畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (7): 3071-3079.doi: 10.11843/j.issn.0366-6964.2025.07.003
宗云鹤1(), 杨宇泽2(
), 孙研研1, 陈继兰1, 李云雷1,*(
)
收稿日期:
2024-12-09
出版日期:
2025-07-23
发布日期:
2025-07-25
通讯作者:
李云雷
E-mail:zongyunhe2022@163.com;yyz84929056@126.com;liyunlei@caas.cn
作者简介:
宗云鹤(1996-),女,辽宁抚顺人,博士生,主要从事动物遗传育种与繁殖研究,E-mail: zongyunhe2022@163.com宗云鹤和杨宇泽为同等贡献作者
基金资助:
ZONG Yunhe1(), YANG Yuze2(
), SUN Yanyan1, CHEN Jilan1, LI Yunlei1,*(
)
Received:
2024-12-09
Online:
2025-07-23
Published:
2025-07-25
Contact:
LI Yunlei
E-mail:zongyunhe2022@163.com;yyz84929056@126.com;liyunlei@caas.cn
摘要:
我国地方鸡种140个,遗传变异丰富,开展鸡遗传资源的保护、开发与利用,对于促进我国鸡种业自主发展具有重要意义。精液的超低温冷冻保存是实现畜禽遗传资源长期保存与高效利用的最实用的技术手段之一。家畜尤其牛的精液冷冻技术较为成熟,但鸡精子头小尾长、抗冻性差,冷冻-复融精子受精率低、受精持续能力差,制约着精液冷冻技术在鸡保种和育种中的应用。蛋白质翻译后修饰是细胞响应内外界环境刺激的重要调控途径。在成熟精子中,由于转录和翻译活动基本停滞,蛋白质赖氨酸乙酰化修饰可能在鸡精液冷冻保护过程中发挥作用,这些修饰可参与维持精子结构完整性、线粒体功能稳定性以及DNA结构完整性,然而其具体机制尚不清楚。本综述以期为开展赖氨酸乙酰化修饰在鸡精液冷冻保存中的作用相关研究提供参考,以建立鸡精液冷冻保存新方法,为鸡遗传资源的高效保存提供理论与技术支撑。
中图分类号:
宗云鹤, 杨宇泽, 孙研研, 陈继兰, 李云雷. 赖氨酸乙酰化修饰在鸡精液冷冻中的保护作用及机制研究进展[J]. 畜牧兽医学报, 2025, 56(7): 3071-3079.
ZONG Yunhe, YANG Yuze, SUN Yanyan, CHEN Jilan, LI Yunlei. Research Advances in the Investigation of the Protective Role of Lysine Acetylation in Chicken Semen Cryopreservation and Its Mechanism[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3071-3079.
表 1
北京油鸡睾丸、精子和精浆中的乙酰化酶及其抑制剂"
家族 Family | 酶(别名) Enzyme (alias) | 特异性抑制剂 Specific inhibitor | 睾丸 Testis | 精子 Sperm | 精浆 Seminal plasma |
GNAT | HAT1 (KAT1) | CPTH6 | - | √ | - |
GCN5 (KAT2A) | CPTH2 (C14H14ClN3S) | √ | - | - | |
MYST | Tip60 (KAT5) | TH1834 (C33H40N6O3) | - | √ | - |
MORF (KAT6B) | - | - | √ | √ | |
其他Other | TAF1(KAT4) | CeMMEC13(C19H16N2O4) | √ | - | - |
表 2
北京油鸡睾丸、精子和精浆中的去乙酰化酶及其抑制剂"
家族 Family | 酶 Enzyme | 通用抑制剂 Universal inhibitor | 特异性抑制剂 Specific inhibitor | 睾丸 Testis | 精子 Sperm | 精浆 Seminal plasma |
HDAC Zn2+依赖型 Zn2+-dependent | HDAC1 | TSA (C17H22N2O3) | HDAC1-IN-4 (C21H24BrClN6O2) | √ | - | - |
HDAC2 | HDAC2-IN-1 (C22H23ClN4OS) | √ | - | - | ||
HDAC8 | HDAC8-IN-3 (C18H12N4O3S2) | - | √ | - | ||
HDAC7 | - | √ | - | - | ||
HDAC10 | HDAC10-IN-2 (C19H22N2O2) | - | √ | - | ||
HDAC11 | FT895 (C16H15F3N4O2) | √ | - | - | ||
SIRT NAD+依赖型 NAD+-dependent | SIRT2 | NAM(C6H6N2O) | SirReal2 (C22H20N4OS2) | √ | √ | - |
SIRT3 | 3-TYP (C7H6N4) | √ | √ | - | ||
SIRT5 | NRD167 (C34H46N6O6S) | √ | √ | - |
1 | SUN Y , LI Y , ZONG Y , et al. Poultry genetic heritage cryopreservation and reconstruction: Advancement and future challenges[J]. J Anim Sci Biotechnol, 2023, 14 (1): 15- 32. |
2 | 聂瑞雪, 李俊英, 苗欢欢, 等. 鸡精液冷冻保存技术研究进展[J]. 中国畜牧杂志, 2021, 57 (7): 81- 86. |
NIE R X , LI J Y , MIAO H H , et al. Progress in cryopreservation technology of chicken semen[J]. Chinese Journal of Animal Science, 2021, 57 (7): 81- 86. | |
3 | ZONG Y , LI Y , SUN Y , et al. Chicken sperm cryopreservation: Review of techniques, freezing damage, and freezability mechanisms[J]. Agriculture (Basel), 2023, 13 (2): 445. |
4 | LI P F , YANG Q Z , LI S S , et al. Candidates for reproductive biomarkers: Protein phosphorylation and acetylation positively related to selected parameters of boar spermatozoa quality[J]. Anim Reprod Sci,, 2018, 197, 67- 80. |
5 | 贾春云, 许晓玲, 白佳桦, 等. 哺乳动物成熟精子的转录及翻译活性研究进展[J]. 畜牧与兽医, 2022, 54 (3): 140- 144. |
JIA C Y , XU X L , BAI J H , et al. Research progress on transcription and translation activity of mammalian mature sperm[J]. Animal Husbandry & Veterinary Medicine, 2022, 54 (3): 140- 144. | |
6 | CHEN G , REN L , CHANG Z , et al. Lysine acetylation participates in boar spermatozoa motility and acrosome status regulation under different glucose conditions[J]. Theriogenology, 2021, 159, 140- 146. |
7 | TIAN Y , WANG H , PAN T , et al. Global proteomic analyses of lysine acetylation, malonylation, succinylation, and crotonylation in human sperm reveal their involvement in male fertility[J]. J Proteomics, 2024, 303, 105213. |
8 | ZONG Y , SUN Y , LI Y , et al. Regulation of winter wheat-originated antifreeze glycoprotein on rooster spermatozoa freezability[J]. Poult Sci, 2024, 103 (9): 104053. |
9 | KIRBY J D , FROMAN D P . Analysis of poultry fertility data[J]. Poult Sci, 1990, 69 (10): 1764- 1768. |
10 |
HAI E , LI B , ZHANG J , et al. Sperm freezing damage: The role of regulated cell death[J]. Cell Death Discovery, 2024, 10 (1): 239.
doi: 10.1038/s41420-024-02013-3 |
11 | BOZKURT Y , YA VA . Comparison of different freezing techniques, extenders, and cryoprotectants on quality and fertility of cryopreserved Salmo trutta f. fario sperm[J]. Acta Scientiarum Technol, 2024, 45 (1): e64924. |
12 | 韩修远, 赵亮, 王闯, 等. 烟酸通过降低氧化应激水平提高绵羊精子低温保存效果[J]. 畜牧兽医学报, 2023, 54 (5): 1979- 1989. |
HAN X Y , ZHAO L , WANG C , et al. Nicotinic acid enhances low temperature preservation of sheep sperm by reducing oxidative stress levels[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (5): 1979- 1989. | |
13 | WOELDERS H , DE WIT A A C , ENGEL B , et al. Freezing chicken semen: Influence of base medium osmolality, cryoprotectants, cryoprotectant concentration, and cooling rate on post-thaw sperm survival[J]. Cryobiology, 2022, 108, 67- 77. |
14 | ZONG Y , LI Y , SUN Y , et al. Mitochondrial aspartate aminotransferase (GOT2) protein as a potential cryodamage biomarker in rooster spermatozoa cryopreservation[J]. Poult Sci, 2025, 104 (2): 104690. |
15 | LIN H H , MERMILLOD P , GRASSEAU I , et al. Exploring how sucrose-colloid selection improves the fertilizing ability of chicken sperm after cryo-preservation with glycerol[J]. Poult Sci, 2024, 103 (3): 103448. |
16 | LI X , WANG L , LIU H , et al. C (60) Fullerenes suppress reactive oxygen species toxicity damage in boar sperm[J]. Nanomicro Lett, 2019, 11 (1): 104. |
17 | MEHDIPOUR M , DAGHIGH-KIA H , NAJAFI A , et al. Type Ⅲ antifreeze protein (AFP) improves the post-thaw quality and in vivo fertility of rooster spermatozoa[J]. Poult Sci, 2021, 100 (8): 101291. |
18 | GVNGR B H , TVRK G , YVCE S D C C . Reduction of cryopreservation-induced structural, functional and molecular damages in ram sperm by hydrated C (60) fullerene[J]. Reprod Domest Anim, 2024, 59 (1): e14511- e14513. |
19 | ZONG Y , SUN Y , LI Y , et al. Effect of glycerol concentration, glycerol removal method, and straw type on the quality and fertility of frozen chicken semen[J]. Poult Sci, 2022, 101 (6): 101840. |
20 | LIN H H , BLESBOIS E , VITORINO CARVALHO A . Chicken semen cryopreservation: importance of cryoprotectants[J]. World 's Poultry Science Journal, 2022, 78 (1): 139- 160. |
21 | TANG M , CAO J , YU Z , et al. New semen freezing method for chicken and drake using dimethylacetamide as the cryoprotectant[J]. Poult Sci, 2021, 100 (8): 101091. |
22 | MURUGESAN S , MAHAPATRA R . Cryopreservation of Ghagus chicken semen: effect of cryoprotectants, diluents and thawing temperature[J]. Reprod Domest Anim, 2020, 55 (8): 951- 957. |
23 | DAS S , NANDI P R , SARKAR P , et al. Effect of superoxide dismutase, catalase, and glutathione reductase supplementation on cryopreservation of Black Bengal buck semen[J]. Trop Anim Health Prod, 2021, 53 (6): 552. |
24 | SUSHADI P S , KUWABARA M , ⅡMURA H , et al. Factors affecting cryopreservation-associated damages in sperm motility of cockerels (Gallus gallus domesticus)[J]. Br Poult Sci, 2023, 64 (1): 129- 136. |
25 | OLEXIKOVA L , MIRANDA M , KULIKOVA B , et al. Cryodamage of plasma membrane and acrosome region in chicken sperm[J]. Anatomia Histologia Embryologia, 2019, 48 (1): 33- 39. |
26 | XU X , WANG Z , LV L , et al. Molecular regulation of DNA damage and repair in female infertility: a systematic review[J]. Reprod Biol Endocrinol, 2024, 22 (1): 103. |
27 | LIU S , LI F . Cryopreservation of single-sperm: where are we today?[J]. Reprod Biol Endocrinol, 2020, 18 (1): 41. |
28 | PARTYKA A , NIŻAŃSKI W . Supplementation of avian semen extenders with antioxidants to improve semen quality—Is it an effective strategy?[J]. Antioxidants, 2021, 10 (12): 1927. |
29 | LEÃO A P A , SOUZA A V D , MESQUITA N F , et al. Antioxidant enrichment of rooster semen extenders-A systematic review[J]. Res Vet Sci, 2021, 136, 111- 118. |
30 | 姜丽君, 宗云鹤, 李云雷, 等. 抗氧化剂在家禽精液储存中的应用研究进展[J]. 畜牧兽医学报, 2024, 55 (3): 913- 923. |
JIANG L J , ZONG Y H , LI Y L , et al. Research progress of antioxidant application in poultry semen storage[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (3): 913- 923. | |
31 | KHAN I M , CAO Z , LIU H , et al. Impact of Cryopreservation on spermatozoa freeze-thawed traits and relevance OMICS to assess sperm cryo-tolerance in farm animals[J]. Front Vet Sci, 2021, 8, 609180. |
32 | LAMMERS M . Post-translational lysine ac(et)ylation in bacteria: a biochemical, structural, and synthetic biological perspective[J]. Front Microbiol, , 2021, 12, 757179. |
33 | LI H , LIU H , PEI X , et al. Comparative genome-wide analysis and expression profiling of histone acetyltransferases and histone deacetylases involved in the response to drought in wheat[J]. J Plant Growth Regul, 2022, 41, 1065- 1078. |
34 | PENG Z , YANG Q , YEERKEN R , et al. Multi-omics analyses reveal the mechanisms of Arsenic-induced male reproductive toxicity in mice[J]. J Hazard Mater, 2022, 424, 127548. |
35 | SILVA R F E , BASSI G , CÂMARA N O S , et al. Sirtuins: key pieces in the host response to pathogens ' puzzle[J]. Mol Immunol,, 2023, 160, 150- 160. |
36 | ZHANG Y , WEN P , LUO J , et al. Sirtuin 3 regulates mitochondrial protein acetylation and metabolism in tubular epithelial cells during renal fibrosis[J]. Cell Death Dis, 2021, 12 (9): 847. |
37 | ZHOU T , XIA X , LIU J , et al. Beyond single modification: Reanalysis of the acetylproteome of human sperm reveals widespread multiple modifications[J]. J Proteomics, 2015, 126, 296- 302. |
38 | MOSTEK-MAJEWSKA A , MAJEWSKA A , JANTA A , et al. New insights into posttranslational modifications of proteins during bull sperm capacitation[J]. Cell Commun Signal, 2023, 21 (1): 72. |
39 | MARTIN-HIDALGO D , GONZÁLEZ-FERNÁNDEZ L , BRAGADO M J , et al. The sirtuin 1 activator YK 3-237 stimulates capacitation-related events in human spermatozoa[J]. Reprod BioMed Online, 2023, 46 (1): 165- 178. |
40 | HOQUE M , LI F Q , WEBER W D , et al. The Cby3/ciBAR1 complex positions the annulus along the sperm flagellum during spermiogenesis[J]. J C B,, 2024, 223 (3): 23. |
41 | 祝天喻, 李妍, 刘小飞, 等. 精子发生过程中翻译后修饰的蛋白质组学研究进展[J]. 生理学报, 2020, 72 (1): 75- 83. |
ZHU T Y , LI Y , LI X F , et al. Advances in proteomic studies of post-translational modifications during spermatogenesis[J]. Acta Physiologica Sinica, 2020, 72 (1): 75- 83. | |
42 | ESHUN-WILSON L , ZHANG R , PORTRAN D , et al. Effects of α-tubulin acetylation on microtubule structure and stability[J]. Proc Natl Acad Sci U S A, 2019, 116 (21): 10366- 10371. |
43 | ZHAO W , LI Z , PING P , et al. Outer dense fibers stabilize the axoneme to maintain sperm motility[J]. J Cell Mol Med, 2018, 22 (3): 1755- 1768. |
44 | CHAWAN V , YEVATE S , GAJBHIYE R , et al. Acetylation/deacetylation and microtubule associated proteins influence flagellar axonemal stability and sperm motility[J]. Biosci Rep, 2020, 40 (12): BSR20202442. |
45 | MARTIN-HIDALGO D , GONZALEZ-FERNANDEZ L , BRAGADO M J , et al. The sirtuin 1 activator YK 3-237 stimulates capacitation-related events in human spermatozoa[J]. Reprod Biomed Online, 2023, 46 (1): 165- 178. |
46 | BOWKER Z , GOLDSTEIN S , BREITBART H . Protein acetylation protects sperm from spontaneous acrosome reaction[J]. Theriogenology, 2022, 191, 231- 238. |
47 | SUN Y , LI Y , SHI L , et al. Differential proteomics highlights specific testicular proteins associated with chicken sperm motility and fertility potential[J]. Ann Agric Sci, 2023, 68, 36- 47. |
48 | LI Y , SUN Y , NI A , et al. Seminal plasma proteome as an indicator of sperm dysfunction and low sperm motility[J]. Mol Cell Proteomics,, 2020, 19 (6): 1035- 1046. |
49 | SKULACHEV V , VYSSOKIKH M , CHERNYAK B V , et al. Mitochondrion-targeted antioxidant SkQ1 prevents rapid animal death caused by highly diverse shocks[J]. Sci Rep, 2023, 13 (1): 4326. |
50 | MORAES C R , MORAES L E , BLAWUT B , et al. Effect of glucose concentration and cryopreservation on mitochondrial functions of bull spermatozoa and relationship with sire conception rate[J]. Anim Reprod Sci, 2021, 230, 106779. |
51 | LEE H , YOON H . Mitochondrial sirtuins: Energy dynamics and cancer metabolism[J]. Mol Cells, 2024, 47 (2): 100029. |
52 | M. P R , CHAPA-DUBOCQ X R , SABZALI J . Acetylation of mitochondrial proteins in the heart: The role of sirt3[J]. Front Physiol, 2018, 9, 1094. |
53 | MORITZ L , SCHON S B , RABBANI M. , et al. Sperm chromatin structure and reproductive fitness are altered by substitution of a single amino acid in mouse protamine[J]. Nat Struct Mol Biol,, 2023, 30, 1077- 1091. |
54 | MARIN-HERNANDEZ A , RODRIGUEZ-ZAVALA J S , JASSO-CHAVEZ R , et al. Protein acetylation effects on enzyme activity and metabolic pathway fluxes[J]. J Cell Biochem, 2022, 123 (4): 701- 718. |
55 | ÇAKıR D A , YIRÜN A , ERDEMLI-KÖSE S B. , et al. The combined effects of hsv-1 glycoprotein d and aluminum hydroxide on human neuroblastoma cells: insights into oxidative DNA damage, apoptosis, and epigenetic modifications[J]. Neurotoxicology, , 2025, 18, S0161- 813X(25)00033-6. |
56 | ANKE G , HUANYIN T , JIN H , et al. The deacetylase SIRT6 promotes the repair of UV-induced DNA damage by targeting DDB2[J]. Nucleic Acids Res, 2020, 48 (16): 9181- 9194. |
57 | NASIRI A , VAISI-RAYGANI A , RAHIMI Z , et al. Evaluation of the relationship among the levels of sirt1 and sirt3 with oxidative stress and dna fragmentation in asthenoteratozoospermic men[J]. Int J Fertil Steril, 2021, 15 (2): 135- 140. |
58 | ZHU C H , WEI Y , CHEN F , et al. Investigation on the mechanisms of human sperm DNA damage based on the proteomics analysis by SWATH-MS[J]. Clin Proteomics, 2023, 20 (1): 2. |
59 | 汤加勇, 李瑞婷, 赵华, 等. 热应激对雄性哺乳动物精液品质的影响机制及热应激公猪的营养调控[J]. 中国畜牧杂志, 2021, 57 (2): 7. |
TANG J Y , LI R T , ZHAO H , et al. Effect of heat stress on semen quality of male mammal and its regulation mechanism[J]. Chinese Journal of Animal Science, 2021, 57 (2): 7. | |
60 | 秦娜, 黄林, 董瑞, 等. 虎杖苷减轻大鼠创伤性颅脑损伤后的肠损伤: 基于激活Sirt1介导的SOD2和HMGB1去乙酰化抑制氧化应激和炎症反应[J]. 南方医科大学学报, 2022, 42 (1): 93- 100. |
QI N , HUANG L , DONG R , et al. Polydatin improves intestinal barrier injury after traumatic brain injury in rats by reducing oxidative stress and inflammatory response via activating SIRT1-mediated deacetylation of SOD2 and HMGB1[J]. Journal of Southern Medical University, 2022, 42 (1): 93- 100. | |
61 | GUO J , NIE J , CHEN Z , et al. Cold exposure-induced endoplasmic reticulum stress regulates autophagy through the SIRT2/FoxO1 signaling pathway[J]. J Cell Physiol, 2022, 237 (10): 3960- 3970. |
62 | PEIFEI L , QIANGZHEN Y , SISI L , et al. Candidates for reproductive biomarkers: Protein phosphorylation and acetylation positively related to selected parameters of boar spermatozoa quality[J]. Anim Reprod Sci, 2018, 197, S1845112071. |
63 | SALEHI M , MAHDAVI A H , SHARAFZ M , et al. Cryopreservation of rooster semen: Evidence for the epigenetic modifications of thawed sperm[J]. Theriogenology, 2019, 142, 15- 25. |
[1] | 缪俊杰, 张日泉, 吴厚义, 游新明, 黄奕雯, 黄小英, 郭震洋, 刘建林, 肖卫华, 郭田华, 陈浩, 康冬柳. 全基因组SNPs揭示井冈黑掌鹅种质资源特性与遗传多样性特征[J]. 畜牧兽医学报, 2025, 56(7): 3199-3209. |
[2] | 张旭林, 唐毓, 刘理想, 范冰峰, 张燠诗, 张颖, 邵静, 孙慧敏, 褚萧宇, 彭飞宇, 许保增. TLR7/8激动剂R848对梅花鹿Y精子分选效率的影响[J]. 畜牧兽医学报, 2025, 56(7): 3278-3289. |
[3] | 孙淑佳, 郑嘉祺, 卢姝婉, 刘金松, 姚春雷, 杨彩梅, 许英蕾, 张瑞强. 乳酸菌对黄羽肉鸡生长性能、消化功能和养分利用率的影响[J]. 畜牧兽医学报, 2025, 56(7): 3335-3343. |
[4] | 彭文文, 张美婷, 徐灏铖, 徐保阳, 张玲玲, 杨彩梅. 地衣芽孢杆菌对大肠杆菌攻毒感染肉鸡免疫、抗氧化性能和肠道健康的影响[J]. 畜牧兽医学报, 2025, 56(7): 3344-3356. |
[5] | 陈艳茹, 马小春, 王明慧, 唐瑶瑶, 白露, 赵桂苹, 文杰, 刘冉冉. 白羽肉鸡胸肌意大利面肉和木质肉发生率及其对肉品质影响研究[J]. 畜牧兽医学报, 2025, 56(6): 2672-2684. |
[6] | 董娇娇, 丁虹, 张寅梁, 张冉, 刘华格, 臧素敏, 张振红, 周荣艳, 李兰会. 鸡白痢沙门菌感染太行鸡盲肠菌群的差异及功能分析[J]. 畜牧兽医学报, 2025, 56(6): 2741-2751. |
[7] | 言凯, 许笑, 秦哲, 白莉霞, 李准, 杨亚军, 刘希望, 李世宏, 葛闻博, 李剑勇, 李存. 阿司匹林丁香酚酯对蛋鸡脂肪肝出血综合征的预防作用[J]. 畜牧兽医学报, 2025, 56(6): 2968-2977. |
[8] | 朱海燕, 张菁怡, 晏雪勇, 梁海平, 魏庆, 曹际, 黄建珍. 基于转录组探究光周期对泰和乌鸡产蛋性能影响的分子机制[J]. 畜牧兽医学报, 2025, 56(5): 2123-2135. |
[9] | 朱涛, 余洋, 蔡日春, 陈智武, 赵桂苹, 崔焕先, 郑麦青. 黄羽肉鸡GF33A系产蛋连产性状的遗传特性分析[J]. 畜牧兽医学报, 2025, 56(5): 2136-2147. |
[10] | 马艳粉, 陈琦, 钱忠立, 倪嘉, 孟昊, 高鑫凯, 万福军, 刘欣. 产蛋后期蛋鸡蛋壳质量变化及影响因素的探究[J]. 畜牧兽医学报, 2025, 56(5): 2148-2156. |
[11] | 张健, 海尔汗, 张建军, 李博渊, 张家新. 谷氨酰胺通过激活HSF1/HSP70通路改善绵羊冻融精液质量[J]. 畜牧兽医学报, 2025, 56(5): 2219-2229. |
[12] | 张岩岩, 葛红帆, 周振雷. 红景天苷对甲泼尼龙诱导的肉鸡股骨头坏死的影响[J]. 畜牧兽医学报, 2025, 56(5): 2496-2506. |
[13] | 朱云, 王钰明, 孙晓晓, 陈辉, 赵峰, 解竞静, 陈一凡, 萨仁娜. 低蛋白多元化饲粮添加玉米蛋白粉对白羽肉鸡生长性能和消化特性的影响[J]. 畜牧兽医学报, 2025, 56(4): 1802-1812. |
[14] | 邱谦, 桑锐, 王巍, 刘馨蔓, 于明弘, 刘晓童, 于天, 张雪梅. 呼宁散对鸡肺源大肠杆菌抑菌活性及体外抗炎、抗氧化作用研究[J]. 畜牧兽医学报, 2025, 56(4): 1969-1980. |
[15] | 李晓彤, 王鹏宇, 方颖妍, 于鸿希, 张毅, 王雅春, 张元沛, 李彦芹, 姜力. 公牛精子耐冻性相关基因多态性位点的挖掘与功能验证[J]. 畜牧兽医学报, 2025, 56(4): 1981-1988. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||