畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (7): 3164-3176.doi: 10.11843/j.issn.0366-6964.2025.07.012
张嘉良1,3(), 黄畅1, 杨永林2, 杨华2, 白文林3, 马月辉1, 赵倩君1,*(
)
收稿日期:
2024-10-14
出版日期:
2025-07-23
发布日期:
2025-07-25
通讯作者:
赵倩君
E-mail:18340756126@163.com;zhaoqianjun@caas.cn
作者简介:
张嘉良(1997-),男,辽宁东港人,硕士生,主要从事动物遗传育种研究,Tel:010-62815884,E-mail: 18340756126@163.com
基金资助:
ZHANG Jialiang1,3(), HUANG Chang1, YANG Yonglin2, YANG Hua2, BAI Wenlin3, MA Yuehui1, ZHAO Qianjun1,*(
)
Received:
2024-10-14
Online:
2025-07-23
Published:
2025-07-25
Contact:
ZHAO Qianjun
E-mail:18340756126@163.com;zhaoqianjun@caas.cn
摘要:
旨在揭示不同被毛类型绵羊群体的遗传结构特征,通过选择信号分析筛选与羊毛性状相关的候选基因。本研究选择8个绵羊群体(包括15只欧拉羊、13只塔什库尔干羊、15只阿勒泰羊、16只藏绵羊、12只青海毛肉兼用细毛羊、10只甘肃高山细毛羊、15只中国美利奴羊和11只敖汉细毛羊)共计107只个体作为研究对象。将绵羊群体按照不同羊毛类型分为两组,包括59只细毛型绵羊和48只粗毛型绵羊。使用自主研发的绵羊SNP 50K液相芯片对所选绵羊群体进行基因分型,经质控后进行主成分分析、邻接连接树和群体遗传结构分析。基于群体遗传分化指数(FST)和核苷酸多样性比值(θπ ratio)两种选择信号方法筛选与羊毛性状相关的候选基因,通过KEGG通路分析确定候选基因的功能。主成分分析、邻接连接树和群体遗传结构分析的结果表明,两组绵羊群体之间存在遗传分化。基于FST和θπ Ratio的结合分析,前1%区域作为受选择区域,检测到165个受选择区域,包含456个受选择基因。基因注释发现,受选择基因与毛囊及毛发发育(JAK2、SELENBP1)、黑色素合成(IRF4)、真皮乳头细胞的间接调控(RAC2)以及皮肤分子生物学中关键管家基因(SDHA)密切相关。本研究探究了8个我国绵羊群体的遗传结构, 细毛型和粗毛型绵羊群体间有明显的群体分化。基于两种选择信号检测方法筛选到与羊毛性状相关的候选基因(JAK2、IRF4、RAC2、IDUA、SDHA和SELENBP1)等。研究结果可为绵羊羊毛性状的分子遗传标记挖掘提供参考。
中图分类号:
张嘉良, 黄畅, 杨永林, 杨华, 白文林, 马月辉, 赵倩君. 基于50K液相芯片的中国绵羊群体遗传结构与羊毛性状选择信号分析[J]. 畜牧兽医学报, 2025, 56(7): 3164-3176.
ZHANG Jialiang, HUANG Chang, YANG Yonglin, YANG Hua, BAI Wenlin, MA Yuehui, ZHAO Qianjun. Genetic Structure and Wool Trait Selection Signatures Analysis of Chinese Sheep Populations Based on 50K Liquid SNP Chip[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3164-3176.
表 1
本研究的绵羊群体信息"
群体 Population | 英文名称 English name | 缩写 Abbreviation | 样本量/只 Sample | 地理位置 Location | 羊毛类型 Wool type |
欧拉羊 | Oula sheep | OLS | 15 | 青海省河南县 | 粗毛型 |
塔什库尔干羊 | Tashkurgan sheep | TSK | 13 | 新疆塔什库尔干县 | 粗毛型 |
阿勒泰羊 | Altay sheep | ALT | 15 | 新疆福海县 | 粗毛型 |
藏绵羊 | Zangxi sheep | ZXS | 16 | 四川省甘孜州石渠县 | 粗毛型 |
青海毛肉兼用细毛羊 | Qinghai Wool-mutton Type sheep | QHS | 12 | 青海省海晏县 | 细毛型 |
甘肃高山细毛羊 | Cansu Alpine Merino | GSS | 10 | 甘肃省肃南县 | 细毛型 |
中国美利奴羊 | Chinese Merino | CME | 15 | 新疆石河子市 | 细毛型 |
敖汉细毛羊 | Aohan Merino | AHS | 11 | 内蒙古赤峰市敖汉旗 | 细毛型 |
表 3
羊毛性状相关的候选基因"
基因 Gene | 基因描述 Genes description | 染色体 Chromosome | 功能 Function | 参考文献 Reference |
IRF4 | Interferon regulatory factor 4 | 20 | 与黑色素合成、递送和分布有关 | [ |
JAK2 | Janus kinase-2 | 2 | 可能与毛囊和毛发生长相关 | [ |
RAC2 | Ras-related C3 botulinum toxin substrate 2 | 3 | 间接调控真皮乳头细胞的功能 | [ |
IDUA | Alpha-L-iduronidase | 6 | 与羊毛性状相关 | [ |
SDHA | Succinate dehydrogenase subunit-A | 16 | 皮肤分子生物学研究的管家基因 | [ |
SELENBP1 | Selenium-binding protein 1 | 1 | 与羊的被毛生长相关 | [ |
1 | ALBERTO F J , BOYER F , OROZCO-TERWENGEL P , et al. Convergent genomic signatures of domestication in sheep and goats[J]. Nat Commun, 2018, 9 (1): 813. |
2 | DENG J , XIE X L , WANG D F , et al. Paternal origins and migratory episodes of domestic sheep[J]. Curr Biol, 2020, 30 (20): 4085- 4095. |
3 | GRANERO A , ANAYA G , DEMYDA-PEYRÁS S , et al. Genomic population structure of the main historical genetic lines of Spanish Merino sheep[J]. Animals (Basel), 2022, 12 (10): 1327. |
4 | GRANERO A , ANAYA G , ALCALDE M J . Morphostructural differences between the historical genetic lines of the Spanish Merino sheep[J]. Animals (Basel), 2023, 13 (2): 313. |
5 | TONG X , CHEN D , HU J , et al. Accurate haplotype construction and detection of selection signatures enabled by high quality pig genome sequences[J]. Nat Commun, 2023, 14 (1): 5126. |
6 | ZHONG Z Q , LI R , WANG Z , et al. Genome-wide scans for selection signatures in indigenous pigs revealed candidate genes relating to heat tolerance[J]. Animal, 2023, 17 (7): 100882. |
7 | 马烨, 刘玉强, 吴煜伟, 等. 基于全基因组重测序检测中国地方猪的体型选择信号[J]. 中国畜牧兽医, 2024 (8): 3438- 3446. |
MA Y , LIU Y Q , WU Y W , et al. Detection of body shape selection signals in Chinese indigenous pigs based on whole genome resequencing[J]. China Animal Husbandry & Veterinary Medicine, 2024 (8): 3438- 3446. | |
8 | XU L , ZHOU K , HUANG X , et al. Whole-genome resequencing provides insights into the diversity and adaptation to desert environment in Xinjiang Mongolian cattle[J]. BMC Genomics, 2024, 25 (1): 176. |
9 | AYALEW W , WU X , TAREKEGN G M , et al. Whole genome scan uncovers candidate genes related to milk production traits in Barka cattle[J]. Int J Mol Sci, 2024, 25 (11): 6142. |
10 | LUKIC B , CURIK I , DRZAIC I , et al. Genomic signatures of selection, local adaptation and production type characterisation of East Adriatic sheep breeds[J]. J Anim Sci Biotechnol, 2023, 14 (1): 142. |
11 | AN Z X , SHI L G , HOU G Y , et al. Genetic diversity and selection signatures in Hainan black goats revealed by whole-genome sequencing data[J]. Animal, 2024, 18 (6): 101147. |
12 |
王婷, 张元庆, 闫益波, 等. "特藏寒羊"群体遗传结构分析与选择信号的对比分析[J]. 畜牧兽医学报, 2024, 55 (7): 2913- 2926.
doi: 10.11843/j.issn.0366-6964.2024.07.012 |
WANG T , ZHANG Y Q , YAN Y B , et al. The genetic structure analysis and the comparative analysis of selection signals in 'Tezanghan' sheep[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (7): 2913- 2926.
doi: 10.11843/j.issn.0366-6964.2024.07.012 |
|
13 | HAN H , RANDHAWA I A S , MACHUGH D E , et al. Selection signatures for local and regional adaptation in Chinese Mongolian horse breeds reveal candidate genes for hoof health[J]. BMC Genomics, 2023, 24 (1): 35. |
14 | MOUSAVI S F , RAZMKABIR M , ROSTAMZADEH J , et al. Genetic diversity and signatures of selection in four indigenous horse breeds of Iran[J]. Heredity (Edinb), 2023, 131 (2): 96- 108. |
15 | REN X , GUAN Z , ZHAO X , et al. Systematic selection signature analysis of Chinese gamecocks based on genomic and transcriptomic data[J]. Int J Mol Sci, 2023, 24 (6): 5868. |
16 | 胡晓玉, 肖成朋, 高超群, 等. 基于全基因组SNPs标记对河南斗鸡遗传多样性及选择信号分析[J]. 河南农业大学学报, 2024, 58 (3): 394- 402. |
HU X Y , XIAO C P , GAO C Q , et al. Analysis of the genetic diversity and selection signals of Henan Game chicken using genome-wide SNPs[J]. Journal of Henan Agricultural University, 2024, 58 (3): 394- 402. | |
17 |
吴平先, 王俊戈, 刁淑琪, 等. 基于填充测序数据的荣昌猪群体遗传结构和选择信号分析[J]. 畜牧兽医学报, 2025, 56 (1): 147- 158.
doi: 10.11843/j.issn.0366-6964.2025.01.014 |
WU P X , WANG J G , DIAO S Q , et al. Analysis of genetic architecture characteristics and selection signature by imputed whole genome sequencing data in Rongchang pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56 (1): 147- 158.
doi: 10.11843/j.issn.0366-6964.2025.01.014 |
|
18 | LV F H , CAO Y H , LIU G J , et al. Whole-genome resequencing of worldwide wild and domestic sheep elucidates genetic diversity, introgression, and agronomically important loci[J]. Mol Biol Evol, 2022, 39 (2): 353. |
19 | LIANG B , BAI T , ZHAO Y , et al. Two mutations at KRT74 and EDAR synergistically drive the fine-wool production in Chinese sheep[J]. J Adv Res, 2024, 57, 1- 13. |
20 | LANGBEIN L , ROGERS M A , PRAETZEL S , et al. K6irs1, K6irs2, K6irs3, and K6irs4 represent the inner-root-sheath-specific type Ⅱ epithelial keratins of the human hair follicle[J]. J Invest Dermatol, 2003, 120 (4): 512- 522. |
21 | TANAKA S , MIURA I , YOSHIKI A , et al. Mutations in the helix termination motif of mouse type I IRS keratin genes impair the assembly of keratin intermediate filament[J]. Genomics, 2007, 90 (6): 703- 711. |
22 | HEADON D J , OVERBEEK P A . Involvement of a novel Tnf receptor homologue in hair follicle induction[J]. Nat Genet, 1999, 22 (4): 370- 374. |
23 | MOU C , JACKSON B , SCHNEIDER P , et al. Generation of the primary hair follicle pattern[J]. Proc Natl Acad Sci U S A, 2006, 103 (24): 9075- 9080. |
24 | CAI Y , FU W , CAI D , et al. Ancient genomes reveal the evolutionary history and origin of cashmere-producing goats in China[J]. Mol Biol Evol, 2020, 37 (7): 2099- 2109. |
25 | LI Y , GONG Y , ZHANG Z , et al. Whole-genome sequencing reveals selection signals among Chinese, Pakistani, and Nepalese goats[J]. J Genet Genom, 2023, 50 (5): 362- 365. |
26 | FATIMA N , JIA L , LIU B , et al. A homozygous missense mutation in the fibroblast growth factor 5 gene is associated with the long-hair trait in Angora rabbits[J]. BMC Genomics, 2023, 24 (1): 298. |
27 | GUO J , ZHONG J , LIU G E , et al. Identification and population genetic analyses of copy number variations in six domestic goat breeds and Bezoar ibexes using next-generation sequencing[J]. BMC Genomics, 2020, 21 (1): 840. |
28 | LI Y , SONG S , ZHANG Z , et al. A deletion variant within the FGF5 gene in goats is associated with gene expression levels and cashmere growth[J]. Animal Genetics, 2022, 53 (5): 657- 664. |
29 | WANG X , CAI B , ZHOU J , et al. Disruption of FGF5 in cashmere goats using CRISPR/Cas9 results in more secondary hair follicles and longer fibers[J]. PLoS One, 2016, 11 (10): 0164640. |
30 | LI H , DURBIN R . Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2009, 25 (14): 1754- 1760. |
31 | MCKENNA A , HANNA M , BANKS E , et al. The genome analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data[J]. Genome Res, 2010, 20 (9): 1297- 1303. |
32 | CHANG C C , CHOW C C , TELLIER L C , et al. Second-generation PLINK: rising to the challenge of larger and richer datasets[J]. Gigascience, 2015, 4, 7. |
33 | TAMURA K , STECHER G , KUMAR S . MEGA11: Molecular evolutionary genetics analysis version 11[J]. Mol Biol Evol, 2021, 38 (7): 3022- 3027. |
34 | LETUNIC I , BORK P . Interactive tree of life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool[J]. Nucleic Acids Res, 2024, 52 (W1): 78- 82. |
35 | ALEXANDER D H , NOVEMBRE J , LANGE K . Fast model-based estimation of ancestry in unrelated individuals[J]. Genome Res, 2009, 19 (9): 1655- 1664. |
36 | DANECEK P , AUTON A , ABECASIS G , et al. The variant call format and VCFtools[J]. Bioinformatics, 2011, 27 (15): 2156- 2158. |
37 | QUINLAN A R , HALL I M . BEDTools: a flexible suite of utilities for comparing genomic features[J]. Bioinformatics, 2010, 26 (6): 841- 842. |
38 | CINGOLANI P , PLATTS A , WANG L L , et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3[J]. Fly (Austin), 2012, 6 (2): 80- 92. |
39 | BU D , LUO H , HUO P , et al. KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis[J]. Nucleic Acids Res, 2021, 49 (W1): 317- 325. |
40 | TANG D , CHEN M , HUANG X , et al. SRplot: A free online platform for data visualization and graphing[J]. PLoS One, 2023, 18 (11): 0294236. |
41 | WU C , MA S , ZHAO B , et al. Drivers of plateau adaptability in cashmere goats revealed by genomic and transcriptomic analyses[J]. BMC Genomics, 2023, 24 (1): 428. |
42 | ZHANG W , LUOSANG C , YUAN C , et al. Selection signatures of wool color in Gangba sheep revealed by genome-wide SNP discovery[J]. BMC Genomics, 2024, 25 (1): 606. |
43 | SHANG Y , LI M , ZHANG L , et al. Exosomes derived from mouse vibrissa dermal papilla cells promote hair follicle regeneration during wound healing by activating Wnt/β-catenin signaling pathway[J]. J Nanobiotechnol, 2024, 22 (1): 425. |
44 | XU X L , WU S J , QI S Y , et al. Increasing GSH-Px activity and activating Wnt pathway promote fine wool growth in FGF5-edited sheep[J]. Cells, 2024, 13 (11): 985. |
45 | FU J , ZHANG X , WANG D , et al. Analysis of the long non-coding and messenger RNA expression profiles in the skin tissue of super Merino and Small-Tailed Han sheep[J]. Curr Issues Mol Biol, 2024, 46 (9): 9588- 9606. |
46 | SWEET-JONES J , YURCHENKO A A , IGOSHIN A V , et al. Resequencing and signatures of selection scan in two Siberian native sheep breeds point to candidate genetic variants for adaptation and economically important traits[J]. Anim Genet, 2021, 52 (1): 126- 131. |
47 | ZHANG J , DENG C , LI J , et al. Transcriptome-based selection and validation of optimal house-keeping genes for skin research in goats (Capra hircus)[J]. BMC Genomics, 2020, 21 (1): 493. |
48 | LI Y , ZHOU G , ZHANG R , et al. Comparative proteomic analyses using iTRAQ-labeling provides insights into fiber diversity in sheep and goats[J]. J Proteomics, 2018, 172, 82- 88. |
49 | LI S , CHEN W , ZHENG X , et al. Comparative investigation of coarse and fine wool sheep skin indicates the early regulators for skin and wool diversity[J]. Gene, 2020, 758, 144968. |
50 | LI S , CHEN W , ZHENG X , et al. Transcriptome reveals long non-coding RNAs and mRNAs involved in primary wool follicle induction in Carpet sheep fetal skin[J]. Front Physiol, 2018, 9, 446. |
51 | YUE Y , GUO T , YUAN C , et al. Integrated analysis of the roles of long noncoding RNA and coding RNA expression in sheep (Ovis aries) skin during initiation of secondary hair follicle[J]. PLoS One, 2016, 11 (6): 0156890. |
52 | JIN M , FAN W , PIAO J , et al. Effects of lncRNA MTC on protein expression in skin fibroblasts of Liaoning Cashmere goat based on iTRAQ technique[J]. Anim Biotechnol, 2023, 34 (7): 2817- 2826. |
53 | MA S , LONG L , HUANG X , et al. Transcriptome analysis reveals genes associated with wool fineness in merinos[J]. Peer J, 2023, 11, 15327. |
54 | WANG W , LI Z , XIE G , et al. Convergent genomic signatures of cashmere traits: Evidence for natural and artificial selection[J]. Int J Mol Sci, 2023, 24 (2): 1165. |
55 | SUZUKI K , YAMAGUCHI Y , VILLACORTE M , et al. Embryonic hair follicle fate change by augmented β-catenin through Shh and Bmp signaling[J]. Development, 2009, 136 (3): 367- 372. |
56 | MESA K R , ROMPOLAS P , ZITO G , et al. Niche-induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool[J]. Nature, 2015, 522 (7554): 94- 97. |
57 | WANG S , HU T , HE M , et al. Defining ovine dermal papilla cell markers and identifying key signaling pathways regulating its intrinsic properties[J]. Front Vet Sci, 2023, 10, 1127501. |
58 | TIAN D , HAN B , LI X , et al. Genetic diversity and selection of Tibetan sheep breeds revealed by whole-genome resequencing[J]. Anim Biosci, 2023, 36 (7): 991- 1002. |
59 | YI W , HU M , SHI L , et al. Whole genome sequencing identified genomic diversity and candidated genes associated with economic traits in Northeasern Merino in China[J]. Front Genet, 2024, 15, 1302222. |
60 | MIRANDA M , AVILA I , ESPARZA J , et al. Defining a role for g-protein coupled receptor/cAMP/CRE-binding protein signaling in hair follicle stem cell activation[J]. J Invest Dermatol, 2022, 142 (1): 53- 64. |
61 | KIM J , SHIN J Y , CHOI Y H , et al. Anti-Hair loss effect of adenosine is exerted by cAMP mediated Wnt/β-catenin pathway stimulation via modulation of Gsk3β activity in cultured human dermal papilla cells[J]. Molecules, 2022, 27 (7): 2184. |
62 | PARK S , KANG W , CHOI D , et al. Nonanal stimulates growth factors via cyclic adenosine monophosphate (cAMP) signaling in human hair follicle dermal papilla cells[J]. Int J Mol Sci, 2020, 21 (21): 8054. |
63 | ZHANG W , JIN M , LI T , et al. Whole-genome resequencing reveals selection signal related to sheep wool fineness[J]. Animals (Basel), 2023, 13 (18): 2944. |
64 | MADY L J , AJIBADE D V , HSAIO C , et al. The transient role for calcium and vitamin d during the developmental hair follicle cycle[J]. J Invest Dermatol, 2016, 136 (7): 1337- 1345. |
[1] | 魏康康, 马贵, 李文迪, 田雨, 张令锴, 朱继红, 胡亚美. 单细胞测序技术在绵羊卵巢生长发育过程中的研究进展[J]. 畜牧兽医学报, 2025, 56(7): 3080-3087. |
[2] | 武建亮, 苏洋, 毛瑞涵, 周磊, 闫田田, 李智, 刘剑锋. 猪全基因组低密度SNP芯片的设计与效果评价[J]. 畜牧兽医学报, 2025, 56(6): 2733-2740. |
[3] | 王勤倩, 高振东, 陆颖, 马若珊, 邓卫东, 和晓明. 全基因组重测序在中国地方黄牛上的研究进展[J]. 畜牧兽医学报, 2025, 56(5): 2026-2037. |
[4] | 乔利英, 王万年, 张莉, 庞志旭, 张思颖, 李一凡, 刘文忠. 基于基因组标记对绵羊品种分类的机器学习方法研究[J]. 畜牧兽医学报, 2025, 56(5): 2157-2167. |
[5] | 孙国欣, 李蕴华, 赛音, 郭文华, 赵艳红, 张满新, 刘佳森. 湖羊群体结构分析与经济性状相关选择信号检测[J]. 畜牧兽医学报, 2025, 56(5): 2168-2181. |
[6] | 马应天, 姜璐瑶, 李增开, 秦剑平, 赵建华, 贺玉芳, 宋宇轩, 张磊. 矢车菊素-3-芸香糖苷对奶绵羊精液冷冻保存效果的影响[J]. 畜牧兽医学报, 2025, 56(4): 1768-1778. |
[7] | 李艳娥, 梁友萍, 樊洁, 吴芳燕, 尧香悦, 李毛却乎, 次仁仓决, 郝桂英, 古小彬. 绵羊痒螨钙网蛋白对兔外周血单个核细胞Th1/Th2和Th17/Treg免疫平衡的影响[J]. 畜牧兽医学报, 2025, 56(4): 1910-1918. |
[8] | 王浩宇, 马克岩, 李讨讨, 栗登攀, 赵箐, 马友记. 基于简化基因组测序评估小骨山羊群体遗传多样性和群体结构[J]. 畜牧兽医学报, 2025, 56(3): 1170-1179. |
[9] | 胡鑫, 游伟, 姜富贵, 成海建, 孙志刚, 宋恩亮. 基于全基因组重测序分析西门塔尔牛遗传多样性与群体结构[J]. 畜牧兽医学报, 2025, 56(3): 1189-1202. |
[10] | 杨杨, 李良远, 万鹏程, 卢守亮, 刘长彬, 杨华, 王立民, 代蓉, 周平. 绵羊季节性发情性状核心基因和关键lncRNA的筛选与分析[J]. 畜牧兽医学报, 2025, 56(3): 1264-1277. |
[11] | 何雨, 王翔宇, 狄冉, 储明星, 梁琛. BMP4/SMAD4通过下调GJA1基因表达影响绵羊卵巢颗粒间隙连接活性[J]. 畜牧兽医学报, 2025, 56(2): 679-688. |
[12] | 楚翼健, 崔久增, 李增开, 张磊, 褚婷婷, 黄艳平, 宋宇轩. 绵羊子宫内膜容受前期与容受期的阴道微生物比较研究[J]. 畜牧兽医学报, 2025, 56(2): 689-699. |
[13] | 王晓飞, 王勃森, 卫梦瑶, 姜璐瑶, 徐刚刚, 刘佳欣, 马应天, 王丽, 宋宇轩, 张磊. 羊奶改善糖尿病模型小鼠肝、肾病理变化的作用研究[J]. 畜牧兽医学报, 2025, 56(2): 870-882. |
[14] | 吴平先, 王俊戈, 刁淑琪, 柴捷, 查琳, 郭宗义, 陈红跃, 龙熙. 基于填充测序数据的荣昌猪群体遗传结构和选择信号分析[J]. 畜牧兽医学报, 2025, 56(1): 147-158. |
[15] | 范维, 刘昕昕, 翟艺禄, 张新玉, 王唯, 付佳棋, 孙福亮. 羊源肺炎克雷伯菌分离鉴定及其外膜囊泡提取方法的建立[J]. 畜牧兽医学报, 2025, 56(1): 353-364. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||