畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (8): 3321-3330.doi: 10.11843/j.issn.0366-6964.2024.08.006
周佳丽(), 丁宝隆, 马子明, 淡新刚*(
), 赵洪喜*(
)
收稿日期:
2023-09-18
出版日期:
2024-08-23
发布日期:
2024-08-28
通讯作者:
淡新刚,赵洪喜
E-mail:2321966034@qq.com;danxingang2013@163.com;zhaohongxi2006@163.com
作者简介:
周佳丽(1999-),女,甘肃武山人,硕士生,主要从事临床兽医学研究,E-mail:2321966034@qq.com
基金资助:
Jiali ZHOU(), Baolong DING, Ziming MA, Xingang DAN*(
), Hongxi ZHAO*(
)
Received:
2023-09-18
Online:
2024-08-23
Published:
2024-08-28
Contact:
Xingang DAN, Hongxi ZHAO
E-mail:2321966034@qq.com;danxingang2013@163.com;zhaohongxi2006@163.com
摘要:
奶牛子宫内膜炎是奶牛分娩时或产后由于病原微生物感染子宫所引起奶牛的一种繁殖障碍性疾病,严重影响奶牛繁殖能力并制约奶牛业的发展,明确奶牛子宫内膜炎的发病机制有助于对其高效治疗。然而,引起奶牛子宫内膜炎的原因较为复杂,比如细菌、病毒、真菌、支原体等。随着研究的深入,有人提出奶牛肠道菌群紊乱也可能影响奶牛子宫内膜炎的发生、发展;也有研究表明,益生菌可通过调节宿主肠道微生物菌群改善奶牛子宫内膜炎。本文就胃肠道菌群与奶牛子宫内膜炎之间的关系及益生菌在奶牛子宫内膜炎中的应用进行综述,以期为规模化奶牛场的奶牛子宫内膜炎的管理提供新的思路。
中图分类号:
周佳丽, 丁宝隆, 马子明, 淡新刚, 赵洪喜. 奶牛子宫内膜炎与胃肠微生物相关性及益生菌作用的研究进展[J]. 畜牧兽医学报, 2024, 55(8): 3321-3330.
Jiali ZHOU, Baolong DING, Ziming MA, Xingang DAN, Hongxi ZHAO. Research Progress on the Correlation between Endometritis and Gastrointestinal Microorganisms and the Role of Probiotics in Dairy Cows[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3321-3330.
1 |
姚鑫鑫, 吴春阳, 李志明, 等. 奶牛阴道菌群的多样性与产后子宫内膜炎的相关性研究[J]. 安徽农业科学, 2021, 49 (6): 106- 111.
doi: 10.3969/j.issn.0517-6611.2021.06.029 |
YAO X X , WU C Y , LI Z M , et al. Study on the correlation between the diversity of vaginal flora and the incidence of postpartum endometritis in dairy cows[J]. Journal of Anhui Agricultural Sciences, 2021, 49 (6): 106- 111.
doi: 10.3969/j.issn.0517-6611.2021.06.029 |
|
2 |
DE LIMA F S . Recent advances and future directions for uterine diseases diagnosis, pathogenesis, and management in dairy cows[J]. Anim Reprod, 2020, 17 (3): e20200063.
doi: 10.1590/1984-3143-ar2020-0063 |
3 |
ZHONG Y F , XUE M Y , LIU J X . Composition of rumen bacterial community in dairy cows with different levels of somatic cell counts[J]. Front Microbiol, 2018, 9, 3217.
doi: 10.3389/fmicb.2018.03217 |
4 |
ZHANG Q L , PAN Y Y , WANG M , et al. In vitro evaluation of probiotic properties of lactic acid bacteria isolated from the vagina of yak (Bos grunniens)[J]. PeerJ, 2022, 10, e13177.
doi: 10.7717/peerj.13177 |
5 |
YANG L , HUANG W Q , YANG C C , et al. Using PacBio sequencing to investigate the effects of treatment with lactic acid bacteria or antibiotics on cow endometritis[J]. Electron J Biotechnol, 2021, 51, 67- 78.
doi: 10.1016/j.ejbt.2021.02.004 |
6 |
GENÍS S , BACH À , FÀBREGAS F , et al. Potential of lactic acid bacteria at regulating Escherichia coli infection and inflammation of bovine endometrium[J]. Theriogenology, 2016, 85 (4): 625- 637.
doi: 10.1016/j.theriogenology.2015.09.054 |
7 | 王宁宁. 奶牛临床型子宫内膜炎主要致病菌的分离鉴定及多重PCR检测方法的建立[D]. 杨凌: 西北农林科技大学, 2019. |
WANG N N. Identification of the main pathogen in clinical endometritis of dairy cows and establishment of multiplex PCR detection method[D]. Yangling: Northwest A&F University, 2019. (in Chinese) | |
8 | 康晓冬, 刘溪源, 高海慧. 宁夏地区奶牛子宫内膜炎的病原体分离鉴定及药敏试验[J]. 中国畜牧兽医文摘, 2016, 32 (7): 50-51, 54. |
KANG X D , LIU X Y , GAO H H . Isolation, identification and drug sensitivity test of pathogens causing endometritis in dairy cows in Ningxia[J]. Chinese Journal of Animal Husbandry and Veterinary Medicine, 2016, 32 (7): 50-51, 54. | |
9 |
WAGENER K , GRUNERT T , PRUNNER I , et al. Dynamics of uterine infections with Escherichia coli, Streptococcus uberis and Trueperella pyogenes in post-partum dairy cows and their association with clinical endometritis[J]. Vet J, 2014, 202 (3): 527- 532.
doi: 10.1016/j.tvjl.2014.08.023 |
10 |
SHELDON I M , ROBERTS M H . Toll-like receptor 4 mediates the response of epithelial and stromal cells to lipopolysaccharide in the endometrium[J]. PLoS One, 2010, 5 (9): e12906.
doi: 10.1371/journal.pone.0012906 |
11 |
SAUT J P E , HEALEY G D , BORGES A M , et al. Ovarian steroids do not affect bovine endometrial cytokine or chemokine responses to Escherichia coli or LPS in vitro[J]. Reproduction, 2014, 148 (6): 593- 606.
doi: 10.1530/REP-14-0230 |
12 |
HERATH S , LILLY S T , FISCHER D P , et al. Bacterial lipopolysaccharide induces an endocrine switch from prostaglandin F2α to prostaglandin E2 in bovine endometrium[J]. Endocrinology, 2009, 150 (4): 1912- 1920.
doi: 10.1210/en.2008-1379 |
13 |
GALVÃO K N , SANTOS N R , GALVÃO J S , et al. Association between endometritis and endometrial cytokine expression in postpartum Holstein cows[J]. Theriogenology, 2011, 76 (2): 290- 299.
doi: 10.1016/j.theriogenology.2011.02.006 |
14 |
GABLER C , FISCHER C , DRILLICH M , et al. Time-dependent mRNA expression of selected pro-inflammatory factors in the endometrium of primiparous cows postpartum[J]. Reprod Biol Endocrinol, 2010, 8, 152.
doi: 10.1186/1477-7827-8-152 |
15 |
SATO S , SUZUKI T , OKADA K . Suppression of lymphocyte blastogenesis in cows with puerperal metritis and mastitis[J]. Vet Med Sci, 1995, 57 (2): 373- 375.
doi: 10.1292/jvms.57.373 |
16 |
RUTIGLIANO H M , LIMA F S , CERRI R L A , et al. Effects of method of presynchronization and source of selenium on uterine health and reproduction in dairy cows[J]. J Dairy Sci, 2008, 91 (9): 3323- 3336.
doi: 10.3168/jds.2008-1005 |
17 | 欧红萍. 清宫药对奶牛子宫内膜炎的药效学研究[D]. 雅安: 四川农业大学, 2008. |
OU H P. The pharmacodynamics study of Qinggong Yao to endometritis of the Cow[D]. Ya'an: Sichuan Agricultural University, 2008. (in Chinese) | |
18 |
YASUI T , RYAN C M , GILBERT R O , et al. Effects of hydroxy trace minerals on oxidative metabolism, cytological endometritis, and performance of transition dairy cows[J]. J Dairy Sci, 2014, 97 (6): 3728- 3738.
doi: 10.3168/jds.2013-7331 |
19 |
SUKHIKH G T , KASABULATOV N M , VAN'KO L V , et al. Ratio between the number of Th1 and Th2 lymphocytes in the peripheral blood and concentration of proinflammatory cytokines in lochia of women with postpartum endometritis[J]. Bull Exp Biol Med, 2005, 140 (6): 672- 674.
doi: 10.1007/s10517-006-0050-2 |
20 |
赵静, 孙城涛, 王军, 等. 荧光定量PCR法比较研究健康和子宫内膜炎奶牛阴道菌群结构[J]. 中国预防兽医学报, 2014, 36 (10): 817- 819.
doi: 10.3969/j.issn.1008-0589.2014.10.19 |
ZHAO J , SUN C T , WANG J , et al. Real-time PCR analysis of vaginal bacterial community in healthy and endometritic cows[J]. Chinese Journal of Preventive Veterinary Medicine, 2014, 36 (10): 817- 819.
doi: 10.3969/j.issn.1008-0589.2014.10.19 |
|
21 | 王鸿盛. 基于VDS对张掖地区奶牛子宫内膜炎流行病学调查、阴道群菌分析及临床治疗研究[D]. 兰州: 甘肃农业大学, 2021. |
WANG H S. Epidemiological investigation, vaginal bacterial microbiota analysis and clinical treatment of endometritis in dairy cows in Zhangye based on VDS[D]. Lanzhou: Gansu Agricultural University, 2021. (in Chinese) | |
22 | 肖杰. 河南沿黄绿色奶业发展带奶牛子宫内膜炎细菌流行病学调查及土霉素治疗前后菌群差异的研究[D]. 长春: 吉林大学, 2018. |
XIAO J. Epidemiological investigation of endometritis bacteria in dairy cows along the development of yellow-green dairy industry in Henan Province and the difference of bacterial flora before and after oxytetracycline treatment[D]. Changchun: Jilin University, 2018. (in Chinese) | |
23 | 周旭东. 规模化奶牛养殖场奶牛难产的病因分析与处置[D]. 杨凌: 西北农林科技大学, 2014. |
ZHOU X D. Cows dystocia etiology analysis and disposal in large-scale dairy farms[D]. Yangling: Northwest A&F University, 2014. (in Chinese) | |
24 | 赵静. 奶牛子宫内膜炎相关微生态菌群及其与宿主互作机制研究[D]. 长春: 吉林农业大学, 2016. |
ZHAO J. Study on cow endometritis associated microbiota and its interaction mechanisms with the host[D]. Changchun: Jilin Agricultural University, 2016. (in Chinese) | |
25 |
韩春. 筛选奶牛阴道正常细菌对子宫内膜炎致病菌的抗菌效果分析[J]. 中国奶牛, 2012, (17): 33- 36.
doi: 10.3969/j.issn.1004-4264.2012.17.012 |
HAN C . Analysis of the antibacterial effect of normal bacteria in dairy cow vagina against pathogens causing endometritis[J]. China Dairy Cattle, 2012, (17): 33- 36.
doi: 10.3969/j.issn.1004-4264.2012.17.012 |
|
26 |
MOLINA N M , SOLA-LEYVA A , SAEZ-LARA M J , et al. New opportunities for endometrial health by modifying uterine microbial composition: present or future?[J]. Biomolecules, 2020, 10 (4): 593.
doi: 10.3390/biom10040593 |
27 |
SANTOS T M A , GILBERT R O , BICALHO R C . Metagenomic analysis of the uterine bacterial microbiota in healthy and metritic postpartum dairy cows[J]. J Dairy Sci, 2011, 94 (1): 291- 302.
doi: 10.3168/jds.2010-3668 |
28 | BALLAS P , POTHMANN H , POTHMANN I , et al. Dynamics and diversity of intrauterine anaerobic microbiota in dairy cows with clinical and subclinical endometritis[J]. Animals (Basel), 2023, 13 (1): 82. |
29 | BECKER A A M J , MUNDEN S , MCCABE E , et al. The endometrial microbiota-16S rRNA gene sequence signatures in healthy, pregnant and endometritis dairy cows[J]. Vet Sci, 2023, 10 (3): 215. |
30 | NAGPAL R , YADAV H . Bacterial translocation from the gut to the distant organs: an overview[J]. Ann Nutr Metab, 2017, 71 (Suppl.1): 11- 16. |
31 |
CAPALDO C T , POWELL D N , KALMAN D . Layered defense: how mucus and tight junctions seal the intestinal barrier[J]. J Mol Med (Berl), 2017, 95 (9): 927- 934.
doi: 10.1007/s00109-017-1557-x |
32 |
NAJAFI M , GUO Y Z , ANDERSSON G , et al. Gene networks and pathways involved in LPS-induced proliferative response of bovine endometrial epithelial cells[J]. Genes (Basel), 2022, 13 (12): 2342.
doi: 10.3390/genes13122342 |
33 |
JONES K , CUNHA F , JEON S J , et al. Tracing the source and route of uterine colonization by exploring the genetic relationship of Escherichia coli isolated from the reproductive and gastrointestinal tract of dairy cows[J]. Vet Microbiol, 2022, 266, 109355.
doi: 10.1016/j.vetmic.2022.109355 |
34 |
NAGARAJA T G , LECHTENBERG K F . Liver abscesses in feedlot cattle[J]. Vet Clin North Am Food Anim Pract, 2007, 23 (2): 351- 369.
doi: 10.1016/j.cvfa.2007.05.002 |
35 |
JEON S J , CUNHA F , VIEIRA-NETO A , et al. Blood as a route of transmission of uterine pathogens from the gut to the uterus in cows[J]. Microbiome, 2017, 5 (1): 109.
doi: 10.1186/s40168-017-0328-9 |
36 |
OHNO H . Intestinal M cells[J]. J Biochem, 2016, 159 (2): 151- 160.
doi: 10.1093/jb/mvv121 |
37 |
AGOSTINIS C , MANGOGNA A , BOSSI F , et al. Uterine immunity and microbiota: a shifting paradigm[J]. Front Immunol, 2019, 10, 2387.
doi: 10.3389/fimmu.2019.02387 |
38 |
CANAVAN M , WALSH A M , BHARGAVA V , et al. Enriched Cd141+ DCs in the joint are transcriptionally distinct, activated, and contribute to joint pathogenesis[J]. JCI Insight, 2018, 3 (23): e95228.
doi: 10.1172/jci.insight.95228 |
39 |
XIAO Q , XIA Y X . Insights into dendritic cell maturation during infection with application of advanced imaging techniques[J]. Front Cell Infect Microbiol, 2023, 13, 1140765.
doi: 10.3389/fcimb.2023.1140765 |
40 |
SAEZ A , HERRERO-FERNANDEZ B , GOMEZ-BRIS R , et al. Pathophysiology of inflammatory bowel disease: innate immune system[J]. Int J Mol Sci, 2023, 24 (2): 1526.
doi: 10.3390/ijms24021526 |
41 | 关文怡, 乔立东, 张凡建. 围产期奶牛血清代谢物和相关激素水平的变化规律研究[J]. 中国畜牧杂志, 2019, 55 (6): 128- 130. |
GUAN W Y , QIAO L D , ZHANG F J . Study on changes of serum metabolites and related hormones in dairy cows during transition period[J]. Chinese Journal of Animal Science, 2019, 55 (6): 128- 130. | |
42 | PAGE M J , KELL D B , PRETORIUS E . The role of lipopolysaccharide-induced cell signalling in chronic inflammation[J]. Chronic Stress (Thousand Oaks), 2022, 6, 24705470221076390. |
43 |
YAN Z Q . Regulation of TLR4 expression is a tale about tail[J]. Arterioscler Thromb Vasc Biol, 2006, 26 (12): 2582- 2584.
doi: 10.1161/01.ATV.0000250933.92917.dd |
44 |
陈佳佳. LPS诱导奶牛子宫内膜上皮细胞炎症损伤模型的建立[J]. 安徽农业科学, 2020, 48 (15): 105-108, 118.
doi: 10.3969/j.issn.0517-6611.2020.15.029 |
CHEN J J . Establishment of inflammatory injury model of endometrial epithelial cells induced by LPS in cows[J]. Journal of Anhui Agricultural Sciences, 2020, 48 (15): 105-108, 118.
doi: 10.3969/j.issn.0517-6611.2020.15.029 |
|
45 | 韦秋玲. 奶牛子宫内膜炎引起的内毒素升高对肝肾功能的影响[D]. 南宁: 广西大学, 2012. |
WEI Q L. The effect of liver and kidney function with increasing of endotoxin by endometritis of the cow[D]. Nanning: Guangxi University, 2012. (in Chinese) | |
46 |
OTERO M C , MORELLI L , NADER-MACIAS M E . Probiotic properties of vaginal lactic acid bacteria to prevent metritis in cattle[J]. Lett Appl Microbiol, 2006, 43 (1): 91- 97.
doi: 10.1111/j.1472-765X.2006.01914.x |
47 |
GENÍS S , CERRI R L A , BACH À , et al. Pre-calving intravaginal administration of lactic acid bacteria reduces metritis prevalence and regulates blood neutrophil gene expression after calving in dairy cattle[J]. Front Vet Sci, 2018, 5, 135.
doi: 10.3389/fvets.2018.00135 |
48 | 李政. 复合益生菌对哺乳期犊牛生长性能和肠道健康的影响[D]. 广州: 华南农业大学, 2020. |
LI Z. Effects of compound probiotics on growth performance and intestinal health of lactating calves[D]. Guangzhou: South China Agricultural University, 2020. (in Chinese) | |
49 | 薛洋洋. 微生态制剂治疗奶牛子宫内膜炎的试验研究[D]. 大庆: 黑龙江八一农垦大学, 2014. |
XUE Y Y. Probiotics experimental study for the treatment of cow endometritis[D]. Daqing: Heilongjiang Bayi Agricultural University, 2014. (in Chinese) | |
50 | 张吉贤, 范定坤, 付域泽, 等. 后生素调控动物肠道健康的作用机制及应用进展[J/OL]. 畜牧兽医学报, 2024: 1-11[2024-03-20]. http://kns.cnki.net/kcms/detail/11.1985.S.20240202.1057.002.html. |
ZHANG J X, FAN D K, FU Y Z, et al. Research progress on mechanism and application of postbiotics in regulating animal intestinal health[J/OL]. Acta Veterinaria et Zootechnica Sinica, 2024: 1-11. http://kns.cnki.net/kcms/detail/11.1985.S.20240202.1057.002.html. (in Chinese) | |
51 | COLLADO M C, GUEIMONDE M, SALMINEN S. Probiotics in adhesion of pathogens: mechanisms of action[M]//WATSON R R, PREEDY V R. Bioactive Foods in Promoting Health: Probiotics and Prebiotics. Boston: Academic Press, 2010: 353-370. |
52 |
VAN ZYL W F , DEANE S M , DICKS L M T . Molecular insights into probiotic mechanisms of action employed against intestinal pathogenic bacteria[J]. Gut Microbes, 2020, 12 (1): 1831339.
doi: 10.1080/19490976.2020.1831339 |
53 |
JUNTUNEN M , KIRJAVAINEN P V , OUWEHAND A C , et al. Adherence of probiotic bacteria to human intestinal mucus in healthy infants and during rotavirus infection[J]. Clin Diagn Lab Immunol, 2001, 8 (2): 293- 296.
doi: 10.1128/CDLI.8.2.293-296.2001 |
54 |
SANDERS M E , MERENSTEIN D J , REID G , et al. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic[J]. Nat Rev Gastroenterol Hepatol, 2019, 16 (10): 605- 616.
doi: 10.1038/s41575-019-0173-3 |
55 |
PENDHARKAR S , SKAFTE-HOLM A , SIMSEK G , et al. Lactobacilli and their probiotic effects in the vagina of reproductive age women[J]. Microorganisms, 2023, 11 (3): 636.
doi: 10.3390/microorganisms11030636 |
56 |
ZHANG F F , ZHOU K , XIE F X , et al. Screening and identification of lactic acid bacteria with antimicrobial abilities for aquaculture pathogens in vitro[J]. Arch Microbiol, 2022, 204 (12): 689.
doi: 10.1007/s00203-022-03285-y |
57 |
XU J Y , BIAN G R , ZHENG M , et al. Fertility factors affect the vaginal microbiome in women of reproductive age[J]. Am J Reprod Immunol, 2020, 83 (4): e13220.
doi: 10.1111/aji.13220 |
58 |
O'HANLON D E , MOENCH T R , CONE R A . In vaginal fluid, bacteria associated with bacterial vaginosis can be suppressed with lactic acid but not hydrogen peroxide[J]. BMC Infect Dis, 2011, 11, 200.
doi: 10.1186/1471-2334-11-200 |
59 |
DELCARU C , ALEXANDRU I , PODGOREANU P , et al. Antagonistic activities of some Bifidobacterium sp.strains isolated from resident infant gastrointestinal microbiota on Gram-negative enteric pathogens[J]. Anaerobe, 2016, 39, 39- 44.
doi: 10.1016/j.anaerobe.2016.02.010 |
60 |
FUJIWARA S , HASHIBA H , HIROTA T , et al. Inhibition of the binding of enterotoxigenic Escherichia coli Pb176 to human intestinal epithelial cell line HCT-8 by an extracellular protein fraction containing BIF of Bifidobacterium longum SBT2928:suggestive evidence of blocking of the binding receptor gangliotetraosylceramide on the cell surface[J]. Int J Food Microbiol, 2001, 67 (1-2): 97- 106.
doi: 10.1016/S0168-1605(01)00432-9 |
61 |
SLANZON G S , RIDENHOUR B J , MOORE D A , et al. Fecal microbiome profiles of neonatal dairy calves with varying severities of gastrointestinal disease[J]. PLoS One, 2022, 17 (1): e0262317.
doi: 10.1371/journal.pone.0262317 |
62 |
LIU Q , YU Z M , TIAN F W , et al. Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier[J]. Microb Cell Fact, 2020, 19 (1): 23.
doi: 10.1186/s12934-020-1289-4 |
63 |
GASALY N , DE VOS P , HERMOSO M A . Impact of bacterial metabolites on gut barrier function and host immunity: a focus on bacterial metabolism and its relevance for intestinal inflammation[J]. Front Immunol, 2021, 12, 658354.
doi: 10.3389/fimmu.2021.658354 |
64 |
HIIPPALA K , JOUHTEN H , RONKAINEN A , et al. The potential of gut commensals in reinforcing intestinal barrier function and alleviating inflammation[J]. Nutrients, 2018, 10 (8): 988.
doi: 10.3390/nu10080988 |
65 |
KUMAR M , KISSOON-SINGH V , CORIA A L , et al. Probiotic mixture VSL#3 reduces colonic inflammation and improves intestinal barrier function in Muc2 mucin-deficient mice[J]. Am J Physiol Gastrointest Liver Physiol, 2017, 312 (1): G34- G45.
doi: 10.1152/ajpgi.00298.2016 |
66 |
GÓMEZ-LLORENTE C , MUÑOZ S , GIL A . Role of Toll-like receptors in the development of immunotolerance mediated by probiotics[J]. Proc Nutr Soc, 2010, 69 (3): 381- 389.
doi: 10.1017/S0029665110001527 |
67 |
LEBEER S , VANDERLEYDEN J , DEKEERSMAECKER S C J . Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens[J]. Nat Rev Microbiol, 2010, 8 (3): 171- 184.
doi: 10.1038/nrmicro2297 |
68 |
HU J J , DENG F , ZHAO B C , et al. Lactobacillus murinus alleviate intestinal ischemia/reperfusion injury through promoting the release of interleukin-10 from M2 macrophages via Toll-like receptor 2 signaling[J]. Microbiome, 2022, 10 (1): 38.
doi: 10.1186/s40168-022-01227-w |
69 | AZAD M A K , SARKER M , WAN D . Immunomodulatory effects of probiotics on cytokine profiles[J]. Biomed Res Int, 2018, 2018, 8063647. |
[1] | 王若薇, 许曦瑶, 汤晓娜, 王春梅, 赵锋. 结缔组织生长因子体外调控奶牛乳腺上皮细胞生长和泌乳分化[J]. 畜牧兽医学报, 2024, 55(8): 3446-3459. |
[2] | 李碧波, 吴克, 师晓龙, 闫奕凝, 李嘉豪, 段国庆, 李熊, 任彦鹏, 董佳宁, 张春香, 任有蛇. 羊源Lactobacillus plantarum对腹泻羔羊空肠菌群及肠道黏膜屏障的调控作用[J]. 畜牧兽医学报, 2024, 55(8): 3552-3569. |
[3] | 鲜婷婷, 刘彦, 曹忻, 冯涛. 母猪子宫内膜炎阴道菌群与血清促炎细胞因子的变化及其相关性分析[J]. 畜牧兽医学报, 2024, 55(8): 3688-3698. |
[4] | 郭子骄, 郑伟杰, 孙伟, 吴宝江, 包向男, 张琪, 贺巾锋, 包斯琴, 赵高平, 王子馨, 韩博, 李喜和, 孙东晓. 荷斯坦奶牛胚胎基因组遗传评估研究[J]. 畜牧兽医学报, 2024, 55(7): 2940-2950. |
[5] | 杜红旭, 苏利娟, 何政科, 谭晓燕, 张旭, 马琪, 曹立亭, 陈红伟, 甘玲. 五味子多糖纳米硒的体外抗氧化和肠道菌群调节作用研究[J]. 畜牧兽医学报, 2024, 55(7): 3234-3245. |
[6] | 宋浩然, 冯肖艺, 张培培, 张航, 牛一凡, 余洲, 万鹏程, 崔凯, 赵学明. 奶牛卵泡颗粒细胞在卵泡发育中的作用机制[J]. 畜牧兽医学报, 2024, 55(6): 2313-2324. |
[7] | 张馨蕊, 付予, 马思佳, 杨卓, 陶金忠. 围产期奶牛生理调控与饲养管理[J]. 畜牧兽医学报, 2024, 55(6): 2325-2333. |
[8] | 张航, 张培培, 杨柏高, 冯肖艺, 牛一凡, 余洲, 曹建华, 万鹏程, 赵学明. IGF1、CoQ10、MT联合添加缓解热应激对牛IVF囊胚的影响[J]. 畜牧兽医学报, 2024, 55(6): 2474-2485. |
[9] | 王吉, 周馨妍, 郭芳瑞, 徐秋容, 武东怡, 毛妍, 袁志航, 易金娥, 文利新, 邬静. 紫花地丁对热应激下肉鸡生长性能、肉品质和肠道菌群的改善作用[J]. 畜牧兽医学报, 2024, 55(6): 2761-2774. |
[10] | 韩福珍, 蔡李萌, 李卓然, 王雪莹, 解伟纯, 匡虹迪, 李佳璇, 崔文, 姜艳平, 李一经, 单智夫, 唐丽杰. 肠道菌群介导次级胆汁酸及其受体调节肠黏膜免疫机制的研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1904-1913. |
[11] | 费国庆, 宁致远, 赵泽芳, 刘艳秋, 刘腾飞, 李贤, 丛日华, 陈鸿, 陈树林. 妊娠期奶牛黄体细胞的分离鉴定及培养特性[J]. 畜牧兽医学报, 2024, 55(5): 2214-2225. |
[12] | 刘佳惠, 吴开开, 王磊, 张康, 韩松伟, 陈富斌, 徐国伟, 郭志廷, 古雪艳, 张景艳, 李建喜. 黄芪多糖、皂苷及益生菌复合物对感染大肠杆菌肉鸡肠道的保护作用[J]. 畜牧兽医学报, 2024, 55(5): 2241-2252. |
[13] | 向辉, 桂林森, 杨迪, 魏士昊, 宫艳斌, 史远刚, 马云, 淡新刚. 奶牛同期发情-定时输精技术研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1412-1422. |
[14] | 刘思弟, 马贲, 郑言, 邱云桥, 姚泽龙, 曹中赞, 栾新红. 肠道菌群调控动物肠道黏膜免疫和炎症的研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1423-1431. |
[15] | 沈文娟, 杨卓, 张馨蕊, 付予, 陶金忠. 奶牛生殖道微生物与繁殖及相关疾病的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 924-932. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||