畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (12): 5511-5526.doi: 10.11843/j.issn.0366-6964.2024.12.017
祁军英1(), 裴全帮1, 张文魁1, 徐腾1, 左明星1, 韩步鹰2, 李雪2, 刘德会2, 王松2, 周佰成3, 赵凯2, 田得红2,*(
)
收稿日期:
2024-05-28
出版日期:
2024-12-23
发布日期:
2024-12-27
通讯作者:
田得红
E-mail:13639787053@163.com;tiandehong@nwipb.cas.cn
作者简介:
祁军英(1991-), 女, 青海西宁人, 本科, 助理畜牧师, 主要从事动物科学研究, E-mail: 13639787053@163.com
基金资助:
QI Junying1(), PEI Quanbang1, ZHANG Wenkui1, XU Teng1, ZUO Mingxing1, HAN Buying2, LI Xue2, LIU Dehui2, WANG Song2, ZHOU Baicheng3, ZHAO Kai2, TIAN Dehong2,*(
)
Received:
2024-05-28
Online:
2024-12-23
Published:
2024-12-27
Contact:
TIAN Dehong
E-mail:13639787053@163.com;tiandehong@nwipb.cas.cn
摘要:
旨在通过全基因组受选择区域信号检测结合单核苷酸多态性与性状关联分析鉴定出高原型藏羊羊毛性状新的分子标记和候选基因。本研究采集3~4周岁健康母羊耳组织与羊毛作为试验素材,其中高原型藏羊母羊119只,欧拉型藏羊母羊89只,总计208只。利用群体遗传分化指数(Fst)和碱基多样性比值(Pi Ratio)进行全基因组选择性清除分析,通过功能注释筛选候选基因,并进行GO和KEGG富集分析,对108只高原型藏羊进行候选基因外显子Sanger测序单核苷酸多态性与表型数据关联分析,鉴定出与羊毛性状相关的功能位点。分析结果表明:共有1 084个受选择区域,注释到1 037个候选基因;通过对功能基因的注释并结合文献分析,发现GHR、FGFR3、MC1R、MITF、FGF5、WNT2B和WNT5A等7个基因与羊毛性状有潜在关联,其中FGF5(exon6:c.954C/T: p.227P/P)同义突变位点和首次发现的FGFR3(exon6:c.1092C/T: p.364A/A)同义突变位点与羊毛纤维性能关联,并且2个位点均未偏离哈温平衡,这2个基因可能是高原型藏羊羊毛性状重要的候选基因。本研究发现有助于了解高原型藏羊羊毛性状的生产遗传基础,为该品种绵羊的分子育种技术提供参考,也为保护与利用地方优异种质遗传资源提供科学依据。
中图分类号:
祁军英, 裴全帮, 张文魁, 徐腾, 左明星, 韩步鹰, 李雪, 刘德会, 王松, 周佰成, 赵凯, 田得红. 全基因组选择信号鉴定高原型藏羊毛用性状候选基因及关联分析[J]. 畜牧兽医学报, 2024, 55(12): 5511-5526.
QI Junying, PEI Quanbang, ZHANG Wenkui, XU Teng, ZUO Mingxing, HAN Buying, LI Xue, LIU Dehui, WANG Song, ZHOU Baicheng, ZHAO Kai, TIAN Dehong. Genome-wide Selective Signal Identification and Association Analysis of Candidate Genes for Tibetan Sheep Wool Traits[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12): 5511-5526.
表 2
Top 5% Fst和Pi Ratio值筛选的候选基因"
染色体 Chromosome | 基因 Gene | 编号 ID | 描述 Description |
6 | FGF5 | ENSOARG00020008615 | fibroblast growth factor 5 |
6 | FGFR3 | ENSOARG00020023492 | fibroblast growth factor receptor 3 |
19 | MITF | ENSOARG00020020821 | melanocyte inducing transcription factor |
14 | MC1R | ENSOARG00020003524 | melanocortin 1 receptor |
16 | GHR | ENSOARG00020006196 | growth hormone receptor |
1 | WNT2B | ENSOARG00020013948 | Wnt family member 2B |
19 | WNT5A | ENSOARG00020020359 | Wnt family member 5A |
表 3
群体哈代-温柏格平衡检验"
数量 (N) Number | 基因 Gene | 染色体 Chromosome | 外显子 Exon | 长度/bp Length | 基因纯合度 (Ho) Gene homogeneity | 基因杂合度 (He) Gene heterozygosity | 有效等位基因数 (Ne) Effective number of alleles | 多态信息含量 (PIC) Polymorphism information content | P |
108 | FGF5 | 6 | 3 | 1 742 | 0.510 | 0.493 | 1.970 | 0.371 | 0.722 |
108 | FGFR3 | 6 | 10 | 2 589 | 0.480 | 0.467 | 1.878 | 0.358 | 0.797 |
表 5
FGF5基因型和羊毛性状的关联性分析"
性状 Trait | Mean±SE | P | ||
TT (n=34) | CT (n=54) | CC (n=20) | ||
羊绒长度/mm Cashmere length | 106.74±14.28 | 107.76±17.84 | 115.35±19.48 | 0.169 |
羊毛长度/mm Wool length | 241.26±47.78A | 253.39±53.92A | 308.7±33.29B | 0.000 009 |
羊绒细度/μm Cashmere fineness | 24.98±2.30A | 25.98±2.47AB | 27.20±3.53B | 0.013 |
羊毛细度/μm Wool fineness | 46.17±4.84A | 46.66±6.03A | 53.19±5.87B | 0.000 028 |
有髓毛含量/% Medullary content | 22.49±14.30A | 28.19±17.24AB | 36.08±22.27B | 0.025 |
无髓毛含量/% Non-medullary content | 60.77±15.09A | 51.28±12.99BCa | 43.74±15.09BCb | 0.000 113 |
两型毛含量/% Two types of hair content | 9.32±9.03a | 16.59±14.46bc | 17.91±19.49bc | 0.035 |
干死毛含量/% Dry dead hair content | 7.15±9.40 | 4.39±8.54 | 2.28±4.45 | 0.098 |
断裂强力/N Breaking force | 36.46±13.03 | 35.00±13.25 | 39.89±9.86 | 0.339 |
断裂强度/(N·ktex-1) Breaking strength | 56.96±21.34 | 55.38±22.07 | 62.82±18.20 | 0.408 |
断裂伸长率/% Elongation at break | 14.32±4.40 | 14.27±4.37 | 15.93±3.99 | 0.312 |
洗净率/% Cleaning rate | 86.36±7.96 | 86.19±7.66 | 84.06±8.38 | 0.530 |
表 6
FGFR3基因型和羊毛性状的关联性分析"
性状Trait | Mean±SE | P | ||
TT (n=42) | CT (n=52) | CC (n=14) | ||
羊绒长度/mm Cashmere length | 108.07±18.31 | 109.42±17.22 | 109.00±15.11 | 0.932 |
羊毛长度/mm Wool length | 234.36±47.46A | 266.50±52.26B | 311.36±32.65C | 0.000 003 |
羊绒细度/μm Cashmere fineness | 25.07±2.17A | 26.14±2.51AB | 27.42±4.09B | 0.012 |
羊毛细度/μm Wool fineness | 45.73±4.88A | 47.82±6.22A | 53.27±6.51B | 0.000 253 |
有髓毛含量/% Medullary content | 22.90±14.38a | 31.16±19.24ab | 30.47±20.04ab | 0.048 |
无髓毛含量/% Non-medullary content | 59.09±16.03Aa | 49.34±13.86ABb | 47.32±11.35ABb | 0.002 |
两型毛含量/% Two types of hair content | 9.60±10.17a | 17.11±15.01b | 19.87±19.36b | 0.013 |
干死毛含量/% Dry dead hair content | 8.19±10.49Aa | 2.86±6.07Bb | 2.35±4.97b | 0.004 |
断裂强力/N Breaking force | 34.70±13.40 | 36.53±12.25 | 40.78±11.41 | 0.296 |
断裂强度/(N·ktex-1) Breaking strength | 54.70±21.20 | 57.50±21.45 | 64.00±19.91 | 0.364 |
断裂伸长率/% Elongation at break | 14.27±4.20 | 14.44±4.53 | 16.16±3.81 | 0.347 |
洗净率/% Cleaning rate | 87.06±7.49 | 85.22±7.89 | 84.57±8.93 | 0.432 |
1 | 赵有璋. 现代中国养羊[M]. 北京: 金盾出版社, 2005. |
ZHAO Y Z . Modern sheep rearing in China[M]. Beijing: Jindun Publishing House, 2005. | |
2 |
颜寿东, 张惠萍, 张亚君, 等. 青海省不同品种羊羊毛纤维物理性能分析[J]. 中国草食动物, 2009, 29 (3): 60- 61.
doi: 10.3969/j.issn.2095-3887.2009.03.026 |
YAN S D , ZHANG H P , ZHANG Y J , et al. Analysis of physical properties of wool fibers of different breeds of sheep in Qinghai Province[J]. China Herbivore, 2009, 29 (3): 60- 61.
doi: 10.3969/j.issn.2095-3887.2009.03.026 |
|
3 | 邓诗品, 凌士希, 赵仁璧, 等. 欧拉羊生产性能的研究[J]. 中国畜牧杂志, 1964, (4): 1- 5. |
DENG S P , LING S X , ZHAO R B , et al. Study on production performance of Oular sheep[J]. Chinese Journal of Animal Science, 1964, (4): 1- 5. | |
4 | MCKENZIE G W. A search for quantitative trait loci affecting wool colour[D]. Christchurch: Lincoln University, 2002. |
5 |
GONG H , ZHOU H T , FORREST R H J , et al. Wool keratin-associated protein genes in sheep-a review[J]. Genes (Basel), 2016, 7 (6): 24.
doi: 10.3390/genes7060024 |
6 |
LIU D H , LI X , WANG L , et al. Genome-wide association studies of body size traits in Tibetan sheep[J]. BMC Genomics, 2024, 25 (1): 739.
doi: 10.1186/s12864-024-10633-3 |
7 |
ZHU M T , YANG Y L , YANG H , et al. Whole-genome resequencing of the native sheep provides insights into the microevolution and identifies genes associated with reproduction traits[J]. BMC Genomics, 2023, 24 (1): 392.
doi: 10.1186/s12864-023-09479-y |
8 |
ZHAO F P , XIE R , FANG L Z , et al. Analysis of 206 whole-genome resequencing reveals selection signatures associated with breed-specific traits in Hu sheep[J]. Evol Appl, 2024, 17 (6): e13697.
doi: 10.1111/eva.13697 |
9 | ZHANG W T , JIN M L , LI T T , et al. Whole-genome resequencing reveals selection signal related to sheep wool fineness[J]. Animals (Basel), 2023, 13 (18): 2944. |
10 | 和东迁, 陶金忠, 陈丽尧, 等. 与毛纤维性状相关的角蛋白相关蛋白研究进展[J]. 农业生物技术学报, 2021, 29 (6): 1198- 1205. |
HE D Q , TAO J Z , CHEN L Y , et al. Research progress of keratin-related proteins related to hair fiber traits[J]. Journal of Agricultural Biotechnology, 2021, 29 (6): 1198- 1205. | |
11 |
CHEN S F , ZHOU Y Q , CHEN Y R , et al. fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34 (17): i884- i890.
doi: 10.1093/bioinformatics/bty560 |
12 |
LI H , DURBIN R . Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2009, 25 (14): 1754- 1760.
doi: 10.1093/bioinformatics/btp324 |
13 |
QUINLAN A R , HALL I M . BEDTools: a flexible suite of utilities for comparing genomic features[J]. Bioinformatics, 2010, 26 (6): 841- 842.
doi: 10.1093/bioinformatics/btq033 |
14 |
WANG K , LI M Y , HAKONARSON H . ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data[J]. Nucleic Acids Res, 2010, 38 (16): e164.
doi: 10.1093/nar/gkq603 |
15 | CHANG C C , CHOW C C , TELLIER L C A M , et al. Second-generation PLINK: rising to the challenge of larger and richer datasets[J]. GigaScience, 2015, 4 (1): 7. |
16 |
YANG J , LEE S H , GODDARD M E , et al. GCTA: a tool for genome-wide complex trait analysis[J]. Am J Hum Genet, 2011, 88 (1): 76- 82.
doi: 10.1016/j.ajhg.2010.11.011 |
17 |
ASHBURNER M , BALL C A , BLAKE J A , et al. Gene ontology: tool for the unification of biology[J]. Nat Genet, 2000, 25 (1): 25- 29.
doi: 10.1038/75556 |
18 |
KANEHISA M , GOTO S . KEGG: kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Res, 2000, 28 (1): 27- 30.
doi: 10.1093/nar/28.1.27 |
19 |
LIU N , LI H G , LIU K D , et al. Differential expression of genes and proteins associated with wool follicle cycling[J]. Mol Biol Rep, 2014, 41, 5343- 5349.
doi: 10.1007/s11033-014-3405-1 |
20 | SU P , WU H , HUANG Y H , et al. The hoof color of Australian white sheep is associated with genetic variation of the MITF gene[J]. Animals (Basel), 2023, 13 (20): 3218. |
21 |
MARKLUND L , MOLLER M J , SANDBERG K , et al. A missense mutation in the gene for melanocyte-stimulating hormone receptor (MCIR) is associated with the chestnut coat color in horses[J]. Mamm Genome, 1996, 7 (12): 895- 899.
doi: 10.1007/s003359900264 |
22 |
ALAM M , BELOW D A , CHÉRET J , et al. Growth hormone operates as a neuroendocrine regulator of human hair growth ex vivo[J]. J Invest Dermatol, 2019, 139 (7): 1593- 1596.
doi: 10.1016/j.jid.2018.12.022 |
23 |
FU J , HSU W . Epidermal Wnt controls hair follicle induction by orchestrating dynamic signaling crosstalk between the epidermis and dermis[J]. J Invest Dermatol, 2013, 133 (4): 890- 898.
doi: 10.1038/jid.2012.407 |
24 |
SIMONSON L , OLDHAM E , CHANG H . Overactive Wnt5a signaling disrupts hair follicle polarity during mouse skin development[J]. Development, 2022, 149 (22): dev200816.
doi: 10.1242/dev.200816 |
25 | 张稳, 刘罗兰, 冯登侦, 等. 哺乳动物毛囊周期性生长调控机制的研究进展[J]. 生命科学研究, 2021, 25 (3): 240- 248. |
ZHANG W , LIU L L , FENG D Z , et al. Advances in regulatory mechanisms of mammalian hair follicle periodic growth[J]. Life Science Research, 2021, 25 (3): 240- 248. | |
26 | PHUA S H, SCOBIE D R, O'CONNELL D, et al. Preliminary linkage studies in sheep of keratin and keratin-associated protein genes with fleece weight, wool fibre diameter and fibre curvature[C]//Proceedings of the New Zealand Society of Animal Production. Dunedin, 2015: 101-105. |
27 | LI T T , JIN M L , WANG H H , et al. Whole-genome scanning for selection signatures reveals candidate genes associated with growth and tail length in sheep[J]. Animals (Basel), 2024, 14 (5): 687. |
28 |
LI X , YANG J , SHEN M , et al. Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits[J]. Nat Commun, 2020, 11 (1): 2815.
doi: 10.1038/s41467-020-16485-1 |
29 |
WRAY N R . Allele frequencies and the r2 measure of linkage disequilibrium: impact on design and interpretation of association studies[J]. Twin Res Hum Genet, 2005, 8 (2): 87- 94.
doi: 10.1375/twin.8.2.87 |
30 |
BARRETT J C , CARDON L R . Evaluating coverage of genome-wide association studies[J]. Nat Genet, 2006, 38 (6): 659- 662.
doi: 10.1038/ng1801 |
31 |
马玉红, 雅文海. 玉树高原型藏羊毛纤维物理性能分析[J]. 青海畜牧兽医杂志, 2013, 43 (1): 13- 14.
doi: 10.3969/j.issn.1003-7950.2013.01.007 |
MA Y H , YA W H . Determination on physical characteristic of Plateau type of tibetan-sheep wool fiber[J]. Chinese Qinghai Journal of Animal and Veterinary Sciences, 2013, 43 (1): 13- 14.
doi: 10.3969/j.issn.1003-7950.2013.01.007 |
|
32 | ZHAN X , CULPEPPER A , REDDY M , et al. Human oncogenes detected by a defined medium culture assay[J]. Oncogene, 1987, 1 (4): 369- 376. |
33 |
HAUB O , DRUCKER B , GOLDFARB M . Expression of the murine fibroblast growth factor 5 gene in the adult central nervous system[J]. Proc Natl Acad Sci U S A, 1990, 87 (20): 8022- 8026.
doi: 10.1073/pnas.87.20.8022 |
34 |
NATARELLI N , GAHOONIA N , SIVAMANI R K . Integrative and mechanistic approach to the hair growth cycle and hair loss[J]. J Clin Med, 2023, 12 (3): 893.
doi: 10.3390/jcm12030893 |
35 |
SUN S N , ZHAO B H , LI J L , et al. Regulation of hair follicle growth and development by different alternative spliceosomes of FGF5 in rabbits[J]. Genes (Basel), 2024, 15 (4): 409.
doi: 10.3390/genes15040409 |
36 |
TAKAHASHI R , TAKAHASHI G , KAMEYAMA Y , et al. Gender-difference in hair length as revealed by Crispr-based production of long-haired mice with dysfunctional FGF5 mutations[J]. Int J Mol Sci, 2022, 23 (19): 11855.
doi: 10.3390/ijms231911855 |
37 |
FATIMA N , JIA L Y , LIU B N , et al. A homozygous missense mutation in the fibroblast growth factor 5 gene is associated with the long-hair trait in Angora rabbits[J]. BMC Genomics, 2023, 24 (1): 298.
doi: 10.1186/s12864-023-09405-2 |
38 |
OLSEN S K , GARBI M , ZAMPIERI N , et al. Fibroblast growth factor (FGF) homologous factors share structural but not functional homology with FGFs[J]. J Biol Chem, 2003, 278 (36): 34226- 34236.
doi: 10.1074/jbc.M303183200 |
39 | 金诗曼, 张国民, 王聂平. 成纤维细胞生长因子受体在糖脂代谢性疾病中的研究进展[J]. 亚洲临床医学杂志, 2024, 7 (1): 53- 55. |
JIN S M , ZHANG G M , WANG N P . Research progress of fibroblast growth factor receptors in glycolipid metabolism diseases[J]. Asian Journal of Clinical Medicine, 2024, 7 (1): 53- 55. | |
40 |
CAI Y D , FU W W , CAI D W , et al. Ancient genomes reveal the evolutionary history and origin of cashmere-producing goats in China[J]. Mol Biol Evol, 2020, 37 (7): 2099- 2109.
doi: 10.1093/molbev/msaa103 |
41 |
WANG X L , YU H H , LEI A M , et al. Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system[J]. Sci Rep, 2015, 5, 13878.
doi: 10.1038/srep13878 |
42 |
HIGGINS C A , PETUKHOVA L , HAREL S , et al. FGF5 is a crucial regulator of hair length in humans[J]. Proc Natl Acad Sci U S A, 2014, 111 (29): 10648- 10653.
doi: 10.1073/pnas.1402862111 |
43 |
XU X L , WU S J , QI S Y , et al. Increasing GSH-Px activity and activating wnt pathway promote fine wool growth in FGF5-edited sheep[J]. Cells, 2024, 13 (11): 985.
doi: 10.3390/cells13110985 |
44 | JIN M , LIU X Y , LU Y P , et al. Effects of FGF5-mediated LncRNA on the skin fibroblast growth of Liaoning Cashmere goats[J]. Indian J Anim Health, 2023, 62 (2): 277- 285. |
45 |
霍竞, 郭子显, 全宇璐, 等. 成纤维细胞生长因子受体3基因突变致胎儿四肢发育异常的研究进展[J]. 山东医药, 2022, 62 (25): 96- 99.
doi: 10.3969/j.issn.1002-266X.2022.25.024 |
HUO J , GUO Z X , QUAN Y L , et al. Research progress on abnormal development of fetal limbs caused by mutation of fibroblast growth factor receptor 3 gene[J]. Shandong Medical Journal, 2022, 62 (25): 96- 99.
doi: 10.3969/j.issn.1002-266X.2022.25.024 |
|
46 |
CHOI S W , ABITBOL J M , CHENG A G . Hair cell regeneration: from animals to humans[J]. Clin Exp Otorhinolaryngol, 2024, 17 (1): 1- 14.
doi: 10.21053/ceo.2023.01382 |
[1] | 黄红艳, 张力允, 黄智荣, 伍仲平, 张续勐, 欧阳宏佳, 陈俊鹏, 林桢平, 田允波, 李秀金, 黄运茂. 狮头鹅群体遗传多样性和体重体尺全基因组关联分析[J]. 畜牧兽医学报, 2024, 55(9): 3914-3924. |
[2] | 张瑞琪, 厐彦芹, 李再山, 尚秀国, 兰干球, 郭金彪, 赵云翔. 基于智能饲喂开展哺乳母猪采食量基因组遗传评估研究[J]. 畜牧兽医学报, 2024, 55(7): 2890-2900. |
[3] | 王选艺, 孙亚伟, 龙雨薇, 王俪颖, 周渝新, 李娜, 马雪连, 赵红琼, 姚刚. 屡配不孕母牛FOXP3、FSHR、FMR1基因多态性与生殖激素相关性分析[J]. 畜牧兽医学报, 2024, 55(6): 2727-2740. |
[4] | 崔晟頔, 王凯, 赵真坚, 陈栋, 申琦, 余杨, 王俊戈, 陈子旸, 禹世欣, 陈佳苗, 王翔枫, 唐国庆. 利用GWAS和DNA甲基化共定位鉴定猪肉质性状的候选基因[J]. 畜牧兽医学报, 2024, 55(5): 1945-1957. |
[5] | 曹玉珠, 邢雨欣, 马乘霖, 管宏波, 贾其辉, 康相涛, 田亚东, 李转见, 刘小军, 李红. 鸡FGF6基因生物学特性及其多态性与经济性状的关联分析[J]. 畜牧兽医学报, 2024, 55(4): 1536-1550. |
[6] | 钟欣, 张晖, 张充, 刘小红. 母猪繁殖力基因遗传育种研究进展[J]. 畜牧兽医学报, 2024, 55(2): 438-450. |
[7] | 林晓坤, 都萌萌, 周李生, 黄振刚, 王頔, 周东辉, 曹欣欣, 贺建宁, 赵金山, 李和刚. 敖汉细毛羊羊毛经济性状的全基因组关联分析[J]. 畜牧兽医学报, 2024, 55(10): 4346-4359. |
[8] | 祝雪丽, 张龙超, 王立贤, 蒲蕾, 刘欣. 北京黑猪AQP9和RPS10基因多态性及其与背膘厚的关联分析[J]. 畜牧兽医学报, 2024, 55(1): 87-98. |
[9] | 唐鑫鑫, 郑炬梅, 骆娜, 营凡, 朱丹, 李森, 刘大伟, 安炳星, 文杰, 赵桂苹, 李和刚. 基于全基因组关联分析揭示肉鸡腿病发生的遗传机制[J]. 畜牧兽医学报, 2024, 55(1): 99-109. |
[10] | 李柯安宁, 杜丽丽, 安炳星, 邓天宇, 梁忙, 曹晟, 杜悦莹, 徐凌洋, 高雪, 张路培, 李俊雅, 高会江. 华西牛胴体及原始分割肉块重量性状遗传参数估计与全基因组关联分析[J]. 畜牧兽医学报, 2023, 54(9): 3664-3676. |
[11] | 王政, 郭文婕, 程瑾, 原一桐, 罗榕, 薛毅, 张利环, 朱芷葳, 李慧锋. 营养转运相关基因调控区多态性与黄羽肉鸡饲料转化率关联分析[J]. 畜牧兽医学报, 2023, 54(6): 2343-2352. |
[12] | 张笑科, 廖伟莉, 陈信佑, 李婷婷, 袁晓龙, 李加琪, 黄翔, 张豪. 杜洛克猪生长性状全基因组关联分析及候选基因鉴定[J]. 畜牧兽医学报, 2023, 54(5): 1868-1876. |
[13] | 吴骏, 蔡晓钿, 林清, 钟展明, 叶浩强, 魏趁, 徐志婷, 吴细波, 司景磊, 张哲, 李加琪. 大白猪眼肌面积、估计瘦肉率和背膘厚的加权一步法全基因组关联分析[J]. 畜牧兽医学报, 2023, 54(4): 1403-1414. |
[14] | 毕亚珍, 尚明玉, 胡文萍, 张莉. 绵羊生长性状间的相关和回归分析及TRHDE基因多态性与生长性状的关联分析[J]. 畜牧兽医学报, 2023, 54(4): 1415-1428. |
[15] | 苏艳芳, 杨曼, 牛乃琪, 侯欣华, 张龙超. 北京黑猪FABP3和SCD基因多态性与肉品质性状关联分析[J]. 畜牧兽医学报, 2023, 54(3): 966-975. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||