畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (4): 1412-1422.doi: 10.11843/j.issn.0366-6964.2024.04.007
向辉1, 桂林森1, 杨迪1, 魏士昊1, 宫艳斌2, 史远刚1, 马云1, 淡新刚1*
收稿日期:
2023-11-07
出版日期:
2024-04-23
发布日期:
2024-04-26
通讯作者:
淡新刚,主要从事动物生殖生理与生物技术研究,E-mail:danxingang2013@163.com
作者简介:
向辉(1997-),男,河南信阳人,硕士生,主要从事动物繁殖调控与生物技术研究,E-mail:xianghui2026@163.com
基金资助:
XIANG Hui1, GUI Linsen1, YANG Di1, WEI Shihao1, GONG Yanbin2, SHI Yuangang1, MA Yun1, DAN Xingang1*
Received:
2023-11-07
Online:
2024-04-23
Published:
2024-04-26
摘要: 减少输精次数,缩短空怀间隔, 提高奶牛妊娠率是提高奶牛繁殖效率,节约养殖成本的重要保障。奶牛同期发情-定时输精技术不仅能满足上述要求,还能跳过发情鉴定环节,直接进行定时输精,进而最大限度提高奶牛繁殖率。本文介绍了奶牛同期发情-定时人工输精(estrous synchronization-fixed-timed artificial insemination, ES-TAI)发展过程中的常用技术和新技术,并将这些技术按不同的处理方式进行归纳分析,重点论述各类技术的原理、操作流程以及实际应用效果,以期为进一步研发更加高效的奶牛同期发情-定时输精新技术和规模化牧场奶牛的繁殖管理提供一定的参考。
中图分类号:
向辉, 桂林森, 杨迪, 魏士昊, 宫艳斌, 史远刚, 马云, 淡新刚. 奶牛同期发情-定时输精技术研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1412-1422.
XIANG Hui, GUI Linsen, YANG Di, WEI Shihao, GONG Yanbin, SHI Yuangang, MA Yun, DAN Xingang. Research Progress on the Estrus Synchronization-fixed-timed Artificial Insemination Technology in Dairy Cows[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1412-1422.
[1] BANDAI K, KUSAKA H, MIURA H, et al. A simple and practical short-term timed artificial insemination protocol using estradiol benzoate with prostaglandin F2α in lactating dairy cows[J]. Theriogenology, 2020, 141:197-201. [2] PEREIRA M H C, WILTBANK M C, GUIDA T G, et al. Evaluation of presynchronization and addition of GnRH at the beginning of an estradiol/progesterone protocol on circulating progesterone and fertility of lactating dairy cows[J]. Theriogenology, 2020, 147:124-134. [3] DIRANDEH E, ROODBARI A R, GHOLIZADEH M, et al. Administration of prostaglandin F2α 14 d before initiating a G6G or a G7G timed artificial insemination protocol increased circulating progesterone prior to artificial insemination and reduced pregnancy loss in multiparous Holstein cows[J]. J Dairy Sci, 2015, 98(8):5414-5421. [4] FERRAZ JUNIOR M V C, PIRES A V, BIEHL M V, et al. Comparison of two timed artificial insemination system schemes to synchronize estrus and ovulation in Nellore cattle[J]. Theriogenology, 2016, 86(8):1939-1943. [5] TIAN H Z, CHEN X L, LI X, et al. Study on the body temperature and physical activity alteration of cow treated with ovulation synchronization and effect analysis[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(7):1619-1627. (in Chinese) 田宏志, 陈晓丽, 李欣, 等. 同期排卵处理母牛体温和活动量变化规律及效果分析[J]. 畜牧兽医学报, 2020, 51(7):1619-1627. [6] SARTORI R, BARROS C M. Reproductive cycles in Bos indicus cattle[J]. Anim Reprod Sci, 2011, 124(3-4):244-250. [7] SANTOS V G, CARVALHO P D, MAIA C, et al. Adding a second prostaglandin F2α treatment to but not reducing the duration of a PRID-Synch protocol increases fertility after resynchronization of ovulation in lactating Holstein cows[J]. J Dairy Sci, 2016, 99(5):3869-3879. [8] PURSLEY J R, MEE M O, WILTBANK M C. Synchronization of ovulation in dairy cows using PGF2α and GnRH[J]. Theriogenology, 1995, 44(7):915-923. [9] EL-TARABANY M S, AL-MARAKBY K M. Effect of synchronization protocols on reproductive indices, progesterone profile and fertility under subtropical environmental conditions in repeat breeder Holstein cows[J]. Reprod Domest Anim, 2019, 54(2):234-242. [10] GENTRY G T JR, WALKER R S, GENTRY L R. Impacts of incorporation of follicle stimulating hormone into an estrous synchronization protocol for timed artificial insemination of crossbred beef cattle[J]. Anim Reprod Sci, 2016, 168:19-25. [11] ZHOU Z Y, TIAN L, TIAN H Z, et al. Analysis of identification technology and influence factors on silent estrus of cows[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(4):862-871. (in Chinese) 周正义, 田莉, 田宏志, 等. 母牛安静发情鉴定技术概况及影响因素分析[J]. 畜牧兽医学报, 2021, 52(4):862-871. [12] BARUSELLI P S, FERREIRA R M, COLLI M H A, et al. Timed artificial insemination:current challenges and recent advances in reproductive efficiency in beef and dairy herds in Brazil[J]. Anim Reprod, 2017, 14(3):558-571. [13] GUNER B, ERTURK M, DURSUN M, et al. Effect of oestrous expression prior to timed artificial insemination with sexed semen on pregnancy rate in dairy cows[J]. Reprod Domest Anim, 2023;58(2):342-348. [14] BÓ G A, DE LA MATA J J, BARUSELLI P S, et al. Alternative programs for synchronizing and resynchronizing ovulation in beef cattle[J]. Theriogenology, 2016, 86(1):388-396. [15] GINTHER O J, WILTBANK M C, FRICKE P M, et al. Selection of the dominant follicle in cattle[J]. Biol Reprod, 1996, 55(6):1187-1194. [16] COLAZO M G, MAPLETOFT R J. A review of current timed-AI (TAI) programs for beef and dairy cattle[J]. Can Vet J, 2014, 55(8):772-780. [17] ABDALLA H, DE MESTRE A M, SALEM S E. Efficacy of ovulation synchronization with timed artificial insemination in treatment of follicular cysts in dairy cows[J]. Theriogenology, 2020, 154:171-180. [18] MA Z M, GUO X R, DAI T S, et al. Research progress on regulatory mechanism of cattle uterine involution and methods of promoting uterine involution[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1):58-68. (in Chinese) 马子明, 郭星汝, 戴天姝, 等. 牛子宫复旧调控机制及促进子宫复旧方法的研究进展[J]. 畜牧兽医学报, 2023, 54(1):58-68. [19] LÓPEZ-GATIUS F. Ovarian response to prostaglandin F2α in lactating dairy cows:a clinical update[J]. J Reprod Dev, 2022, 68(2):104-109. [20] CARVALHO P D, FUENZALIDA M J, RICCI A, et al. Modifications to ovsynch improve fertility during resynchronization:evaluation of presynchronization with gonadotropin-releasing hormone 6 d before initiation of ovsynch and addition of a second prostaglandin F2α treatment[J]. J Dairy Sci, 2015, 98(12):8741-8752. [21] TIPPENHAUER C M, STEINMETZ I, HEUWIESER W, et al. Effect of dose and timing of prostaglandin F2α treatments during a 7-d ovsynch protocol on progesterone concentration at the end of the protocol and pregnancy outcomes in lactating Holstein cows[J]. Theriogenology, 2021, 162:49-58. [22] SOUZA A H, SILVA E P B, CUNHA A P, et al. Ultrasonographic evaluation of endometrial thickness near timed AI as a predictor of fertility in high-producing dairy cows[J]. Theriogenology, 2011, 75(4):722-733. [23] LAUBER M R, MCMULLEN B, PARRISH J J, et al. Short communication:effect of timing of induction of ovulation relative to timed artificial insemination using sexed semen on pregnancy outcomes in primiparous Holstein cows[J]. J Dairy Sci, 2020, 103(11):10856-10861. [24] HEIDARI F, DIRANDEH E, ANSARI PIRSARAEI Z, et al. Modifications of the G6G timed-AI protocol improved pregnancy per AI and reduced pregnancy loss in lactating dairy cows[J]. Animal, 2017, 11(11):2002-2009. [25] HILL S L, GRIEGER D M, OLSON K C, et al. Using estrus detection patches to optimally time insemination improved pregnancy risk in suckled beef cows enrolled in a fixed-time artificial insemination program12[J]. J Anim Sci, 2016, 94(9):3703-3710. [26] OOSTHUIZEN N, CANAL L B, FONTES P L P, et al. Prostaglandin F2α 7 d prior to initiation of the 7-d CO-synch+CIDR protocol failed to enhance estrus response and pregnancy rates in beef heifers[J]. J Anim Sci, 2018, 96(4):1466-1473. [27] PERRY G A, SMITH M F, ROBERTS A J, et al. Relationship between size of the ovulatory follicle and pregnancy success in beef heifers[J]. J Anim Sci, 2007, 85(3):684-689. [28] PFEIFER L F M, GASPERIN B G, CESTARO J P, et al. Postponing TAI in beef cows with small preovulatory follicles[J]. Anim Reprod Sci, 2022, 242:107006. [29] THATCHER W W, MOREIRA F, PANCARCI S M, et al. Strategies to optimize reproductive efficiency by regulation of ovarian function[J]. Domest Anim Endocrinol, 2002, 23(1/2):243-254. [30] BARTOLOME J A, SILVESTRE F T, KAMIMURA S, et al. Resynchronization of ovulation and timed insemination in lactating dairy cows:I:use of the ovsynch and heatsynch protocols after non-pregnancy diagnosis by ultrasonography[J]. Theriogenology, 2005, 63(6):1617-1627. [31] COLAZO M G, DOUREY A, RAJAMAHENDRAN R, et al. Progesterone supplementation before timed AI increased ovulation synchrony and pregnancy per AI, and supplementation after timed AI reduced pregnancy losses in lactating dairy cows[J]. Theriogenology, 2013, 79(5):833-841. [32] CERRI R L A, RUTIGLIANO H M, CHEBEL R C, et al. Period of dominance of the ovulatory follicle influences embryo quality in lactating dairy cows[J]. Reproduction, 2009, 137(5):813-823. [33] PEREIRA M H C, WILTBANK M C, GUIDA T G, et al. Comparison of 2 protocols to increase circulating progesterone concentration before timed artificial insemination in lactating dairy cows with or without elevated body temperature[J]. J Dairy Sci, 2017, 100(10):8455-8470. [34] PEREIRA M H C, SANCHES C P, GUIDA T G, et al. Comparison of fertility following use of one versus two intravaginal progesterone inserts in dairy cows without a CL during a synchronization protocol before timed AI or timed embryo transfer[J]. Theriogenology, 2017, 89:72-78. [35] OOSTHUIZEN N, FONTES P L P, SANFORD C D, et al. Estrus synchronization and fixed-time artificial insemination alter calving distribution in Bos indicus influenced beef heifers[J]. Theriogenology, 2018, 106:210-213. [36] BO G A, ADAMS G P, PIERSON R A, et al. Effect of progestogen plus estradiol-17β treatment on superovulatory response in beef cattle[J]. Theriogenology, 1996, 45(5):897-910. [37] STEVENSON J S, PURSLEY J R, GARVERICK H A, et al. Treatment of cycling and noncycling lactating dairy cows with progesterone during ovsynch[J]. J Dairy Sci, 2006, 89(7):2567-2578. [38] SHEPHARD R W, MORTON J M, NORMAN S T. Effects of administration of gonadotropin-releasing hormone at artificial insemination on conception rates in dairy cows[J]. Anim Reprod Sci, 2014, 144(1/2):14-21. [39] RODRIGUES W B, SILVA A S, SILVA J C B, et al. Timed artificial insemination plus heat II:gonadorelin injection in cows with low estrus expression scores increased pregnancy in progesterone/estradiol-based protocol[J]. Animal, 2019, 13(10):2313-2318. [40] PANCARCI S M, GÜNGÖR Ö, HARPUT O, et al. Effect of one-day delaying CIDR administration in 5-day cosynch protocol in dairy heifers[J]. Animals (Basel), 2021, 11(5):1402. [41] LÓPEZ-GATIUS F, LÓPEZ-HELGUERA I, DE RENSIS F, et al. Effects of different five-day progesterone-based synchronization protocols on the estrous response and follicular/luteal dynamics in dairy cows[J]. J Reprod Dev, 2015, 61(5):465-471. [42] LOPES G, JOHNSON C R, MENDONÇA L G D, et al. Evaluation of reproductive and economic outcomes of dairy heifers inseminated at induced estrus or at fixed time after a 5-day or 7-day progesterone insert-based ovulation synchronization protocol[J]. J Dairy Sci, 2013, 96(3):1612-1622. [43] BRUNO R G S, MORAES J G N, HERNÁNDEZ-RIVERA J A H, et al. Effect of an Ovsynch56 protocol initiated at different intervals after insemination with or without a presynchronizing injection of gonadotropin-releasing hormone on fertility in lactating dairy cows[J]. J Dairy Sci, 2014, 97(1):185-194. [44] BARLETTA R V, CARVALHO P D, SANTOS V G, et al. Effect of dose and timing of prostaglandin F2α treatments during a Resynch protocol on luteal regression and fertility to timed artificial insemination in lactating Holstein cows[J]. J Dairy Sci, 2018, 101(2):1730-1736. [45] SPENCER J A, CARNAHAN K, SHAFII B, et al. Pregnancy outcomes are not improved by administering gonadotropin-releasing hormone at initiation of a 5-day CIDR-Cosynch resynchronization protocol for lactating dairy cows[J]. J Dairy Sci, 2018, 101(9):8524-8531. [46] DE RENSIS F, LÓPEZ-GATIUS F. Use of equine chorionic gonadotropin to control reproduction of the dairy cow:a review[J]. Reprod Domest Anim, 2014, 49(2):177-182. [47] NASSER L F, REIS E L, OLIVEIRA M A, et al. Comparison of four synchronization protocols for fixed-time bovine embryo transfer in Bos indicus×Bos taurus recipients[J]. Theriogenology, 2004, 62(9):1577-1584. [48] BOTTINO M P, SIMÕES L M S, SILVA L A C L, et al. Effects of eCG and FSH in timed artificial insemination treatment regimens on estrous expression and pregnancy rates in primiparous and multiparous Bos indicus cows[J]. Anim Reprod Sci, 2021, 228:106751. [49] PESSOA G A, MARTINI A P, CARLOTO G W, et al. Different doses of equine chorionic gonadotropin on ovarian follicular growth and pregnancy rate of suckled Bos taurus beef cows subjected to timed artificial insemination protocol[J]. Theriogenology, 2016, 85(5):792-799. [50] SHABANKAREH H K, ZANDI M, GANJALI M. First service pregnancy rates following post-AI use of HCG in ovsynch and Heatsynch programmes in lactating dairy cows[J]. Reprod Domest Anim, 2010, 45(4):711-716. [51] ZHENG P, HUANG H, LI X Y, et al. LRH-A3 and HCG increase pregnancy rate during timed artificial insemination in dairy cows[J]. Anim Sci J, 2021, 92(1):e13549. [52] KIM I H, JEONG J K, KANG H G. Reproductive performance following a modified presynch-ovsynch, double-ovsynch, or conventional reproductive management program in Korean dairy herds[J]. Theriogenology, 2020, 156:27-35. [53] CHEBEL R C, SCANAVEZ A A, SILVA P R B, et al. Evaluation of presynchronized resynchronization protocols for lactating dairy cows[J]. J Dairy Sci, 2013, 96(2):1009-1020. [54] MENDONÇA L G D, ROCHA L S, VOELZ B E, et al. Presynchronization strategy using prostaglandin F2α, gonadotropin-releasing hormone, and detection of estrus to improve fertility in a resynchronization program for dairy cows[J]. Theriogenology, 2019, 124:39-47. [55] ABDALLA H, MAKAU D N, SALEM S E. Treatment of cows that fail to respond to pre-synchronization treatments with a CIDR-ovsynch regimen improves the overall pregnancy percentage after a double ovsynch treatment regimen[J]. Anim Reprod Sci, 2020, 216:106356. [56] DIRANDEH E, ROODBARI A R, COLAZO M G. Double-ovsynch, compared with presynch with or without GnRH, improves fertility in heat-stressed lactating dairy cows[J]. Theriogenology, 2015, 83(3):438-443. [57] SIMÕES L M S, ORLANDI R E, MASSONETO J P M, et al. Exposure to progesterone previous to the protocol of ovulation synchronization increases the follicular diameter and the fertility of suckled Bos indicus cows[J]. Theriogenology, 2018, 116:28-33. [58] MOREIRA F, ORLANDI C, RISCO C A, et al. Effects of presynchronization and bovine somatotropin on pregnancy rates to a timed artificial insemination protocol in lactating dairy cows[J]. J Dairy Sci, 2001, 84(7):1646-1659. [59] GIORDANO J O, THOMAS M J, CATUCUAMBA G, et al. Effect of extending the interval from presynch to initiation of ovsynch in a presynch-ovsynch protocol on fertility of timed artificial insemination services in lactating dairy cows[J]. J Dairy Sci, 2016, 99(1):746-757. [60] LANE E A, AUSTIN E J, CROWE M A. Oestrous synchronisation in cattle-current options following the EU regulations restricting use of oestrogenic compounds in food-producing animals:a review[J]. Anim Reprod Sci, 2008, 109(1/4):1-16. [61] MARTINS J P N, CUNHA T O, MARTINEZ W, et al. Presynchronization with prostaglandin F2α and gonadotropin-releasing hormone simultaneously improved first-service pregnancy per artificial insemination in lactating Holstein cows compared with Presynch-14 when combined with detection of estrus[J]. J Dairy Sci, 2023, 106(7):5115-5126. [62] BELLO N M, STEIBEL J P, PURSLEY J R. Optimizing ovulation to first GnRH improved outcomes to each hormonal injection of ovsynch in lactating dairy cows[J]. J Dairy Sci, 2006, 89(9):3413-3424. [63] OOSTHUIZEN N, FONTES P L P, OLIVEIRA FILHO R V, et al. Pre-synchronization of ovulation timing and delayed fixed-time artificial insemination increases pregnancy rates when sex-sorted semen is used for insemination of heifers[J]. Anim Reprod Sci, 2021, 226:106699. [64] SOUZA A H, AYRES H, FERREIRA R M, et al. A new presynchronization system (double-ovsynch) increases fertility at first postpartum timed AI in lactating dairy cows[J]. Theriogenology, 2008, 70(2):208-215. [65] CABRERA E M, LAUBER M R, VALDES-ARCINIEGA T, et al. Replacing the first gonadotropin-releasing hormone treatment in an ovsynch protocol with human chorionic gonadotropin decreased pregnancies per artificial insemination in lactating dairy cows[J]. J Dairy Sci, 2021, 104(7):8290-8300. [66] STANGAFERRO M L, WIJMA R, MASELLO M, et al. Reproductive performance and herd exit dynamics of lactating dairy cows managed for first service with the presynch-ovsynch or double-ovsynch protocol and different duration of the voluntary waiting period[J]. J Dairy Sci, 2018, 101(2):1673-1686. [67] STANGAFERRO M L, WIJMA R W, GIORDANO J O. Profitability of dairy cows submitted to the first service with the presynch-ovsynch or double-ovsynch protocol and different duration of the voluntary waiting period[J]. J Dairy Sci, 2019, 102(5):4546-4562. [68] GIORDANO J O, WILTBANK M C, GUENTHER J N, et al. Increased fertility in lactating dairy cows resynchronized with double-ovsynch compared with Ovsynch initiated 32 d after timed artificial insemination[J]. J Dairy Sci, 2012, 95(2):639-653. [69] ASTIZ S, FARGAS O. Pregnancy per AI differences between primiparous and multiparous high-yield dairy cows after using double ovsynch or G6G synchronization protocols[J]. Theriogenology, 2013, 79(7):1065-1070. [70] ALLAHYARI I, GHARAGOZLOU F, VOJGANI M, et al. Replacement of the first GnRH by estradiol in the breeding ovsynch of double ovsynch protocol could improve fertility in Holstein dairy cows[J]. Anim Reprod Sci, 2023, 252:107228. [71] DIRANDEH E. Starting ovsynch protocol on day 6 of first postpartum estrous cycle increased fertility in dairy cows by affecting ovarian response during heat stress[J]. Anim Reprod Sci, 2014, 149(3/4):135-140. [72] KIM I H, JEONG J K, KANG H G. Factors affecting reproductive outcomes in lactating dairy cows that undergo presynchronization-ovsynch and successive resynchronization programs[J]. Theriogenology, 2022, 187:9-18. [73] RICCI A, CARVALHO P D, AMUNDSON M C, et al. Characterization of luteal dynamics in lactating Holstein cows for 32 days after synchronization of ovulation and timed artificial insemination[J]. J Dairy Sci, 2017, 100(12):9851-9860. [74] MOUSSA F, DOUMIATI S, BERNABÒ N, et al. Hormones residues in bovine animals:sampling, analysis and health risk assessment[J]. Steroids, 2022, 181:108994. [75] RANDI F, KELLY A K, PARR M H, et al. Effect of ovulation synchronization program and season on pregnancy to timed artificial insemination in suckled beef cows[J]. Theriogenology, 2021, 172:223-229. [76] KAJAYSRI J, CHUMCHOUNG C, WUTTHIWITTHAYAPHONG S, et al. Comparison of estrus synchronization by controlled internal drug release device (CIDR) and adhesive transdermal progestin patch in postpartum beef cows[J]. Theriogenology, 2017, 100:66-71. |
[1] | 费国庆, 宁致远, 赵泽芳, 刘艳秋, 刘腾飞, 李贤, 丛日华, 陈鸿, 陈树林. 妊娠期奶牛黄体细胞的分离鉴定及培养特性[J]. 畜牧兽医学报, 2024, 55(5): 2214-2225. |
[2] | 沈文娟, 杨卓, 张馨蕊, 付予, 陶金忠. 奶牛生殖道微生物与繁殖及相关疾病的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 924-932. |
[3] | 康方圆, 刘镇滔, 吴奎显, 倪晗, 钟凯, 李和平, 杨国宇, 韩立强. 脂噬对奶牛乳腺上皮细胞脂滴大小的调控研究[J]. 畜牧兽医学报, 2024, 55(3): 1095-1101. |
[4] | 张馨蕊, 付予, 杨卓, 沈文娟, 陶金忠. 奶牛早期妊娠诊断蛋白的研究[J]. 畜牧兽医学报, 2024, 55(2): 451-460. |
[5] | 张志飞, 唐雪颖, 闵力, 童雄, 陈卫东, 巨向红, 李大刚. 荷斯坦奶牛肝脏组织中与泌乳时期及繁殖力相关的基因共表达网络构建[J]. 畜牧兽医学报, 2024, 55(2): 528-539. |
[6] | 庄翠翠, 韩博. 大肠杆菌感染奶牛乳腺上皮细胞和小鼠乳腺组织致其线粒体损伤的机制研究[J]. 畜牧兽医学报, 2024, 55(2): 822-833. |
[7] | 曹建华, 杨柏高, 张培培, 冯肖艺, 张航, 余洲, 牛一凡, 郝海生, 杜卫华, 朱化彬, 杨凌, 赵学明. 能量负平衡影响奶牛卵泡发育的机制[J]. 畜牧兽医学报, 2024, 55(1): 22-30. |
[8] | 孟璐, 胡海燕, 董蕾, 郑楠, 王加启. 基于SourceTracker分析牧场环境对乳房炎乳菌群的影响[J]. 畜牧兽医学报, 2023, 54(9): 3872-3883. |
[9] | 张航, 杨柏高, 徐茜, 冯肖艺, 杜卫华, 郝海生, 朱化彬, 张培培, 赵学明. 热应激影响奶牛胚胎发育作用机制的研究进展[J]. 畜牧兽医学报, 2023, 54(7): 2692-2700. |
[10] | 赵婉莉, 曹棋棋, 杨悦, 邓昭举, 徐闯. 胃肠道菌群与黏膜免疫在围产期奶牛健康中的作用[J]. 畜牧兽医学报, 2023, 54(7): 2751-2760. |
[11] | 黄上真, 马龙刚, 娄文琦, 宁景扬, 张海亮, 胡丽蓉, 扎琼, 李斌, 徐青, 巴桑罗布, 王雅春. 高原地区奶牛血液指标的影响因素分析[J]. 畜牧兽医学报, 2023, 54(5): 1964-1978. |
[12] | 蔡明玉, 张海龙, 海珍珍, 乔亚蕊, 杜军, 周学章. 重组克柔念珠菌14-3-3蛋白诱导奶牛乳腺上皮细胞炎症反应的分子机制[J]. 畜牧兽医学报, 2023, 54(4): 1679-1689. |
[13] | 冯肖艺, 杨柏高, 郝海生, 杜卫华, 朱化彬, 崔凯, 赵学明. 热应激导致奶牛胚胎质量下降的机制及解决措施[J]. 畜牧兽医学报, 2023, 54(3): 868-876. |
[14] | 余诗强, 李留学, 赵小博, 赵慧颖, 屠焰, 赵玉超, 蒋林树. 不同泌乳阶段和体细胞水平的中国荷斯坦奶牛泌乳性能差异和相关性研究[J]. 畜牧兽医学报, 2023, 54(3): 1003-1014. |
[15] | 潘婵媛, 赵梓轩, 段铭洁, 蒋林树, 童津津. 基于网络药理学预测青蒿缓解奶牛氧化应激的作用机制[J]. 畜牧兽医学报, 2023, 54(3): 1071-1084. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||