[1] |
国家统计局. 2022年中国统计年鉴 [M]. 北京:中国统计出版社, 2022:379.National Bureau of Statistics.China Statistical Yearbook 2022[M]. Beijing:China Statistics Press, 2022:379.(in Chinese)
|
[2] |
张 润, 刘 海, 杨 曼, 等.北京黑猪肌内脂肪含量高、低组间脂质组差异分析[J].畜牧兽医学报, 2022, 53(9):3262-3271.ZHANG R, LIU H, YANG M, et al.Analysis of lipidome difference between high and low intramuscular fat content groups in Beijing black pigs[J].Acta Veterinaria et Zootechnica Sinica, 2022, 53(9):3262-3271.(in Chinese)
|
[3] |
马现永, 林映才, 蒋宗勇.猪肌内脂肪调控研究进展[C]//全国动物生理生化第十一次学术交流会论文摘要汇编.昆明:中国畜牧兽医学会动物生理生化学分会, 2010.MA X Y, LIN Y C, JIANG Z Y.Research progress on the regulation of intramuscular fat in pigs[C]//.Kunming:Animal Physiology and Biochemistry Branch of the Chinese Society of Animal Husbandry and Veterinary Medicine, 2010.(in Chinese)
|
[4] |
ASLAN O, HAMILL R M, DAVEY G, et al.Variation in the IGF2 gene promoter region is associated with intramuscular fat content in porcine skeletal muscle[J].Mol Biol Rep, 2012, 39(4):4101-4110.
|
[5] |
倪和民, 赵延辉, 邢 凯, 等.猪肌内脂肪调控研究进展[J].中国畜牧业, 2020(17):91-92.NI H M, ZHAO Y H, XING K, et al.Research progress on the regulation of intramuscular fat in pigs[J].China Animal Industry, 2020(17):91-92.(in Chinese)
|
[6] |
TRINCHESE G, GENA P, CIMMINO F, et al.Hepatocyte aquaporins AQP8 and AQP9 are engaged in the hepatic lipid and glucose metabolism modulating the inflammatory and redox state in milk-supplemented rats[J].Nutrients, 2023, 15(16):3651.
|
[7] |
ELNEGAARD J J, IENA F M, HEROLD J, et al.Sex-specific effect of AQP9 deficiency on hepatic triglyceride metabolism in mice with diet-induced obesity[J].J Physiol, 2023, 4(07), doi:10.1113/JP284188.
|
[8] |
GAO C, SHEN J B, YAO L Q, et al.Low expression of AQP9 and its value in hepatocellular carcinoma[J].Transl Cancer Res, 2021, 10(4):1826-1841.
|
[9] |
ISHIBASHI K, KUWAHARA M, GU Y, et al.Cloning and functional expression of a new aquaporin (AQP9) abundantly expressed in the peripheral leukocytes permeable to water and urea, but not to glycerol[J].Biochem Biophys Res Commun, 1998, 244(1):268-274.
|
[10] |
SUH H N, LEE S H, LEE M Y, et al.High glucose induced translocation of Aquaporin8 to chicken hepatocyte plasma membrane:involvement of cAMP, PI3K/Akt, PKC, MAPKs, and microtubule[J].J Cell Biochem, 2008, 103(4):1089-1100.
|
[11] |
KURIYAMA H, SHIMOMURA I, KISHIDA K, et al.Coordinated regulation of fat-specific and liver-specific glycerol channels, aquaporin adipose and aquaporin 9[J].Diabetes, 2002, 51(10):2915-2921.
|
[12] |
陈 晨, 胡雄贵, 朱 吉, 等.猪脂肪发育相关miRNAs的功能研究进展[J].畜牧兽医学报, 2015, 46(12):2117-2126.CHEN C, HU X G, ZHU J, et al.Progress on the research of miRNAs associated with fat development in pigs[J].Acta Veterinaria et Zootechnica Sinica, 2015, 46(12):2117-2126.(in Chinese)
|
[13] |
HIRAKO S, WAKAYAMA Y, KIM H, et al.The relationship between aquaglyceroporin expression and development of fatty liver in diet-induced obesity and ob/ob mice[J].Obes Res Clin Pract, 2016, 10(6):710-718.
|
[14] |
WILSON D N, DOUDNA CATE J H.The structure and function of the eukaryotic ribosome[J].Cold Spring Harb Perspect Biol, 2012, 4(5):a011536.
|
[15] |
梁雨横.核糖体蛋白S10的甲基化对其与B23相互作用的影响[D].兰州:兰州大学, 2009.LIANG Y H.Methylation of ribosomal protein S10 affects its interaction with B23[D].Lanzhou:Lanzhou University, 2009.(in Chinese)
|
[16] |
聂 茜, 陈 荣, 舒亚南, 等.非组蛋白甲基化研究进展[J].生命的化学, 2015, 35(1):31-37.NIE Q, CHEN R, SHU Y N, et al.Research progress in non-histone methylation[J].Chemistry of Life, 2015, 35(1):31-37.(in Chinese)
|
[17] |
WANG C B, WANG X P, TANG J H, et al.Genome-wide association studies for two exterior traits in Chinese Dongxiang spotted pigs[J].Anim Sci J, 2018, 89(6):868-875.
|
[18] |
LV M D, HAN X M, MA Y F, et al.Genetic variations associated with six-white-point coat pigmentation in Diannan small-ear pigs[J].Sci Rep, 2016, 6:27534.
|
[19] |
WANG L G, ZHANG L C, YAN H, et al.Genome-wide association studies identify the loci for 5 exterior traits in a Large White×Minzhu pig population[J].PLoS One, 2014, 9(8):e103766.
|
[20] |
FU Y H, LI C C, TANG Q Z, et al.Genomic analysis reveals selection in Chinese native black pig[J].Sci Rep, 2016, 6:36354.
|
[21] |
苏艳芳, 杨 曼, 牛乃琪, 等.北京黑猪FABP3和SCD基因多态性与肉品质性状关联分析[J].畜牧兽医学报, 2023, 54(3):966-975.SU Y F, YANG M, NIU N Q, et al.Association analysis of FABP3 and SCD gene polymorphisms with MeatQuality traits in Beijing black pigs[J].Acta Veterinaria et Zootechnica Sinica, 2023, 54(3):966-975.(in Chinese)
|
[22] |
王楚端, 陈清明.肉质性状的品种及性别效应[J].养猪, 1995(4):30-31.WANG C D, CHEN Q M.Variety and sex effects of meat quality traits[J].Swine Production, 1995(4):30-31.(in Chinese)
|
[23] |
LIU X, GONG J F, WANG L G, et al.Genome-wide profiling of the microrna transcriptome regulatory network to identify putative candidate genes associated with backfat deposition in pigs[J].Animals, 2019, 9(6):313.
|
[24] |
LIU X, WANG L G, LIANG J, et al.Genome-wide association study for certain carcass traits and organ weights in a large White×Minzhu intercross porcine population[J].J Integr Agric, 2014, 13(12):2721-2730.
|
[25] |
关红民, 刘孟洲, 滚双宝.舍饲型合作猪胴体品质性状相关性分析[J].养猪, 2016(2):70-72.GUAN H M, LIU M Z, GUN S B.Analysis on correlation coefficient of carcass quality traits about Hezuo pig in shelter feeding[J].Swine Production, 2016(2):70-72.(in Chinese)
|
[26] |
YANG Q, WU P X, WANG K, et al.SNPs associated with body weight and backfat thickness in two pig breeds identified by a genome-wide association study[J].Genomics, 2019, 111(6):1583-1589.
|
[27] |
田威龙, 兰干球, 张龙超, 等.北京黑猪DKK3和CCR1基因多态性检测及其与背膘厚的关联分析[J].畜牧兽医学报, 2022, 53(7):2083-2093.TIAN W L, LAN G Q, ZHANG L C, et al.Detection of DKK3 and CCR1 genes polymorphisms and their association with backfat thickness in Beijing black pigs[J].Acta Veterinaria et Zootechnica Sinica, 2022, 53(7):2083-2093.(in Chinese)
|
[28] |
吴 骏, 蔡晓钿, 林 清, 等.大白猪眼肌面积、估计瘦肉率和背膘厚的加权一步法全基因组关联分析[J].畜牧兽医学报, 2023, 54(4):1403-1414.WU J, CAI X D, LIN Q, et al.Weighted single-step GWAS of eye muscle area, predicted lean meat percentage and average backfat thickness in a yorkshire pig population[J].Acta Veterinaria et Zootechnica Sinica, 2023, 54(4):1403-1414.(in Chinese)
|
[29] |
汪志铮.北京黑猪一枝独秀[J].当代畜禽养殖业, 2010(8):28.WANG Z Z.Beijing black pigs outshine others[J].Modern Animal Husbandry, 2010(8):28.(in Chinese)
|
[30] |
梁 晶, 王红卫, 程利安, 等.北京黑猪PPARD基因G32E多态位点与脂肪沉积相关性状的关联分析[J].中国畜牧兽医, 2015, 42(7):1793-1799.LIANG J, WANG H W, CHENG L A, et al.Association study on PPARD gene G32E polymorphic site with fat deposit related traits in Beijing black pigs[J].China Animal Husbandry & Veterinary Medicine, 2015, 42(7):1793-1799.(in Chinese)
|
[31] |
吴正常, 单祎祎, 黄小国, 等.丹系大白母猪背膘厚性状的全基因组关联分析[J].扬州大学学报:农业与生命科学版, 2022, 43(6):60-66.WU Z C, SHAN W W, HUANG X G, et al.A genome-wide association study of backfat thickness traits in Denmark Large White pigs[J].Journal of Yangzhou University:Agricultural and Life Science Edition, 2022, 43(6):60-66.(in Chinese)
|
[32] |
ZHU D D, LIU X L, MAX R, et al.Genome-wide association study of the backfat thickness trait in two pig populations[J].Front Agric Sci Eng, 2014, 1(2):91-95.
|
[33] |
刘 欣.猪胴体性状全基因组关联分析及背膘厚主效基因筛选研究[D].北京:中国农业科学院, 2014.LIU X.Genome-wide association studies for pig carcass traits and study of screening backfat thickness main effect gene[D].Beijing:Chinese Academy of Agricultural Sciences, 2014.(in Chinese)
|
[34] |
YANG J, LIU C J, GUAN J L, et al.SPI1 mediates transcriptional activation of TPX2 and RNF2 to regulate the radiosensitivity of lung squamous cell carcinoma[J].Arch Biochem Biophys, 2022, 730:109425.
|
[35] |
WANG J Q, WANG X J, GUO Y H, et al.Therapeutic targeting of SPIB/SPI1-facilitated interplay of cancer cells and neutrophils inhibits aerobic glycolysis and cancer progression[J].Clin Transl Med, 2021, 11(11):e588.
|
[36] |
邓 艳, 解广娟, 胡深强, 等.miR-148a-3p靶向PPARγ基因抑制鹅颗粒细胞孕酮的合成[J].畜牧兽医学报, 2021, 52(6):1571-1581.DENG Y, XEI G J, HU S Q, et al.MiR-148a-3p inhibits the production of progesterone by targeting PPARγ in granulosa cells of goose[J].Acta Veterinaria et Zootechnica Sinica, 2021, 52(6):1571-1581.(in Chinese)
|
[37] |
FERRAGUT CARDOSO A P, BANERJEE M, NAIL A N, et al.miRNA dysregulation is an emerging modulator of genomic instability[J].Semin Cancer Biol, 2021, 76:120-131.
|
[38] |
王 强, 潘洋洋, 乔利英, 等.miR-33a靶向Lipin1和IRS2调节绵羊前体脂肪细胞分化的研究[J].畜牧兽医学报, 2020, 51(4):701-712.WANG Q, PAN Y Y, QIAO L Y, et al.miR-33a regulates ovine preadipocyte differentiation by targeting Lipin1 and IRS2[J].Acta Veterinaria et Zootechnica Sinica, 2020, 51(4):701-712.(in Chinese)
|
[39] |
HILL M, TRAN N.miRNA interplay:mechanisms and consequences in cancer[J].Dis Model Mech, 2021, 14(4):dmm047662.
|
[40] |
XI E, BAI J, ZHANG K, et al.Genomic variants disrupt miRNA-mRNA regulation[J].Chem Biodivers, 2022, 19(10):e202200623.
|
[41] |
VIENBERG S, GEIGER J, MADSEN S, et al.MicroRNAs in metabolism[J].Acta Physiol (Oxf), 2017, 219(2):346-361.
|
[42] |
王来娣, 郑 云, 蒋拾贝, 等.miRNA在脂代谢中的研究进展[J].动物营养学报, 2013, 25(7):1446-1452.WANG L D, ZHENG Y, JIANG S B, et al.Research advances of miRNA in lipid metabolism[J].Chinese Journal of Animal Nutrition, 2013, 25(7):1446-1452.(in Chinese)
|
[43] |
ARNER P, KULYTÉ A.MicroRNA regulatory networks in human adipose tissue and obesity[J].Nat Rev Endocrinol, 2015, 11(5):276-288.
|
[44] |
DAVOLI R, GAFFO E, ZAPPATERRA M, et al.Identification of differentially expressed small RNAs and prediction of target genes in Italian Large White pigs with divergent backfat deposition[J].Anim Genet, 2018, 49(3):205-214.
|
[45] |
GUO Y T, ZHANG X X, HUANG W L, et al.Identification and characterization of differentially expressed miRNAs in subcutaneous adipose between Wagyu and Holstein cattle[J].Sci Rep, 2017, 7:44026.
|
[46] |
CHO H K, SEONG H, KEE C, et al.MicroRNA profiles in aqueous humor between pseudoexfoliation glaucoma and normal tension glaucoma patients in a Korean population[J].Sci Rep, 2022, 12(1):6217.
|