畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (8): 3761-3772.doi: 10.11843/j.issn.0366-6964.2025.08.018
付伟1(), 张冉1, 丁虹2, 臧素敏1, 李祥龙3, 褚素乔4, 刘华格2, 周荣艳1,*(
)
收稿日期:
2025-01-22
出版日期:
2025-08-23
发布日期:
2025-08-28
通讯作者:
周荣艳
E-mail:fw5820804@163.com;rongyanzhou@126.com
作者简介:
付伟(2000-),女,河北沧州人,硕士生,主要从事动物遗传育种与繁殖研究,E-mail: fw5820804@163.com
基金资助:
FU Wei1(), ZHANG Ran1, DING Hong2, ZANG Sumin1, LI Xianglong3, CHU Suqiao4, LIU Huage2, ZHOU Rongyan1,*(
)
Received:
2025-01-22
Online:
2025-08-23
Published:
2025-08-28
Contact:
ZHOU Rongyan
E-mail:fw5820804@163.com;rongyanzhou@126.com
摘要:
旨在通过筛选和挖掘太行鸡与坝上长尾鸡的特征SNPs分子标记,实现利用少量SNPs区分两个品种的目标。本研究通过61只太行鸡和56只坝上长尾鸡品种的全基因组重测序数据,采用连锁不平衡和群体分化指数分析筛选重要的SNPs;采用6种机器学习分类模型对个体类别进行预测并评估模型性能;利用随机森林模型评估SNPs重要性,根据准确率、召回率和AUC值筛选出最少数量的SNPs;最后通过主成分分析、系统进化树和基因组关系矩阵验证其区分效果。结果,筛选出28个SNPs标记能够有效区分太行鸡和坝上长尾鸡,这些SNPs位点主要分布于基因间区或内含子区,显著富集在免疫、组蛋白乙酰化、代谢等相关的GO生物学过程以及碱基切除修复的KEGG信号通路,并发现免疫(BCL11B、AvBD13、KAT7)、脂质代谢(URI1、RREB1、ZBTB20)和适应性(ZNF536)相关基因。利用群体遗传学和机器学习方法筛选出能够区分太行鸡和坝上长尾鸡品种的分子标记组合,为地方品种“分子身份证”的构建以及种质资源的保护和鉴定工作提供重要参考。
中图分类号:
付伟, 张冉, 丁虹, 臧素敏, 李祥龙, 褚素乔, 刘华格, 周荣艳. 太行鸡与坝上长尾鸡品种区分的分子标记筛选与鉴定[J]. 畜牧兽医学报, 2025, 56(8): 3761-3772.
FU Wei, ZHANG Ran, DING Hong, ZANG Sumin, LI Xianglong, CHU Suqiao, LIU Huage, ZHOU Rongyan. Screening and Identification of Molecular Markers for Differentiating Taihang Chickens and Bashang Long-tailed Chickens[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3761-3772.
表 2
6种模型的AUC、MCC值和准确率"
模型 Model | AUC | MCC 值 MCC value | 准确率 Accuracy |
随机森林 Random forest | 1.00 | 1.00 | 1.00 |
逻辑回归 Logistic regression | 1.00 | 1.00 | 1.00 |
支持向量机 Support vector machine | 1.00 | 1.00 | 1.00 |
极致梯度提升树 eXtreme gradient boosting | 1.00 | 1.00 | 1.00 |
K 近邻算法 K-nearest neighbor classification | 1.00 | 1.00 | 1.00 |
决策树 Decision tree | 0.82 | 0.63 | 0.79 |
表 3
28个SNPs的信息"
染色体 Chromosome | 位置 Position | 等位基因 Allele | 基因 Gene | 等位基因频率 Allele frequency | |
太行鸡 Taihang chicken | 坝上长尾鸡 Bashang long-tailed chicken | ||||
1 | 83424842 | G/A | ZBTB20 | 0.67/0.33 | 0.94/0.06 |
1 | 84642349 | T/G | CD200R1、CCDC80 | 0.38/0.62 | 0.71/0.29 |
1 | 124613919 | G/A | EGFL6 | 0.34/0.66 | 0.71/0.29 |
1 | 188821891 | G/A | CHORDC1 | 0.69/0.31 | 0.29/0.71 |
2 | 21199573 | C/T | ZNF804B | 0.73/0.27 | 0.26/0.74 |
2 | 64783482 | C/T | RREB1 | 0.52/0.48 | 0.86/0.14 |
3 | 52482379 | C/T | PHACTR2 | 0.66/0.34 | 0.35/0.65 |
3 | 107385968 | C/A | gga-mir-6702、AvBD13 | 0.65/0.35 | 0.34/0.66 |
4 | 83205244 | G/A | - | 0.71/0.29 | 0.31/0.69 |
4 | 89928184 | A/G | EXOC6B | 0.41/0.59 | 0.76/0.24 |
4 | 90119859 | G/A | EXOC6B | 0.50/0.50 | 0.83/0.17 |
5 | 48014977 | C/A | BCL11B | 0.51/0.49 | 0.81/0.19 |
6 | 3512624 | A/G | PARG | 0.34/0.66 | 0.65/0.35 |
6 | 23346870 | G/A | SLIT1 | 0.74/0.26 | 0.22/0.78 |
8 | 4957820 | A/G | DNM3 | 0.35/0.65 | 0.74/0.26 |
8 | 22102533 | G/C | - | 0.66/0.34 | 0.90/0.10 |
9 | 3411829 | C/T | - | 0.74/0.26 | 0.39/0.61 |
11 | 8491921 | T/C | - | 0.70/0.30 | 0.95/0.05 |
11 | 8532637 | A/G | URI1 | 0.69/0.31 | 0.30/0.70 |
11 | 8851889 | C/T | ZNF536 | 0.74/0.26 | 0.96/0.04 |
24 | 671698 | T/C | KIRREL3 | 0.45/0.55 | 0.78/0.22 |
24 | 5374821 | C/T | DSCAML1 | 0.32/0.68 | 0.74/0.26 |
25 | 3692518 | A/G | MCL1 | 0.36/0.64 | 0.71/0.29 |
26 | 3849905 | G/T | TRIM33 | 0.71/0.29 | 0.95/0.05 |
26 | 4170859 | T/C | SCUBE3 | 0.32/0.68 | 0.70/0.30 |
27 | 5676121 | A/C | KAT7 | 0.80/0.20 | 0.39/0.61 |
28 | 2536492 | G/A | MBD3 | 0.67/0.33 | 0.33/0.67 |
33 | 5235050 | G/A | - | 0.66/0.34 | 0.93/0.07 |
1 |
关琛, 王茂森. 农业文化遗产视角下坝上长尾鸡养殖系统的价值及保护利用研究[J]. 古今农业, 2022 (2): 106-113, 65.
doi: 10.3969/j.issn.1672-2787.2022.02.012 |
GUAN C , WANG M S . Study on the value, protection and utilization of Bashang long-tailed chicken breeding system from the perspective of agricultural cultural heritage[J]. Ancient and Modern Agriculture, 2022 (2): 106-113, 65.
doi: 10.3969/j.issn.1672-2787.2022.02.012 |
|
2 | 魏萌, 谢鹏, 陈润梓, 等. 太行鸡肉蛋品质研究进展[J]. 北方牧业, 2023 (23): 31. |
WEI M , XIE P , CHEN R Z , et al. Research progress of Taihang chicken egg quality[J]. Northern Animal Husbandry, 2023 (23): 31. | |
3 | 杨光华, 赵汝苍. 地方畜禽遗传资源保护与利用的现状及对策[J]. 农村科学实验, 2024 (6): 151- 153. |
YANG G H , ZHAO R C . Current situation and countermeasures of protection and utilization of local livestock and poultry genetic resources[J]. Rural Scientific Experiment, 2024 (6): 151- 153. | |
4 |
于福清. 加强畜禽遗传资源保护夯实畜禽种业振兴根基[J]. 农村工作通讯, 2022 (16): 26- 28.
doi: 10.3969/j.issn.0546-9503.2022.16.013 |
YU F Q . Strengthen the protection of livestock and poultry genetic resources to consolidate the foundation of revitalization of livestock and poultry seed industry[J]. Rural Work Communication, 2022 (16): 26- 28.
doi: 10.3969/j.issn.0546-9503.2022.16.013 |
|
5 |
RASHEED A , HAO Y F , XIA X C , et al. Crop breeding chips and genotyping platforms: progress, challenges, and perspectives[J]. Mol Plant, 2017, 10 (8): 1047- 1064.
doi: 10.1016/j.molp.2017.06.008 |
6 |
白露, 王梦杰, 马小春, 等. 一种快速挖掘鸡品种特征性SNP标记集合的方法[J]. 畜牧兽医学报, 2023, 54 (8): 3252- 3261.
doi: 10.11843/j.issn.0366-6964.2023.08.012 |
BAI L , WANG M J , MA X C , et al. A method for quickly mining the characteristic SNP markers set of chicken[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (8): 3252- 3261.
doi: 10.11843/j.issn.0366-6964.2023.08.012 |
|
7 | CHOI R Y , COYNER A S , KALPATHY-CRAMER J , et al. Introduction to machine learning, neural networks, and deep learning[J]. Transl Vis Sci Technol, 2020, 9 (2): 14. |
8 | 陈志强, 梁齐齐, 吴俊, 等. 品种鉴定的方法、其预测模型的构建方法和装置[P]. 北京: CN202011120761.2, 2024-01-30. |
CHEN Z Q, LIANG Q Q, WU J, et al. The method of variety identification, the method and device of its prediction model construction[P]. Beijing: CN202011120761.2, 2024-01-30. (in Chinese) | |
9 | 刘杰, 周艳, 王杰, 等. 一种莱芜黑鸡鉴定的SNP分子标记及应用[P]. 山东: CN202310513437.4, 2023-09-29. |
LIU J, ZHOU Y, WANG J, et al. A SNP molecular marker for the identification of Laiwu black chicken and its application[P]. Shandong: CN202310513437.4, 2023-09-29. (in Chinese) | |
10 |
SCHIAVO G , BERTOLINI F , BOVO S , et al. Identification of population-informative markers from high-density genotyping data through combined feature selection and machine learning algorithms: application to European autochthonous and cosmopolitan pig breeds[J]. Anim Genet, 2024, 55 (2): 193- 205.
doi: 10.1111/age.13396 |
11 | SEO D , CHO S , MANJULA P , et al. Identification of target chicken populations by machine learning models using the minimum number of SNPs[J]. Animals (Basel), 2021, 11 (1): 241. |
12 | ZHI Y H , GENG W Z , LI S H , et al. Advanced molecular system for accurate identification of chicken genetic resources[J]. Comput Electron Agric, 2025, 231, 109989. |
13 |
GAO J , SUN L W , ZHANG S S , et al. Screening discriminating SNPs for Chinese indigenous pig breeds identification using a random forests algorithm[J]. Genes (Basel), 2022, 13 (12): 2207.
doi: 10.3390/genes13122207 |
14 | 陈艳平. 太行鸡不同饲养模式的比较研究[D]. 邯郸: 河北工程大学, 2023. |
CHEN Y P. Comparative study on different feeding modes of Taihang chickens[D]. Handan: Hebei University of Engineering, 2023. (in Chinese) | |
15 | 郭连伟. 地方特色品种——坝上长尾鸡[J]. 河北农业, 2020 (7): 34- 35. |
GUO L W . Local characteristic breed-Bashang Long-tailed chicken[J]. Hebei Agriculture, 2020 (7): 34- 35. | |
16 | QANBARI S . On the extent of linkage disequilibrium in the genome of farm animals[J]. Front Genet, 2020, 10, 1304. |
17 | ALCANTARA L M , SCHENKEL F S , LYNCH C , et al. Machine learning classification of breeding protocol descriptions from Canadian Holsteins[J]. J Dairy Sci, 2022, 105 (10): 8177- 8188. |
18 | GOODSWEN S J , BARRATT J L N , KENNEDY P J , et al. Machine learning and applications in microbiology[J]. FEMS Microbiol Rev, 2021, 45 (5): fuab015. |
19 | WILMOT H , NIEHOFF T , SOYEURT H , et al. The use of a genomic relationship matrix for breed assignment of cattle breeds: comparison and combination with a machine learning method[J]. J Anim Sci, 2023, 101, skad172. |
20 | 张冬杰, 孙亚蒙, 汪亮, 等. FST基因的过表达对猪成纤维细胞内基因及生物学通路的影响[J]. 吉林农业大学学报, 2022, 44 (2): 198- 203. |
ZHANG D J , SUN Y M , WANG L , et al. Effects of FST gene overexpression on genes and biological pathways in porcine fibroblasts[J]. Journal of Jilin Agricultural University, 2022, 44 (2): 198- 203. | |
21 | GAO C Q , WANG K J , HU X Y , et al. Conservation priority and run of homozygosity pattern assessment of global chicken genetic resources[J]. Poult Sci, 2023, 102 (11): 103030. |
22 | RACHMAN M P , BAMIDELE O , DESSIE T , et al. Genomic analysis of Nigerian indigenous chickens reveals their genetic diversity and adaptation to heat-stress[J]. Sci Rep, 2024, 14 (1): 2209. |
23 | LIANG H , WANG X , SI J F , et al. Classification accuracy of machine learning algorithms for Chinese local cattle breeds using genomic markers[J]. Yi Chuan, 2024, 46 (7): 530- 539. |
24 | MALOMANE D K , REIMER C , WEIGEND S , et al. Efficiency of different strategies to mitigate ascertainment bias when using SNP panels in diversity studies[J]. BMC Genomics, 2018, 19 (1): 22. |
25 | LI X L , WU Q M , ZHANG X X , et al. Whole-genome resequencing to study brucellosis susceptibility in sheep[J]. Front Genet, 2021, 12, 653927. |
26 | XUE Z , WANG L , TIAN Y M , et al. A genome-wide scan to identify signatures of selection in Lueyang black -bone chicken[J]. Poult Sci, 2023, 102 (7): 102721. |
27 | GREENER J G , KANDATHIL S M , MOFFAT L , et al. A guide to machine learning for biologists[J]. Nat Rev Mol Cell Biol, 2022, 23 (1): 40- 55. |
28 | ZHAO C H , WANG D , TENG J , et al. Breed identification using breed-informative SNPs and machine learning based on whole genome sequence data and SNP chip data[J]. J Anim Sci Biotechnol, 2023, 14 (1): 85. |
29 | CHO E , CHO S , KIM M , et al. Single nucleotide polymorphism marker combinations for classifying Yeonsan Ogye chicken using a machine learning approach[J]. J Anim Sci Technol, 2022, 64 (5): 830- 841. |
30 | XU N Y , SI W , LI M , et al. Genome-wide scan for selective footprints and genes related to cold tolerance in Chantecler chickens[J]. Zool Res, 2021, 42 (6): 710- 720. |
31 | ROMANOV M N , ABDELMANOVA A S , FISININ V I , et al. Selective footprints and genes relevant to cold adaptation and other phenotypic traits are unscrambled in the genomes of divergently selected chicken breeds[J]. J Anim Sci Biotechnol, 2023, 14 (1): 35. |
32 | FORKEL H , GRABARCZYK P , DEPKE M , et al. BCL11B depletion induces the development of highly cytotoxic innate T cells out of IL-15 stimulated peripheral blood αβ CD8+ T cells[J]. Oncoimmunology, 2022, 11 (1): 2148850. |
33 | QIU L L , YANG T , GUO Q X , et al. C2H2-type zinc-finger protein BCL11B suppresses avian Leukosis virus subgroup J replication by regulating apoptosis[J]. Int J Biol Macromol, 2024, 275 (1): 133644. |
34 | 沈元朝. 金纳米探针暗场可视化检测鸡Bcl11b正相关circ_2420的研究[D]. 扬州: 扬州大学, 2023. |
SHEN Y C. Study on gold nanopartical probe mediated dark-field visual enumeration strategy for chicken Bcl11b positive associated circ_2420[D]. Yangzhou: Yangzhou University, 2023. (in Chinese) | |
35 | 李娟, 刘阳, 牛军波, 等. 禽类β-防御素的研究进展[J]. 中国家禽, 2019, 41 (2): 39- 43. |
LI J , LIU Y , NIU J B , et al. Progress on the study of AvBDs[J]. China Poultry, 2019, 41 (2): 39- 43. | |
36 | 杨玉荣, 佘锐萍, 梁宏德. 雏鸡服用AvBD13后体液免疫的动态变化[J]. 中国农业科学, 2009, 42 (10): 3679- 3684. |
YANG Y R , SHE R P , LIANG H D . Effects of AvBD13 on humoral immunity of chickens[J]. Scientia Agricultura Sinica, 2009, 42 (10): 3679- 3684. | |
37 | FU Y J , ZHANG S J , ZHAO N , et al. Effect of mild intermittent cold stimulation on thymus immune function in broilers[J]. Poult Sci, 2022, 101 (10): 102073. |
38 | NEWMAN D M , VOSS A K , THOMAS T , et al. Essential role for the histone acetyltransferase KAT7 in T cell development, fitness, and survival[J]. J Leukoc Biol, 2017, 101 (4): 887- 892. |
39 | HEINLEIN M , GANDOLFO L C , ZHAO K , et al. The acetyltransferase KAT7 is required for thymic epithelial cell expansion, expression of AIRE target genes, and thymic tolerance[J]. Sci Immunol, 2022, 7 (67): eabb6032. |
40 | YEVSHIN I S , SHAGIMARDANOVA E I , RYABOVA A S , et al. Genome of Russian snow-white chicken reveals genetic features associated with adaptations to cold and diseases[J]. Int J Mol Sci, 2024, 25 (20): 11066. |
41 | ZHANG H , LIANG Q Q , WANG N , et al. Microevolutionary dynamics of chicken genomes under divergent selection for adiposity[J]. IScience, 2020, 23 (6): 101193. |
42 | YU G Z , KRENTZ N A J , BENTLEY L , et al. Loss of RREB1 reduces adipogenesis and improves insulin sensitivity in mouse and human adipocytes[J]. bioRxiv, 2024, 31, 2024.07.30.605923. |
43 | LIU G , ZHOU L T , ZHANG H , et al. Regulation of hepatic lipogenesis by the zinc finger protein Zbtb20[J]. Nat Commun, 2017, 8, 14824. |
44 | 周露婷. 肝脏ZBTB20调节脂质代谢和胰岛素敏感性的机制研究[D]. 上海: 第二军医大学, 2013. |
ZHOU L T. Regulation of lipid metabolism and insulin sensitivity by hepatic zinc finger protein ZBTB20[D]. Shanghai: Naval Medical University, 2013. (in Chinese) | |
45 | 付雅杰. 冷刺激诱导冷适应过程中的脂质代谢[D]. 哈尔滨: 东北农业大学, 2023. |
FU Y J. Cold stimulation induces lipid metabolism during cold adaptation[D]. Harbin: Northeast Agricultural University, 2023. (in Chinese) | |
46 | XIE S S , YANG X K , WANG D H , et al. Thyroid transcriptome analysis reveals different adaptive responses to cold environmental conditions between two chicken breeds[J]. PLoS One, 2018, 13 (1): e0191096. |
47 | 刘慧芳, 倪慧勇, 郝静, 等. 太行鸡冬季暖棚生态放养模式[J]. 北方牧业, 2024 (6): 21. |
LIU H F , NI H Y , HAO J , et al. Winter greenhouse-based ecological husbandry system for Taihang chicken[J]. Northern Animal Husbandry, 2024 (6): 21. |
[1] | 董娇娇, 丁虹, 张寅梁, 张冉, 刘华格, 臧素敏, 张振红, 周荣艳, 李兰会. 鸡白痢沙门菌感染太行鸡盲肠菌群的差异及功能分析[J]. 畜牧兽医学报, 2025, 56(6): 2741-2751. |
[2] | 乔利英, 王万年, 张莉, 庞志旭, 张思颖, 李一凡, 刘文忠. 基于基因组标记对绵羊品种分类的机器学习方法研究[J]. 畜牧兽医学报, 2025, 56(5): 2157-2167. |
[3] | 李晓彤, 王鹏宇, 方颖妍, 于鸿希, 张毅, 王雅春, 张元沛, 李彦芹, 姜力. 公牛精子耐冻性相关基因多态性位点的挖掘与功能验证[J]. 畜牧兽医学报, 2025, 56(4): 1981-1988. |
[4] | 杨苗苗, 谢莉, 简宝怡, 罗超维, 谢卓君, 朱飘, 周天日, 李华, 向海. 利用机器学习构建和优化早期体尺性状对成年母鸡腹脂沉积的预测模型[J]. 畜牧兽医学报, 2025, 56(2): 548-558. |
[5] | 李远方, 吴冉, 李帅浩, 魏千然, 王亚东, 王丹丹, 李智, 李国喜, 刘翘铭. G3BP1基因在鸡肌内前脂肪细胞增殖与分化中的作用及其分子标记鉴定[J]. 畜牧兽医学报, 2025, 56(1): 159-167. |
[6] | 阳文攀, 刘相杰, 罗冬香, 陈梦会, 谢瑛, 方跃鑫, 林婷燕, 李爱民, 李文静, 邓政, 丁能水. 基于芯片数据的长白猪繁殖性状基因组选择研究[J]. 畜牧兽医学报, 2025, 56(1): 213-221. |
[7] | 王进部, 李佳, 任德明, 王立贤, 王立刚. 机器学习在畜禽基因组选择中的应用进展[J]. 畜牧兽医学报, 2024, 55(7): 2775-2785. |
[8] | 李竟, 张元旭, 王泽昭, 陈燕, 徐凌洋, 张路培, 高雪, 高会江, 李俊雅, 朱波, 郭鹏. 机器学习全基因组选择研究进展[J]. 畜牧兽医学报, 2024, 55(6): 2281-2292. |
[9] | 牛佳佳, 徐丹, 刘洋, 赵小玲. 鸡芦花羽性状遗传调控机制研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1883-1892. |
[10] | 张元旭, 李竟, 王泽昭, 陈燕, 徐凌洋, 张路培, 高雪, 高会江, 李俊雅, 朱波, 郭鹏. 动物遗传评估软件研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1827-1841. |
[11] | 杨书含, 时玉新, 庞云渭, 原开敏, 修豪宇, 汪超, 路永强, 王栋. 母牛发情鉴定标记研究进展[J]. 畜牧兽医学报, 2024, 55(11): 4785-4795. |
[12] | 褚楚, 张静静, 丁磊, 樊懿楷, 包向男, 向世馨, 刘锐, 罗雪路, 任小丽, 李春芳, 刘文举, 王亮, 刘莉, 李永青, 江汉, 李委奇, 孙伟, 李喜和, 温万, 周佳敏, 张淑君. 基于中红外光谱的牛奶中三种氨基酸含量预测模型的建立及应用[J]. 畜牧兽医学报, 2023, 54(8): 3299-3312. |
[13] | 李亭亭, 刘秋月, 李向臣, 王海涛. 绵羊经济性状相关基因研究进展及其应用[J]. 畜牧兽医学报, 2022, 53(8): 2417-2434. |
[14] | 丁纪强, 李庆贺, 张高猛, 李森, 郑麦青, 文杰, 赵桂苹. 比较机器学习等算法对肉鸡产蛋性状育种值估计的准确性[J]. 畜牧兽医学报, 2022, 53(5): 1364-1372. |
[15] | 张贝贝, 李梦霄, 马腾壑, 李雪男, 魏佳荣, 康国磊, 王红娜, 刘超, 王斌, 孙研研. 太行鸡FST基因克隆、序列特征及表达分析[J]. 畜牧兽医学报, 2021, 52(11): 3064-3075. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||