畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (8): 3561-3577.doi: 10.11843/j.issn.0366-6964.2025.08.001
刘灿1,2,3(), 苏奕忻1,2,3, 景献金1,2,3, 李文泽1,2,3, 杨玏浦1,2,3, 王瑞军1,2,3, 张燕军1,2,3, 王志英1,2,3, 吕琦1,2,3, 苏蕊1,2,3,*(
)
收稿日期:
2024-12-13
出版日期:
2025-08-23
发布日期:
2025-08-28
通讯作者:
苏蕊
E-mail:15847756571@163.com;suruiyu@126.com
作者简介:
刘灿(2000-),女,辽宁大连人,博士生,主要从事绒山羊遗传原理与方法研究,E-mail:15847756571@163.com
基金资助:
LIU Can1,2,3(), SU Yixin1,2,3, JING Xianjin1,2,3, LI Wenze1,2,3, YANG Lepu1,2,3, WANG Ruijun1,2,3, ZHANG Yanjun1,2,3, WANG Zhiying1,2,3, LÜ Qi1,2,3, SU Rui1,2,3,*(
)
Received:
2024-12-13
Online:
2025-08-23
Published:
2025-08-28
Contact:
SU Rui
E-mail:15847756571@163.com;suruiyu@126.com
摘要:
羊的皮、毛、奶和肉经加工能为人们产出具有重要经济效益的畜产品并深受人们喜爱,促使人们对绵、山羊的需求量不断增多。养羊业在我国畜牧业中占有重要地位,保持本品种的优势性能、表型选育和基因型选育均为科学选育提供了有效并准确的数据支撑,通过传统和新兴技术手段进行良种扩繁得以改良品种的生产性能,从而改善羊的生产性状增加其经济效益。表观遗传学是遗传学的分支学科并且是一门新兴学科领域,是在DNA序列不发生改变的情况下,对基因进行调控和遗传表达。通过高通量测序技术手段在DNA甲基化、染色质可及性、组蛋白修饰和三维基因组层面持续加强对羊遗传育种的应用。在研究羊的复杂经济性状如生长性状、绒毛性状、繁殖性状、脂质代谢以及免疫和疾病等方面均发挥着重要作用,鉴定出相关候选基因和调控元件及其作用位点。本综述从表观遗传学的角度归纳总结了羊遗传育种领域的最新研究现状和未来发展方向。
中图分类号:
刘灿, 苏奕忻, 景献金, 李文泽, 杨玏浦, 王瑞军, 张燕军, 王志英, 吕琦, 苏蕊. 表观遗传学在羊遗传育种中的研究进展[J]. 畜牧兽医学报, 2025, 56(8): 3561-3577.
LIU Can, SU Yixin, JING Xianjin, LI Wenze, YANG Lepu, WANG Ruijun, ZHANG Yanjun, WANG Zhiying, LÜ Qi, SU Rui. Research Progress of Epigenetics in Sheep and Goats Genetic Breeding[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3561-3577.
表 1
表观遗传学研究内容及其检测技术"
研究内容 Research content | 高通量检测技术 High throughput detection technology |
DNA甲基化DNA methylation | WGBS、BS-Seq、RRBS、MeDIP-seq等 |
RNA修饰RNA modification | MeRIP-seq/m6A-seq、m6Aseq 2、msC-seq、m7G-seq、m6A-REF-seq、m6A-LAIC-seq、DART-Seq等 |
染色质可及性Chromatin accessibility | DNase-seq、MNase-seq、FAIRE-seq、ATAC-seq、scATAC-seq等 |
组蛋白修饰Histone modification | ChIP-seq、CUT&Tag、CUT&Run、DAP-seq、HiChIP等 |
三维基因组3D genomics | Hi-C、scHi-C、Micro-C等 |
表 2
非编码RNA参与的表观遗传调控在羊遗传育种中的应用"
物种 Species | 品种 Breed | 性状 Trait | 调控机制 Regulation mechanism | 非编码RNA ncRNA | 基因 Gene | 参考文献 Reference |
山羊 Goat | 陕北白绒山羊 | 绒毛性状 | DNA甲基化 | lnc_000374、lnc_002056 | HOXC13、SOX9、SOX21、JUNB、LHX2、VDR、GATA3 | [ |
安淮山羊 | 脂质代谢 | DNA甲基化 | XLOC_960044、XLOC_767346 | CACNA1E | [ | |
简州大耳羊 | 生长性状 | RNA修饰 | miR-503-5p | Ythdf2 | [ | |
简州大耳羊 | 生长性状 | RNA修饰 | miR-874-3p、miR-874-3p、circRNA_0873、circRNA_0873、circRNA_1161 | LAMA5、EBF3、HDAC11、CCND2 | [ | |
绒山羊 | 绒毛性状 | RNA修饰 | circPAPPA | PAPPA | [ | |
内蒙古绒山羊 | 绒毛性状 | RNA修饰 | circRNA_2130、circRNA_0013、circRNA_1203、circRNA_1462、circRNA_1242、circRNA_2308、circRNA_2654、circRNA_1442 | ANGEL2、APP、GKAP1、HNRNPC、PTBP3、NUCB1、SNRK、ZNF609 | [ | |
辽宁绒山羊 | 绒毛性状 | RNA修饰 | circHECA | HECA | [ | |
辽宁绒山羊 | 绒毛性状 | RNA修饰 | circERCC6 | ERCC6 | [ | |
辽宁绒山羊 | 绒毛性状 | RNA修饰 | circRNA-ZNF638 | ZNF638 | [ | |
黑山羊 | 繁殖性状 | RNA修饰 | circRNA4464、circRNA1212、circRNA1213、circRNA1149、circRNA4524等 | — | [ | |
绵羊 Sheep | 湖羊 | 生长性状 | DNA甲基化 | lncRNA | GTL2 | [ |
小尾寒羊 | 绒毛性状 | RNA修饰 | lncRNA: MSTRG.46299-PSEN2、ENSOARG00020016306-CCND3、ENSOARG00020002712-COL2A1、ENSOARG00020008516-ERCC3 | PSEN2、CCND3、COL2A1、ERCC3 | [ |
1 |
MISTELI T . The self-organizing genome: Principles of genome architecture and function[J]. Cell, 2020, 183 (1): 28- 45.
doi: 10.1016/j.cell.2020.09.014 |
2 |
MATTEI A L , BAILLY N , MEISSNER A . DNA methylation: a historical perspective[J]. Trends Genet, 2022, 38 (7): 676- 707.
doi: 10.1016/j.tig.2022.03.010 |
3 |
RUZOV A , TSENKINA Y , SERIO A , et al. Lineage-specific distribution of high levels of genomic 5-hydroxymethylcytosine in mammalian development[J]. Cell Res, 2011, 21 (9): 1332- 1342.
doi: 10.1038/cr.2011.113 |
4 |
ILLINGWORTH R S , GRUENEWALD-SCHNEIDER U , WEBB S , et al. Orphan CpG islands identify numerous conserved promoters in the mammalian genome[J]. PLoS Genet, 2010, 6 (9): e1001134.
doi: 10.1371/journal.pgen.1001134 |
5 | 谢银平, 肖玲, 郑雅格, 等. DNA甲基化在抑郁症研究中的进展[J]. 神经损伤与功能重建, 2022, 17 (5): 277- 280. |
XIE Y P , XIAO L , ZHENG Y G , et al. Progress of DNA methylation in depression research[J]. Neural Injury and Functional Reconstruction, 2022, 17 (5): 277- 280. | |
6 |
URICH M A , NERY J R , LISTER R , et al. MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing[J]. Nat Protoc, 2015, 10 (3): 475- 483.
doi: 10.1038/nprot.2014.114 |
7 |
MEISSNER A , GNIRKE A , BELL G W , et al. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis[J]. Nucleic Acids Res, 2005, 33 (18): 5868- 5877.
doi: 10.1093/nar/gki901 |
8 |
BOCCALETTO P , STEFANIAK F , RAY A , et al. MODOMICS: a database of RNA modification pathways[J]. Nucleic Acids Res, 2022, 50 (D1): D231- D235.
doi: 10.1093/nar/gkab1083 |
9 |
LIU Q , GREGORY R I . RNAmod: an integrated system for the annotation of mRNA modifications[J]. Nucleic Acids Res, 2019, 47 (W1): W548- w555.
doi: 10.1093/nar/gkz479 |
10 |
MEYER K D , SALETORE Y , ZUMBO P , et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons[J]. Cell, 2012, 149 (7): 1635- 1646.
doi: 10.1016/j.cell.2012.05.003 |
11 |
XUE T X , QIU X Y , LIU H Y , et al. Epigenetic regulation in fibrosis progress[J]. Pharmacol Res, 2021, 173, 105910.
doi: 10.1016/j.phrs.2021.105910 |
12 | WANG Y , LI Y , YUE M , et al. N6-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications[J]. Nat Neurosci, 2018, 21 (8): 1139. |
13 | WU J , QUAN J P , YE Y , et al. [Advances in assay for transposase-accessible chromatin with high-throughput sequencing][J]. Yi Chuan, 2020, 20: 42 (4): 333- 346. |
14 |
COCKERILL P N . Structure and function of active chromatin and DNase Ⅰ hypersensitive sites[J]. FEBS J, 2011, 278 (13): 2182- 2210.
doi: 10.1111/j.1742-4658.2011.08128.x |
15 | CHEN A , CHEN D Z , CHEN Y . Advances of DNase-seq for mapping active gene regulatory elements across the genome in animals[J]. Gene, 2018, 15: 667, 83- 94. |
16 | 欧阳也, 秦玉婷, 姚超, 等. 利用ATAC-seq技术在人免疫细胞中检测染色质开放性的方法建立[J]. 现代免疫学, 2020, 40 (2): 93- 99. |
OUYANG Y , QIN Y T , YAO C , et al. Establishment of a method to detect chromatin openness in human immune cells using ATAC-seq[J]. Modern Immunology, 2020, 40 (2): 93- 99. | |
17 |
JAMBHEKAR A , DHALL A , SHI Y . Roles and regulation of histone methylation in animal development[J]. Nat Rev Mol Cell Biol, 2019, 20 (10): 625- 641.
doi: 10.1038/s41580-019-0151-1 |
18 |
LIU C F , ABOUSI A , BAZELEY P , et al. Global analysis of histone modifications and long-range chromatin interactions revealed the differential cistrome changes and novel transcriptional players in human dilated cardiomyopathy[J]. J Mol Cell Cardiol, 2020, 145, 30- 42.
doi: 10.1016/j.yjmcc.2020.06.001 |
19 |
MORGAN M A , SHILATIFARD A . Reevaluating the roles of histone-modifying enzymes and their associated chromatin modifications in transcriptional regulation[J]. Nat Genet, 2020, 52 (12): 1271- 1281.
doi: 10.1038/s41588-020-00736-4 |
20 | SUN P , HUANG T R , HUANG C , et al. Role of histone modification in the occurrence and development of osteoporosis[J]. Front Endocrinol (Lausanne), 2022, 26: 13, 964103. |
21 |
CHEN Z Y , DJEKIDEL M N , ZHANG Y . Distinct dynamics and functions of H2AK119ub1 and H3K27me3 in mouse preimplantation embryos[J]. Nat Genet, 2021, 53 (4): 551- 563.
doi: 10.1038/s41588-021-00821-2 |
22 |
WANG Y F , YANG L , ZHANG X J , et al. Epigenetic regulation of ferroptosis by H2B monoubiquitination and p53[J]. EMBO Rep, 2019, 20 (7): e47563.
doi: 10.15252/embr.201847563 |
23 | ALBERT I , MAVRICH T N , TOMSHO L P , et al. Translational and rotational settings of H2A. Z nucleosomes across the Saccharomyces cerevisiae genome[J]. Nature, 2007, 29:446 (7135): 572- 576. |
24 | SKENE P J , HENIKOFF S . An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites[J]. Elife, 2017, 16: 6, e21856. |
25 |
KAYA-OKUR H S , JANSSENS D H , HENIKOFF J G , et al. Efficient low-cost chromatin profiling with CUT&Tag[J]. Nat Protoc, 2020, 15 (10): 3264- 3283.
doi: 10.1038/s41596-020-0373-x |
26 | 邱格格, 林胜男, 黄浩. 三维基因组学及其应用概述[J]. 生物学教学, 2021, 46 (10): 4- 6. |
QIU G G , LIN S N , HUANG H . Overview of three-dimensional genomics and its applications[J]. Teaching Biology, 2021, 46 (10): 4- 6. | |
27 | LUPIÁÑEZ D G , KRAFT K , HEINRICH V , et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions[J]. Cell, 2015, 21: 161 (5): 1012- 1025. |
28 |
MATHARU N , AHITVV N . Minor loops in major folds: Enhancer-promoter looping, chromatin restructuring, and their association with transcription regulation and disease[J]. PLoS Genet, 2015, 11 (12): e1005640.
doi: 10.1371/journal.pgen.1005640 |
29 | DEKKER J , RIPPE K , DEKKER M , et al. Capturing chromosome conformation[J]. Science, 2002, 15: 295 (5558): 1306- 1311. |
30 |
SIMONIS M , KlLOUS P , SPLINTER E , et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C)[J]. Nat Genet, 2006, 38 (11): 1348- 1354.
doi: 10.1038/ng1896 |
31 |
DOSTIE J , RICHMOND T A , ARNAOUT R A , et al. Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements[J]. Genome Res, 2006, 16 (10): 1299- 1309.
doi: 10.1101/gr.5571506 |
32 | LIEBERMAN-AIDEN E , VAN BERKUM N L , WILLIAMS L , et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome[J]. Science, 2009, 9: 326 (5950): 289- 293. |
33 | FAN Y , LIANG Y , DENG K , et al. Analysis of DNA methylation profiles during sheep skeletal muscle development using whole-genome bisulfite sequencing[J]. BMC Genomics, 2020, 29: 21 (1): 327. |
34 | 岳彩娟, 梁小军, 王秀琴, 等. 滩羊和湖羊背最长肌全基因组甲基化差异分析[J]. 中国畜牧兽医, 2020, 47 (10): 3058- 3068. |
YUE C J , LIANG X J , WANG X Q , et al. Analysis of genome-wide methylation differences in the longest dorsal muscle of beach and lake sheep[J]. China Animal Husbandry and Veterinary Medicine, 2020, 47 (10): 3058- 3068. | |
35 | YUE C Y , WANG J K , SHEN Y F , et al. Whole-genome DNA methylation profiling reveals epigenetic signatures in developing muscle in Tan and Hu sheep and their offspring[J]. Front Vet Sci, 2023, 14: 10, 1186040. |
36 |
FAN Y X , REN C F , DENG K P , et al. The regulation of LncRNA GTL2 expression by DNA methylation during sheep skeletal muscle development[J]. Genomics, 2022, 114 (5): 110453.
doi: 10.1016/j.ygeno.2022.110453 |
37 | 罗建兴, 刘国强, 张宏博, 等. 蒙古羊后腿肌肉组织中MYF6和MEF2A基因的甲基化分析[J]. 黑龙江畜牧兽医, 2021 (3): 22- 26. |
LUO J X , LIU G Q , ZHANG H B , et al. Methylation analysis of MYF6 and MEF2A genes in muscle tissues of hind legs of Mongolian sheep[J]. Heilongjiang Animal Husbandry and Veterinary Medicine, 2021 (3): 22- 26. | |
38 | 侯晨曦, 洪文娟, 何宗龙, 等. LEF1基因在巴什拜羊不同毛色皮肤组织中的DNA甲基化及mRNA表达水平分析[J]. 新疆农业科学, 2022, 59 (11): 2742- 2748. |
HOU C X , HONG W J , HE Z L , et al. Analysis of DNA methylation and mRNA expression levels of LEF1 gene in skin tissues of Bashbay sheep with different coat colours[J]. Xinjiang Agricultural Science, 2022, 59 (11): 2742- 2748. | |
39 | XIAO P , ZHONG T , LIU Z F , et al. Integrated analysis of methylome and transcriptome changes reveals the underlying regulatory signatures driving curly wool transformation in Chinese Zhongwei goats[J]. Front Genet, 2020, 8: 10, 1263. |
40 | LI C , LI Y , ZHOU G X , et al. Whole-genome bisulfite sequencing of goat skins identifies signatures associated with hair cycling[J]. BMC Genomics, 2018, 28: 19 (1): 638. |
41 | WANG S H , LI F , LIU J W , et al. Integrative Analysis of Methylome and Transcriptome Reveals the Regulatory Mechanisms of Hair Follicle Morphogenesis in Cashmere Goat[J]. Cells, 2020, 14: 9 (4): 969. |
42 | ZHANG Y L , LI F Z , FENG X , et al. Genome-wide analysis of DNA Methylation profiles on sheep ovaries associated with prolificacy using whole-genome Bisulfite sequencing[J]. BMC Genomics, 2017, 2: 18 (1): 759. |
43 | YANG C M , HE J M , MAO J Y , et al. Genome-wide DNA methylation analysis and functional validation of litter size traits in Jining grey goats[J]. Genes (Basel), 2024, 12: 15 (3): 353. |
44 |
KANG B , WANG J , ZHANG H , et al. Genome-wide profile in DNA methylation in goat ovaries of two different litter size populations[J]. J Anim Physiol Anim Nutr (Berl), 2022, 106 (2): 239- 249.
doi: 10.1111/jpn.13600 |
45 |
ZHENG L M , ZHAI Y X , LI N , et al. Modification of Tet1 and histone methylation dynamics in dairy goat male germline stem cells[J]. Cell Prolif, 2016, 49 (2): 163- 172.
doi: 10.1111/cpr.12245 |
46 | ZHENG L , ZHAI Y X , LI N , et al. The modification of Tet1 in male germline stem cells and interact with PCNA, HDAC1 to promote their self-renewal and proliferation[J]. Sci Rep, 2016, 18: 6, 37414. |
47 | WU H , ZHOU W D , LIU H J , et al. Whole-genome methylation analysis reveals epigenetic variation between wild-type and nontransgenic cloned, ASMT transgenic cloned dairy goats generated by the somatic cell nuclear transfer[J]. J Anim Sci Biotechnol, 2022, 25: 13 (1): 145. |
48 |
YANG C , GAO X , YE J , et al. The interaction between DNA methylation and long non-coding RNA during the onset of puberty in goats[J]. Reprod Domest Anim, 2018, 53 (6): 1287- 1297.
doi: 10.1111/rda.13246 |
49 | 刘波, 芮雪, 方翟, 等. 多浪羊与卡拉库尔羊FSHR基因启动子区甲基化水平差异研究[J]. 中国畜牧杂志, 2021, 57 (11): 126- 130. |
LIU B , RUI X , FANG Z , et al. Differences in methylation levels between the promoter regions of FSHR genes in Dolang and Karakul sheep[J]. Chinese Journal of Animal Husbandry, 2021, 57 (11): 126- 130. | |
50 | 胡靖玮, 杨凯捷, 乔利英, 等. 绵羊脂肪组织AGPAT2基因启动子区DNA甲基化及其表达研究[J]. 中国畜牧杂志, 2023, 59 (2): 92- 97. |
HU J W , YANG K J , QIAO L Y , et al. DNA methylation in the promoter region of AGPAT2 gene and its expression in sheep adipose tissue[J]. Chinese Journal of Animal Husbandry, 2023, 59 (2): 92- 97. | |
51 | ZHU C Y , SONG S Z , LI M N , et al. Genome-wide DNA methylation analysis reveals different methylation patterns in Chinese indigenous sheep with different type of tail[J]. Front Vet Sci, 2023, 5: 10, 1125262. |
52 | LUO R S , DAI X L , ZHANG L , et al. Genome-wide DNA methylation patterns of muscle and tail-fat in dairy Meade sheep and Mongolian sheep[J]. Animals (Basel), 2022, 29: 12 (11): 1399. |
53 | JIANG J F , GUO L Y , HUANG X , et al. Regulatory role of N6-Methyladenosine on skeletal muscle development in Hu sheep[J]. Front Genet, 2024, 21: 15, 1449144. |
54 | DENG K P , LIU Z P , LI X D , et al. Ythdf2-mediated STK11 mRNA decay supports myogenesis by inhibiting the AMPK/mTOR pathway[J]. Int J Biol Macromol, 2024, 254 (Pt 1): 127614. |
55 | DENG K , FAN Y X , LIANG Y X , et al. FTO-mediated demethylation of GADD45B promotes myogenesis through the activation of p38 MAPK pathway[J]. Mol Ther Nucleic Acids, 2021, 24: 26, 34- 48. |
56 | YAO J Z , XU L , ZHAO Z H , et al. Fat mass- and obesity-associated protein (fto) promotes the proliferation of goat skeletal muscle satellite cells by stabilizing DAG1 mRNA in an IGF2BP1-related m6A manner[J]. Int J Mol Sci, 2024, 11: 25 (18): 9804. |
57 |
SU Y L , DENG K P , LIU Z P , et al. m6A modified pre-miR-503-5p contributes to myogenic differentiation through the activation of mTOR pathway[J]. Int J Biol Macromol, 2025, 294, 139517.
doi: 10.1016/j.ijbiomac.2025.139517 |
58 | ZHAO S , CAO J X , SUN Y J , et al. METTL3 Promotes the Differentiation of Goat Skeletal Muscle Satellite Cells by Regulating MEF2C mRNA Stability in a m6A-Dependent Manner[J]. Int J Mol Sci, 2023, 14: 24 (18): 14115. |
59 | DENG K P , LIU Z P , LU X D , et al. Targeted Demethylation of the TGFβ1 mRNA Promotes Myoblast Proliferation via Activating the SMAD2 Signaling Pathway[J]. Cells, 2023, 24: 12 (7): 1005. |
60 | ZOU J H , SHEN Y J , ZOU J W , et al. Transcriptome-Wide Study Revealed That N6-Methyladenosine Participates in Regulation Meat Production in Goats[J]. Foods, 2023, 9: 12 (6): 1159. |
61 | WANG J M , LI X , QUBI W Q , et al. The Important Role of m6A-Modified circRNAs in the Differentiation of Intramuscular Adipocytes in Goats Based on MeRIP Sequencing Analysis[J]. Int J Mol Sci, 2023, 2: 24 (5): 4817. |
62 |
MENG J Z , LI J P , ZHAO Y Y . Comprehensive analysis of lncRNAs modified by m6A methylation in sheep skin[J]. Anim Biosci, 2024, 37 (11): 1887- 1990.
doi: 10.5713/ab.24.0039 |
63 |
ZHAO Y Y , MENG J Z , SONG X C , et al. m6A mRNA Methylation Analysis Provides Novel Insights into Pigmentation in Sheep Skin[J]. Epigenetics, 2023, 18 (1): 2230662.
doi: 10.1080/15592294.2023.2230662 |
64 | BAI M , SHEN J C , FAN Y X , et al. N6-methyladenosine (m6A)-circular RNA Pappalysin 1 (circPAPPA) from cashmere goats: Identification, regulatory network and expression potentially regulated by methylation in secondary hair follicles within the first intron of its host gene[J]. Animals (Basel), 2025, 18: 15 (4): 581. |
65 | HUA G Y , YANG X , MA Y H , et al. m6A methylation analysis reveals networks and key genes underlying the coarse and fine wool traits in a full-sib merino family[J]. Biology (Basel), 2022, 9: 11 (11): 1637. |
66 | ZHANG R , LIANG J Y , LIU Z M , et al. MeRIP-seq data analysis and validation reveal the regulatory role of m6A modified circRNAs in the apoptosis of secondary hair follicle cells in Inner Mongolia cashmere goats[J]. Comp Biochem Physiol Part D Genom Proteom, 2025, 12: 54, 101419. |
67 |
SHEN J C , HUI T Y , BAI M , et al. N6-methyladenosine (m6A)-circHECA from secondary hair follicle of cashmere goats: identification, regulatory network and expression regulated potentially by methylation of its host gene promoter[J]. Anim Biosci, 2024, 37 (12): 2066- 2080.
doi: 10.5713/ab.24.0081 |
68 | ZHANG Q , FAN Y X , BAI M , et al. CircERCC6 positively regulates the induced activation of SHF stem cells in cashmere goats via the miR-412-3p/BNC2 axis in an m6A-dependent manner[J]. Animals (Basel), 2024, 5: 14 (2): 187. |
69 |
YIN R H , YIN R L , BAI M , et al. N6-Methyladenosine modification (m6A) of circRNA-ZNF638 contributes to the induced activation of SHF stem cells through miR-361-5p/Wnt5a axis in cashmere goats[J]. Anim Biosci, 2023, 36 (4): 555- 569.
doi: 10.5713/ab.22.0211 |
70 |
WANG Y R , LI G Q , ZHANG X J , et al. Analysis of m6A methylation in skin tissues of different sex Liaoning cashmere goats[J]. Anim Biotechnol, 2023, 34 (2): 310- 320.
doi: 10.1080/10495398.2021.1962897 |
71 | WANG Y , ZHANG Y Y , GUO D , et al. m6A methylation analysis of differentially expressed genes in skin tissues of coarse and fine type Liaoning cashmere goats[J]. Front Genet, 2020, 22: 10, 1318. |
72 | LI D X , ZHOU L , LIU Z F , et al. FTO demethylates regulates cell-cycle progression by controlling CCND1 expression in luteinizing goat granulosa cells[J]. Theriogenology, 2024, 1: 216, 20- 29. |
73 | SUN Y , ZHANG X C , LI M D , et al. METTL3 promotes proliferation of goat endometrial epithelial cells by regulating CTGF in an m6A-dependent manner†[J]. Biol Reprod, 2023, 9: 108 (6): 902- 911. |
74 |
LIU Z F , LI D X , DENG M T , et al. METTL3 improves the development of somatic cell nuclear transfer embryos through AURKB and H3S10ph in goats[J]. Int J Biol Macromol, 2025, 286, 138546.
doi: 10.1016/j.ijbiomac.2024.138546 |
75 | LIU J , GUO C H , FU J J , et al. Identification and Functional Analysis of circRNAs during Goat Follicular Development[J]. Int J Mol Sci, 2024, 9: 25 (14): 7548. |
76 | LI D X , LIU Z F , DENG M T , et al. The function of the m6A methyltransferase METTL3 in goat early embryo development under hypoxic and normoxic conditions[J]. Theriogenology, 2022, 1: 177, 140- 150. |
77 | XI B P , LU Z K , ZHANG R , et al. Comprehensive analysis of the transcriptome-wide m6A Methylome in sheep testicular development[J]. Genomics, 2025, 22, 111005. |
78 | NABI KHAN R I , PRAHARAG M R , MALLA W A , et al. Changes in m6A RNA methylation of goat lung following PPRV infection[J]. Heliyon, 2023, 22: 9 (9): e19358. |
79 | KHAN O , TANUJ G N , CHORAVADA D R , et al. N6-Methyladenosine RNA Modification in Host Cells Regulates Peste des Petits Ruminants Virus Replication[J]. Microbiol Spectr, 2023, 14: 11 (2): e0266622. |
80 | SONG B W , WANG X , LIANG Z M , et al. RMDisease V2.0: an updated database of genetic variants that affect RNA modifications with disease and trait implication[J]. Nucleic Acids Res, 2023, 6: 51 (D1): D1388- D1396. |
81 |
CHEN B W , YUAN C , GUO T T , et al. The molecular regulated mechanism of METTL3 and FTO in lipid metabolism of Hu sheep[J]. Genomics, 2024, 116 (6): 110945.
doi: 10.1016/j.ygeno.2024.110945 |
82 | CHEN B W , YUAN C , GUO T T , et al. METTL3 and FTO Regulate Heat Stress Response in Hu Sheep Through Lipid Metabolism via m6A Modification[J]. Animals (Basel), 2025, 13: 15 (2): 193. |
83 | LU Z K , LIU J B , YUAN C , et al. m6A mRNA methylation analysis provides novel insights into heat stress responses in the liver tissue of sheep[J]. Genomics, 2021, 113 (1 Pt 2): 484- 492. |
84 |
LU Z K , MA Y J , LI Q , et al. The role of N6-methyladenosine RNA methylation in the heat stress response of sheep (Ovis aries)[J]. Cell Stress Chaperones, 2019, 24 (2): 333- 342.
doi: 10.1007/s12192-018-00965-x |
85 | CAO Y T , AI Y , ZHANG X S , et al. Genome-wide epigenetic dynamics during postnatal skeletal muscle growth in Hu sheep[J]. Commun Biol, 2023, 23: 6 (1): 1077. |
86 |
SU Y X , HE S Q , CHEN Q , et al. Integrative ATAC-seq and RNA-seq analysis of myogenic differentiation of ovine skeletal muscle satellite cell[J]. Genomics, 2024, 116 (3): 110851.
doi: 10.1016/j.ygeno.2024.110851 |
87 | CHEN Q L , CHEN Z , ZHANG Z X , et al. Profiling chromatin accessibility responses in goat bronchial epithelial cells infected with pasteurella multocida[J]. Int J Mol Sci, 2023, 9: 24 (2): 1312. |
88 |
BYRNE K , MCWILLIAM S , VUOCOLO T , et al. Genomic architecture of histone 3 lysine 27 trimethylation during late ovine skeletal muscle development[J]. Anim Genet, 2014, 45 (3): 427- 438.
doi: 10.1111/age.12145 |
89 | ALHARBI A B , SCHMITZ U , BAILEY C G , et al. CTCF as a regulator of alternative splicing: new tricks for an old player[J]. Nucleic Acids Res, 2021, 20: 49 (14): 7825- 7838. |
90 | YUAN Z , GE L , ZHANG W , et al. Preliminary results about lamb meat tenderness based on the study of novel isoforms and alternative splicing regulation pathways using Iso-seq, RNA-seq and CTCF ChIP-seq data[J]. Foods, 2022, 7: 11 (8): 1068. |
91 | DENG M T , LIU Z F , CHEN B B , et al. Aberrant DNA and histone methylation during zygotic genome activation in goat cloned embryos[J]. Theriogenology, 2020, 148, 27- 36. |
92 | LIU Z H , LI M Y , SUN Y , et al. Epigenetic dynamics of H4K20me3 modification during oocyte maturation and early reprogramming of somatic cell nuclear transfer goat embryos[J]. Am J Transl Res, 2022, 25: 14 (8): 5941- 5951. |
93 | MAO T C , HAN C Q , DENG R Z , et al. Treating donor cells with 2-PCPA corrects aberrant histone H3K4 dimethylation and improves cloned goat embryo development[J]. Syst Biol Reprod Med, 2018, 64 (3): 174- 182. |
94 | SINHA N , ROY S , HUANG B , et al. Developmental programming: prenatal testosterone-induced epigenetic modulation and its effect on gene expression in sheep ovary†[J]. Biol Reprod, 2020, 24: 102 (5): 1045- 1054. |
95 | BROOKS K E , BURNS G W , SPENCER T E . Peroxisome proliferator activator receptor gamma (PPARG) regulates conceptus elongation in sheep[J]. Biol Reprod, 2015, 92 (2): 42. |
96 | LI L Y , ZHANG D D , REN Y Y , et al. The modification of mitochondrial energy metabolism and histone of goat somatic cells under small molecules compounds induction[J]. Reprod Domest Anim, 2019, 54 (2): 138- 149. |
97 | GAO L , ZHANG Z H , ZHENG X M , et al. The novel role of Zfp296 in mammalian embryonic genome activation as an H3K9me3 modulator[J]. Int J Mol Sci, 2023, 12: 24 (14): 11377. |
98 | CHEN M , LONG X , CHEN M , et al. Integration of single-cell transcriptome and chromatin accessibility of early gonads development among goats, pigs, macaques, and humans[J]. Cell Rep, 2022, 1: 41 (5): 111587. |
99 | DAVENPORT K M , MASSA A T , BHATTARAI S , et al. Ovine FAANG project consortium. Characterizing genetic regulatory elements in ovine tissues[J]. Front Genet, 2021, 20: 12, 628849. |
100 | BILBAO-ARRIBAS M , JUGO B M . Transcriptomic meta-analysis reveals unannotated long non-coding RNAs related to the immune response in sheep[J]. Front Genet, 2022, 22: 13, 1067350. |
101 | MASSA A T , MOUSEL M R , DURFEE C J , et al. A DNA regulatory element haplotype at zinc finger genes is associated with host resilience to small ruminant lentivirus in two sheep populations[J]. Animals (Basel), 2021, 26: 11 (7): 1907. |
102 | WU J , LUO J , HE Q Y , et al. Docosahexaenoic acid alters lipid metabolism processes via H3K9ac epigenetic modification in dairy goat[J]. J Agric Food Chem, 2023, 71 (22): 8527- 8539. |
103 | HE Q Y , GAO L J H , ZHANG F H , et al. The FoxO1-ATGL axis alters milk lipolysis homeostasis through PI3K/AKT signaling pathway in dairy goat mammary epithelial cells[J]. J Anim Sci, 2023, 3: 101, 286. |
104 | WANG X , ZHANG F X , WANG Z M , et al. Histone H3K9 acetylation influences growth characteristics of goat adipose-derived stem cells in vitro[J]. Genet Mol Res, 2016, 15 (4): gmr15048954. |
105 | LI R , YANG P , DAI X L , et al. A near complete genome for goat genetic and genomic research[J]. Genet Sel Evol, 2021, 10: 53 (1): 74. |
106 | LI R , YANG P , LI M , et al. A Hu sheep genome with the first ovine Y chromosome reveal introgression history after sheep domestication[J]. Sci China Life Sci, 2021, 64 (7): 1116- 1130. |
107 | QIAO G Y , XU P , GUO T T , et al. Genetic basis of Dorper sheep (Ovis aries) revealed by long-read de novo genome assembly[J]. Front Genet, 2022, 11: 13, 846449. |
108 | BICKHART D M , ROSEN B D , KOREN S , et al. Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome[J]. Nat Genet, 2017, 49 (4): 643- 650. |
109 | DAVENPORT K M , BICKHART D M , WORLEY K , et al. An improved ovine reference genome assembly to facilitate in-depth functional annotation of the sheep genome[J]. Gigascience, 2022, 4: 11, 096. |
110 | GHURYE J , POP M , KOREN S , et al. Scaffolding of long read assemblies using long range contact information[J]. BMC Genomics, 2017, 12: 18 (1): 527. |
111 | WANG Z Y , LV Q , LI W Z , et al. Chromosome-level genome assembly of the cashmere goat[J]. Sci Data, 2024, 11 (1): 1107. |
112 | WU H , LUO L Y , ZHANG Y H , et al. Telomere-to-telomere genome assembly of a male goat reveals variants associated with cashmere traits[J]. Nat Commun, 2024, 15 (1): 10041. |
[1] | 范婧, 李伟, 朱妍, 勿都巴拉, 史佳慧, 胡斯乐, 吴江鸿. 湖羊不同发育期瘤胃形态学变化及基因表达差异研究[J]. 畜牧兽医学报, 2025, 56(8): 3773-3786. |
[2] | 任千姿, 张佰忠, 王真勍, 王向林, 龚颖, 胡仁科, 浦亚斌, 苏鹏, 李业芳, 马月辉, 李昊帮, 蒋琳. 基于全基因组重测序对武雪山羊的遗传进化分析[J]. 畜牧兽医学报, 2025, 56(8): 3787-3801. |
[3] | 冯锦涛, 闫炎, 宗俊霖, 胡宇晴, 李晓蕊, 关伟军, 李耀坤. 山羊脐带间充质干细胞分离培养与治疗小鼠药物性肝损伤[J]. 畜牧兽医学报, 2025, 56(8): 4053-4064. |
[4] | 魏康康, 马贵, 李文迪, 田雨, 张令锴, 朱继红, 胡亚美. 单细胞测序技术在绵羊卵巢生长发育过程中的研究进展[J]. 畜牧兽医学报, 2025, 56(7): 3080-3087. |
[5] | 张嘉良, 黄畅, 杨永林, 杨华, 白文林, 马月辉, 赵倩君. 基于50K液相芯片的中国绵羊群体遗传结构与羊毛性状选择信号分析[J]. 畜牧兽医学报, 2025, 56(7): 3164-3176. |
[6] | 兰茗熙, 秦箐, 张崇妍, 刘治辰, 张景文, 赵丹, 吴丹妮, 秦湉, 王志新, 刘志红. 乌珠穆沁羊屠宰性能与不同部位肉品质测定分析[J]. 畜牧兽医学报, 2025, 56(7): 3177-3187. |
[7] | 宋娟娟, 孙旭春, 陈慧丽, 王春卉, 栗登攀, 马克岩, 马友记. 基于HS-GC-MS探究不同混合比例青贮饲料对羊肉挥发性物质的影响[J]. 畜牧兽医学报, 2025, 56(7): 3316-3326. |
[8] | 何印娣, 石正旺, 石鑫泰, 陈婕, 廖焕程, 张帆, 罗俊聪, 朱昱茜, 席韬, 李帅鹏, 王川, 田宏, 郑海学. 羊痘病毒抗体胶体金免疫层析试纸条的研制与初步应用[J]. 畜牧兽医学报, 2025, 56(7): 3368-3377. |
[9] | 马青玲, 王志有, 侯生珍, 杨超. 母羊下丘脑-垂体-性腺轴调控其子宫复旧机制研究进展[J]. 畜牧兽医学报, 2025, 56(6): 2525-2536. |
[10] | 罗睿杰, 王建魁, 曹素英. 敖汉细毛羊的粗毛返祖性状相关lncRNA-mRNA的联合测序分析[J]. 畜牧兽医学报, 2025, 56(6): 2685-2700. |
[11] | 朱爱文, 王健, 朱戈辉, 刘海霞, 平措班旦, 王军, 德庆卓嘎, 闫伟, 韩大勇. 玉米赤霉烯酮致彭波半细毛羊睾丸支持细胞增殖凋亡、氧化应激及NAC保护机制[J]. 畜牧兽医学报, 2025, 56(6): 2752-2764. |
[12] | 谷博, 王安琪, 于鑫淼, 郭俊彤, 杨一, 邓祎婕, 姜怀志. 基于全转录组测序的2个不同品种绵羊卵巢ceRNA网络构建及关键miRNA的筛选[J]. 畜牧兽医学报, 2025, 56(6): 2765-2777. |
[13] | 乔利英, 王万年, 张莉, 庞志旭, 张思颖, 李一凡, 刘文忠. 基于基因组标记对绵羊品种分类的机器学习方法研究[J]. 畜牧兽医学报, 2025, 56(5): 2157-2167. |
[14] | 孙国欣, 李蕴华, 赛音, 郭文华, 赵艳红, 张满新, 刘佳森. 湖羊群体结构分析与经济性状相关选择信号检测[J]. 畜牧兽医学报, 2025, 56(5): 2168-2181. |
[15] | 李笑微, 田微, 刘媛, 李惠侠. 高温应激下湖羊卵巢颗粒细胞m6A甲基化修饰差异研究[J]. 畜牧兽医学报, 2025, 56(4): 1712-1721. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||