. 畜牧兽医学报, 2025, 56(4): 1755-1767. |
| [8] | 马应天, 姜璐瑶, 李增开, 秦剑平, 赵建华, 贺玉芳, 宋宇轩, 张磊. 矢车菊素-3-芸香糖苷对奶绵羊精液冷冻保存效果的影响[J]. 畜牧兽医学报, 2025, 56(4): 1768-1778. |
| [9] | 王浩宇, 马克岩, 李讨讨, 栗登攀, 赵箐, 马友记. 基于简化基因组测序评估小骨山羊群体遗传多样性和群体结构[J]. 畜牧兽医学报, 2025, 56(3): 1170-1179. |
| [10] | 梁恩堂, 李化轩, 陈帅成, 李果, 孙格格, 昝林森. 染料木素对牛精液冷冻保存效果的影响[J]. 畜牧兽医学报, 2025, 56(2): 700-710. |
| [11] | 文安林, 杨芸芸, 罗永荣, 杨颖, 程振涛, 欧德渊, 文明. 黄连防治鸭病毒性肠炎机制的网络药理学分析及动物试验验证[J]. 畜牧兽医学报, 2024, 55(7): 3225-3233. |
| [12] | 张正洋, 宋银娟, 储岳峰. HIF-1α在病原体感染中的作用研究进展[J]. 畜牧兽医学报, 2024, 55(6): 2357-2367. |
| [13] | 季小禹, 王永伟, 邱妍, 张才. 甘草多糖的生理功能及其在畜禽生产中的应用[J]. 畜牧兽医学报, 2024, 55(6): 2379-2387. |
| [14] | 张吉贤, 范定坤, 付域泽, 焦帅, 马涛, 毕研亮, 张乃锋. 后生素调控动物肠道健康的作用机制及应用进展[J]. 畜牧兽医学报, 2024, 55(5): 1926-1935. |
| [15] | 罗通旺, 吴亚, 王书杰, 宋厚辉, 邵春艳. 镉致肝损伤机制及硒拮抗镉肝毒性的研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1456-1466. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||