畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (6): 2313-2324.doi: 10.11843/j.issn.0366-6964.2024.06.004
宋浩然1,2(), 冯肖艺1,2, 张培培1, 张航1, 牛一凡1, 余洲1, 万鹏程3, 崔凯2, 赵学明1,*(
)
收稿日期:
2023-12-11
出版日期:
2024-06-23
发布日期:
2024-06-28
通讯作者:
赵学明
E-mail:1315503802@qq.com;zhaoxueming@caas.cn
作者简介:
宋浩然(2001-),男,山东泰安人,硕士生,主要从事动物繁殖研究,E-mail: 1315503802@qq.com
基金资助:
Haoran SONG1,2(), Xiaoyi FENG1,2, Peipei ZHANG1, Hang ZHANG1, Yifan NIU1, Zhou YU1, Pengcheng WAN3, Kai CUI2, Xueming ZHAO1,*(
)
Received:
2023-12-11
Online:
2024-06-23
Published:
2024-06-28
Contact:
Xueming ZHAO
E-mail:1315503802@qq.com;zhaoxueming@caas.cn
摘要:
随着奶牛产奶量的提高,我国奶业产业链也在不断优化和升级,朝着现代化、规范化和国际化的方向迈进。然而,高产奶牛的繁殖性能却在逐渐降低,目前,这已成为奶牛相关研究工作者面临的共同问题。卵泡发育与繁殖效率关系密切,卵泡正常发育是奶牛发情、排卵等繁殖活动的先决条件。其中,卵泡颗粒细胞能够与卵母细胞和卵泡膜细胞相互作用分泌多种激素和因子,同时,作为多种激素和细胞因子的受体影响卵泡发育。因此,本文总结了关于卵泡颗粒细胞功能与卵泡发育的相关研究,并以卵泡颗粒细胞在卵泡发育过程中的作用和颗粒细胞对卵母细胞的影响为重点进行综述,以期为今后相关研究提供理论参考。
中图分类号:
宋浩然, 冯肖艺, 张培培, 张航, 牛一凡, 余洲, 万鹏程, 崔凯, 赵学明. 奶牛卵泡颗粒细胞在卵泡发育中的作用机制[J]. 畜牧兽医学报, 2024, 55(6): 2313-2324.
Haoran SONG, Xiaoyi FENG, Peipei ZHANG, Hang ZHANG, Yifan NIU, Zhou YU, Pengcheng WAN, Kai CUI, Xueming ZHAO. The Mechanism of Follicular Granulosa Cells in Follicular Development in Dairy Cows[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2313-2324.
1 | 谭金菁, 李梦雅, 刘箫仪, 等. RCEP背景下中国乳制品的市场潜力研究[J]. 上海第二工业大学学报, 2023, 40 (3): 254- 260. |
TAN J J , LI M Y , LIU X Y , et al. An analysis on market potential of Chinese dairy products under the background of RCEP[J]. Journal of Shanghai Second Polytechnic University, 2023, 40 (3): 254- 260. | |
2 | 中华人民共和国国务院. 国务院关于促进奶业持续健康发展的意见[J]. 中国乳业, 2007, (12): 3- 5. |
State Council of the People's Republic of China . Opinions of the state council on promoting the sustainable and healthy development of the dairy industry[J]. China Dairy, 2007, (12): 3- 5. | |
3 | 推进奶业振兴, 保障乳品质量安全[J]. 农经, 2018(7): 13-15. |
Promote the revitalization of the dairy industry and ensure the quality and safety of dairy products[J]. Agriculture Economics, 2018(7): 13-15. (in Chinese) | |
4 | 暴梦川. 我国民族奶业竞争力持续增强[N]. 消费日报, 2023-07-24(A01). |
PU M C. The competitiveness of China's national dairy industry continues to increase[N]. Consumption Daily, 2023-07-24(A01). (in Chinese) | |
5 |
PEÑAGARICANO F . Genomics and dairy bull fertility[J]. Vet Clin North Am Food Anim Pract, 2024, 40 (1): 185- 190.
doi: 10.1016/j.cvfa.2023.08.005 |
6 |
LUCY M C . Reproductive loss in high-producing dairy cattle: where will it end?[J]. J Dairy Sci, 2001, 84 (6): 1277- 1293.
doi: 10.3168/jds.S0022-0302(01)70158-0 |
7 | DOBSON H , SMITH R F , ROYAL M , et al. The high-producing dairy cow and its reproductive performance[J]. Reprod Domest Anim, 2007, 42 (Suppl 2): 17- 23. |
8 |
FAIR T . Mammalian oocyte development: checkpoints for competence[J]. Reprod Fertil Dev, 2010, 22 (1): 13- 20.
doi: 10.1071/RD09216 |
9 |
MAKAREVICH A V , FÖLDEŠIOVÁ M , PIVKO J , et al. Histological characteristics of ovarian follicle atresia in dairy cows with different milk production[J]. Anat Histol Embryol, 2018, 47 (6): 510- 516.
doi: 10.1111/ahe.12389 |
10 |
YIN B Y , UMAR T , MA X F , et al. MiR-193a-3p targets LGR4 to promote the inflammatory response in endometritis[J]. Int Immunopharmacol, 2021, 98, 107718.
doi: 10.1016/j.intimp.2021.107718 |
11 |
ENDO N . Possible causes and treatment strategies for the estrus and ovulation disorders in dairy cows[J]. J Reprod Dev, 2022, 68 (2): 85- 89.
doi: 10.1262/jrd.2021-125 |
12 |
ČENGIĆ B , VARATANOVIĆ N , MUTEVELIĆ T , et al. Distribution of dominant follicles in postpartum dairy cows[J]. Biotechnol Anim Husb, 2017, 33 (2): 181- 191.
doi: 10.2298/BAH1702181C |
13 | KHAN I , MESALAM A , HEO Y S , et al. Heat stress as a barrier to successful reproduction and potential alleviation strategies in cattle[J]. Animals (Basel), 2023, 13 (14): 2359. |
14 |
BABAYEV E , XU M , SHEA L D , et al. Follicle isolation methods reveal plasticity of granulosa cell steroidogenic capacity during mouse in vitro follicle growth[J]. Mol Hum Reprod, 2022, 28 (10): gaac033.
doi: 10.1093/molehr/gaac033 |
15 |
SIMON L E , KUMAR T R , DUNCAN F E . In vitro ovarian follicle growth: a comprehensive analysis of key protocol variables[J]. Biol Reprod, 2020, 103 (3): 455- 470.
doi: 10.1093/biolre/ioaa073 |
16 |
ZHANG J , DENG Y F , LI J J , et al. Theca cell-conditioned medium enhances steroidogenesis competence of buffalo (Bubalus bubalis) granulosa cells[J]. Reprod Domest Anim, 2021, 56 (2): 254- 262.
doi: 10.1111/rda.13792 |
17 |
WU G M J , CHEN A C H , YEUNG W S B , et al. Current progress on in vitro differentiation of ovarian follicles from pluripotent stem cells[J]. Front Cell Dev Biol, 2023, 11, 1166351.
doi: 10.3389/fcell.2023.1166351 |
18 |
ALBAMONTE M I , ALBAMONTE M S , BOU-KHAIR R M , et al. The ovarian germinal reserve and apoptosis-related proteins in the infant and adolescent human ovary[J]. J Ovarian Res, 2019, 12 (1): 22.
doi: 10.1186/s13048-019-0496-2 |
19 |
DIPALI S S , SUEBTHAWINKUL C , BURDETTE J E , et al. Human follicular fluid elicits select dose- and age-dependent effects on mouse oocytes and cumulus-oocyte complexes in a heterologous in vitro maturation assay[J]. Mol Hum Reprod, 2023, 29 (11): gaad039.
doi: 10.1093/molehr/gaad039 |
20 |
DOMPE C , KULUS M , STEFAŃSKA K , et al. Human granulosa cells-stemness properties, molecular cross-talk and follicular angiogenesis[J]. Cells, 2021, 10 (6): 1396.
doi: 10.3390/cells10061396 |
21 |
AZARI-DOLATABAD N , BENEDETTI C , VELEZ D A , et al. Oocyte developmental capacity is influenced by intrinsic ovarian factors in a bovine model for individual embryo production[J]. Anim Reprod Sci, 2023, 249, 107185.
doi: 10.1016/j.anireprosci.2022.107185 |
22 | COSTERMANS N G J , SOEDE N M , BLOKLAND M , et al. Steroid profile of porcine follicular fluid and blood serum: relation with follicular development[J]. Physiol Rep, 2019, 7 (24): e14320. |
23 |
PAULINO L R F M , DE ASSIS E I T , AZEVEDO V A N , et al. Why is it so difficult to have competent oocytes from in vitro cultured preantral follicles?[J]. Reprod Sci, 2022, 29 (12): 3321- 3334.
doi: 10.1007/s43032-021-00840-8 |
24 | FONTANA J , MARTINKOVÁ S , PETR J , et al. Metabolic cooperation in the ovarian follicle[J]. Physiol Res, 2020, 69 (1): 33- 48. |
25 |
EMORI C , SUGIURA K . Role of oocyte-derived paracrine factors in follicular development[J]. Anim Sci J, 2014, 85 (6): 627- 633.
doi: 10.1111/asj.12200 |
26 |
SUGIURA K , PENDOLA F L , EPPIG J J . Oocyte control of metabolic cooperativity between oocytes and companion granulosa cells: energy metabolism[J]. Dev Biol, 2005, 279 (1): 20- 30.
doi: 10.1016/j.ydbio.2004.11.027 |
27 |
DRUMMOND A E . The role of steroids in follicular growth[J]. Reprod Biol Endocrinol, 2006, 4, 16.
doi: 10.1186/1477-7827-4-16 |
28 |
ANDRADE G M , COLLADO M D , MEIRELLES F V , et al. Intrafollicular barriers and cellular interactions during ovarian follicle development[J]. Anim Reprod, 2019, 16 (3): 485- 496.
doi: 10.21451/1984-3143-AR2019-0051 |
29 |
STRĄCZYŃSKA P , PAPIS K , MORAWIEC E , et al. Signaling mechanisms and their regulation during in vivo or in vitro maturation of mammalian oocytes[J]. Reprod Biol Endocrinol, 2022, 20 (1): 37.
doi: 10.1186/s12958-022-00906-5 |
30 |
RAMESH V , DEVI L S , JOSHI V , et al. Ovarian follicular dynamics, hormonal profiles and ovulation time in Mithun cows (Bos frontalis)[J]. Reprod Domest Anim, 2022, 57 (10): 1218- 1229.
doi: 10.1111/rda.14196 |
31 |
STRINGER J M , ALESI L R , WINSHIP A L , et al. Beyond apoptosis: evidence of other regulated cell death pathways in the ovary throughout development and life[J]. Hum Reprod Update, 2023, 29 (4): 434- 456.
doi: 10.1093/humupd/dmad005 |
32 |
YANG X , MA J , MO L Y , et al. Molecular cloning and characterization of STC1 gene and its functional analyses in yak (Bos grunniens) cumulus granulosa cells[J]. Theriogenology, 2023, 208, 185- 193.
doi: 10.1016/j.theriogenology.2023.06.023 |
33 |
TU J J , CHEUNG A H H , CHAN C L K , et al. The role of microRNAs in ovarian granulosa cells in health and disease[J]. Front Endocrinol (Lausanne), 2019, 10, 174.
doi: 10.3389/fendo.2019.00174 |
34 |
MATSUDA F , INOUE N , MANABE N , et al. Follicular growth and atresia in mammalian ovaries: regulation by survival and death of granulosa cells[J]. J Reprod Dev, 2012, 58 (1): 44- 50.
doi: 10.1262/jrd.2011-012 |
35 |
PLANT T M . 60 Years of Neuroendocrinology: the hypothalamo-pituitary-gonadal axis[J]. J Endocrinol, 2015, 226 (2): T41- T54.
doi: 10.1530/JOE-15-0113 |
36 |
ZHANG J , WANG H X , LU J K , et al. Granulosa cells affect in vitro maturation and subsequent parthenogenetic development of buffalo (Bubalus bubalis) oocytes[J]. Reprod Domest Anim, 2022, 57 (2): 141- 148.
doi: 10.1111/rda.13974 |
37 |
ZHANG J , SUN J M , XIAO L L , et al. Testosterone supplementation improves estrogen synthesis of buffalo (Bubalus bubalis) granulosa cells[J]. Reprod Domest Anim, 2023, 58 (11): 1628- 1635.
doi: 10.1111/rda.14467 |
38 |
BRAW-TAL R , YOSSEFI S . Studies in vivo and in vitro on the initiation of follicle growth in the bovine ovary[J]. J Reprod Fertil, 1997, 109 (1): 165- 171.
doi: 10.1530/jrf.0.1090165 |
39 |
ARAÚJO V R , GASTAL M O , FIGUEIREDO J R , et al. In vitro culture of bovine preantral follicles: a review[J]. Reprod Biol Endocrinol, 2014, 12, 78.
doi: 10.1186/1477-7827-12-78 |
40 |
ARCHILIA E C , BELLO C A P , BATALHA I M , et al. Effects of follicle-stimulating hormone, insulin-like growth factor 1, fibroblast growth factor 2, and fibroblast growth factor 9 on sirtuins expression and histone deacetylase activity in bovine granulosa cells[J]. Theriogenology, 2023, 210, 1- 8.
doi: 10.1016/j.theriogenology.2023.07.011 |
41 | GAO Y Y , ZOU Y G , WU G J , et al. Oxidative stress and mitochondrial dysfunction of granulosa cells in polycystic ovarian syndrome[J]. Front Med (Lausanne), 2023, 10, 1193749. |
42 |
ZHANG J , DENG Y F , XU J C , et al. Granulosa cell-conditioned medium enhances steroidogenic competence of buffalo (Bubalus bubalis) theca cells[J]. In Vitro Cell Dev Biol Anim, 2020, 56 (9): 799- 807.
doi: 10.1007/s11626-020-00509-7 |
43 |
YAO G D , YIN M M , LIAN J , et al. MicroRNA-224 is involved in transforming growth factor-beta-mediated mouse granulosa cell proliferation and granulosa cell function by targeting Smad4[J]. Mol Endocrinol, 2010, 24 (3): 540- 551.
doi: 10.1210/me.2009-0432 |
44 | KRANC W , BRĄZERT M , CELICHOWSKI P , et al. Heart development and morphogenesis' is a novel pathway for human ovarian granulosa cell differentiation during long-term in vitro cultivation-a microarray approach[J]. Mol Med Rep, 2019, 19 (3): 1705- 1715. |
45 |
ZHAO X , DU F J , LIU X L , et al. Brain-derived neurotrophic factor (BDNF) is expressed in buffalo (Bubalus bubalis) ovarian follicles and promotes oocyte maturation and early embryonic development[J]. Theriogenology, 2019, 130, 79- 88.
doi: 10.1016/j.theriogenology.2019.02.020 |
46 |
ALAM M H , MIYANO T . Interaction between growing oocytes and granulosa cells in vitro[J]. Reprod Med Biol, 2020, 19 (1): 13- 23.
doi: 10.1002/rmb2.12292 |
47 |
SPICER L J , SCHÜTZ L F . Effects of grape phenolics, myricetin and piceatannol, on bovine granulosa and theca cell proliferation and steroid production in vitro[J]. Food Chem Toxicol, 2022, 167, 113288.
doi: 10.1016/j.fct.2022.113288 |
48 |
WEI X L , ZHENG L P , TIAN Y P , et al. Tyrosine phosphatase SHP2 in ovarian granulosa cells balances follicular development by inhibiting PI3K/AKT signaling[J]. J Mol Cell Biol, 2022, 14 (7): mjac048.
doi: 10.1093/jmcb/mjac048 |
49 |
KASEDER M , SCHMID N , EUBLER K , et al. Evidence of a role for cAMP in mitochondrial regulation in ovarian granulosa cells[J]. Mol Hum Reprod, 2022, 28 (10): gaac030.
doi: 10.1093/molehr/gaac030 |
50 |
PAN Y , ZHU J Z , LV Q , et al. Follicle-stimulating hormone regulates glycolysis of water buffalo follicular granulosa cells through AMPK/SIRT1 signalling pathway[J]. Reprod Domest Anim, 2022, 57 (2): 185- 195.
doi: 10.1111/rda.14039 |
51 |
ZHANG L , ZHANG X X , ZHANG X J , et al. MiRNA-143 mediates the proliferative signaling pathway of FSH and regulates estradiol production[J]. J Endocrinol, 2017, 234 (1): 1- 14.
doi: 10.1530/JOE-16-0488 |
52 | HILKER R E , PAN B , ZHAN X S , et al. MicroRNA-21 enhances estradiol production by inhibiting WT1 expression in granulosa cells[J]. J Mol Endocrinol, 2021, 68 (1): 11- 22. |
53 |
TANG X R , MA L Z , GUO S , et al. High doses of FSH induce autophagy in bovine ovarian granulosa cells via the AKT/mTOR pathway[J]. Reprod Domest Anim, 2021, 56 (2): 324- 332.
doi: 10.1111/rda.13869 |
54 | 艾爱. 卵巢颗粒干细胞的研究[D]. 上海: 上海交通大学, 2017. |
AI A. Study of granulosa stem cells in the ovary[D]. Shanghai: Shanghai Jiao Tong University, 2017. (in Chinese) | |
55 | 杨鑫宇, 贾振伟. 颗粒细胞EGF类因子信号通路在调控卵母细胞成熟和发育中的作用[J]. 遗传, 2019, 41 (2): 137- 145. |
YANG X Y , JIA Z W . The role of EGF-like factor signaling pathway in granulosa cells in regulation of oocyte maturation and development[J]. Hereditas (Beijing), 2019, 41 (2): 137- 145. | |
56 |
JOZKOWIAK M , PIOTROWSKA-KEMPISTY H , KOBYLAREK D , et al. Endocrine disrupting chemicals in polycystic ovary syndrome: the relevant role of the theca and granulosa cells in the pathogenesis of the ovarian dysfunction[J]. Cells, 2022, 12 (1): 174.
doi: 10.3390/cells12010174 |
57 |
HE Q Y , ZHANG X , YANG X J . Glutathione mitigates meiotic defects in porcine oocytes exposed to beta-cypermethrin by regulating ROS levels[J]. Toxicology, 2023, 494, 153592.
doi: 10.1016/j.tox.2023.153592 |
58 |
DE MATOS D G , FURNUS C C , MOSES D F , et al. Effect of cysteamine on glutathione level and developmental capacity of bovine oocyte matured in vitro[J]. Mol Reprod Dev, 1995, 42 (4): 432- 436.
doi: 10.1002/mrd.1080420409 |
59 |
ZHANG J R , LI F X , ZHANG X Y , et al. Melatonin improves turbot oocyte meiotic maturation and antioxidant capacity, inhibits apoptosis-related genes mRNAs in vitro[J]. Antioxidants (Basel), 2023, 12 (7): 1389.
doi: 10.3390/antiox12071389 |
60 |
RICHANI D , DUNNING K R , THOMPSON J G , et al. Metabolic co-dependence of the oocyte and cumulus cells: essential role in determining oocyte developmental competence[J]. Hum Reprod Update, 2021, 27 (1): 27- 47.
doi: 10.1093/humupd/dmaa043 |
61 |
CLARKE H J . Transzonal projections: essential structures mediating intercellular communication in the mammalian ovarian follicle[J]. Mol Reprod Dev, 2022, 89 (11): 509- 525.
doi: 10.1002/mrd.23645 |
62 |
CLARKE H J . Regulation of germ cell development by intercellular signaling in the mammalian ovarian follicle[J]. Wiley Interdiscip Rev Dev Biol, 2018, 7 (1): e294.
doi: 10.1002/wdev.294 |
63 |
SAEED-ZIDANE M , LINDEN L , SALILEW-WONDIM D , et al. Cellular and exosome mediated molecular defense mechanism in bovine granulosa cells exposed to oxidative stress[J]. PLoS One, 2017, 12 (11): e0187569.
doi: 10.1371/journal.pone.0187569 |
64 |
SALILEW-WONDIM D , GEBREMEDHN S , HOELKER M , et al. The role of micrornas in mammalian fertility: from gametogenesis to embryo implantation[J]. Int J Mol Sci, 2020, 21 (2): 585.
doi: 10.3390/ijms21020585 |
65 |
UJU C N , UNNIAPPAN S . Growth factors and female reproduction in vertebrates[J]. Mol Cell Endocrinol, 2024, 579, 112091.
doi: 10.1016/j.mce.2023.112091 |
66 |
ZAREIFARD A , BEAUDRY F , NDIAYE K . Janus Kinase 3 phosphorylation and the JAK/STAT pathway are positively modulated by follicle-stimulating hormone (FSH) in bovine granulosa cells[J]. BMC Mol Cell Biol, 2023, 24 (1): 21.
doi: 10.1186/s12860-023-00482-5 |
67 | LONG X , YANG Q Y , QIAN J J , et al. Obesity modulates cell-cell interactions during ovarian folliculogenesis[J]. iScience, 2021, 25 (1): 103627. |
68 |
RICHARDS J S , REN Y A , CANDELARIA N , et al. Ovarian follicular theca cell recruitment, differentiation, and impact on fertility: 2017 update[J]. Endocr Rev, 2018, 39 (1): 1- 20.
doi: 10.1210/er.2017-00164 |
69 |
YOUNG J M , MCNEILLY A S . Theca: the forgotten cell of the ovarian follicle[J]. Reproduction, 2010, 140 (4): 489- 504.
doi: 10.1530/REP-10-0094 |
70 |
TAN J , ZOU Y , WU X W , et al. Increased SCF in follicular fluid and granulosa cells positively correlates with oocyte maturation, fertilization, and embryo quality in humans[J]. Reprod Sci, 2017, 24 (11): 1544- 1550.
doi: 10.1177/1933719117697125 |
71 |
PARROTT J A , VIGNE J L , CHU B Z , et al. Mesenchymal-epithelial interactions in the ovarian follicle involve keratinocyte and hepatocyte growth factor production by thecal cells and their action on granulosa cells[J]. Endocrinology, 1994, 135 (2): 569- 575.
doi: 10.1210/endo.135.2.8033804 |
72 |
PARROTT J A , SKINNER M K . Thecal cell-granulosa cell interactions involve a positive feedback loop among keratinocyte growth factor, hepatocyte growth factor, and kit ligand during ovarian follicular development[J]. Endocrinology, 1998, 139 (5): 2240- 2245.
doi: 10.1210/endo.139.5.6018 |
73 |
REGAN S L P , KNIGHT P G , YOVICH J L , et al. Granulosa cell apoptosis in the ovarian follicle-a changing view[J]. Front Endocrinol (Lausanne), 2018, 9, 61.
doi: 10.3389/fendo.2018.00061 |
74 |
LI Q Q , DU X , PAN Z X , et al. The transcription factor SMAD4 and miR-10b contribute to E2 release and cell apoptosis in ovarian granulosa cells by targeting CYP19A1[J]. Mol Cell Endocrinol, 2018, 476, 84- 95.
doi: 10.1016/j.mce.2018.04.012 |
75 |
JOZKOWIAK M , HUTCHINGS G , JANKOWSKI M , et al. The stemness of human ovarian granulosa cells and the role of resveratrol in the differentiation of MSCs-a review based on cellular and molecular knowledge[J]. Cells, 2020, 9 (6): 1418.
doi: 10.3390/cells9061418 |
76 |
SKINNER M K , SCHMIDT M , SAVENKOVA M I , et al. Regulation of granulosa and theca cell transcriptomes during ovarian antral follicle development[J]. Mol Reprod Dev, 2008, 75 (9): 1457- 1472.
doi: 10.1002/mrd.20883 |
77 |
BIGGERS J D , WHITTINGHAM D G , DONAHUE R P . The pattern of energy metabolism in the mouse oöcyte and zygote[J]. Proc Natl Acad Sci U S A, 1967, 58 (2): 560- 567.
doi: 10.1073/pnas.58.2.560 |
78 | HAUG L M , WILSON R C , GAUSTAD A H , et al. Cumulus cell and oocyte gene expression in prepubertal gilts and sows identifies cumulus cells as a prime informative parameter of oocyte quality[J]. Biology (Basel), 2023, 12 (12): 1484. |
79 |
MARTINEZ C A , RIZOS D , RODRIGUEZ-MARTINEZ H , et al. Oocyte-cumulus cells crosstalk: new comparative insights[J]. Theriogenology, 2023, 205, 87- 93.
doi: 10.1016/j.theriogenology.2023.04.009 |
80 |
RUSSELL D L , GILCHRIST R B , BROWN H M , et al. Bidirectional communication between cumulus cells and the oocyte: old hands and new players?[J]. Theriogenology, 2016, 86 (1): 62- 68.
doi: 10.1016/j.theriogenology.2016.04.019 |
81 |
RYBSKA M , KNAP S , JANKOWSKI M , et al. Characteristic of factors influencing the proper course of folliculogenesis in mammals[J]. Med J Cell Biol, 2018, 6 (1): 33- 38.
doi: 10.2478/acb-2018-0006 |
82 |
LI R , ALBERTINI D F . The road to maturation: somatic cell interaction and self-organization of the mammalian oocyte[J]. Nat Rev Mol Cell Biol, 2013, 14 (3): 141- 152.
doi: 10.1038/nrm3531 |
83 |
JONES R L , PEPLING M E . KIT signaling regulates primordial follicle formation in the neonatal mouse ovary[J]. Dev Biol, 2013, 382 (1): 186- 197.
doi: 10.1016/j.ydbio.2013.06.030 |
84 | CHEN M H , GUO X , ZHONG Y P , et al. AMH inhibits androgen production in human theca cells[J]. J Steroid Biochem Mol Biol, 2022, 226, 106216. |
85 |
HU R , LOU Y , WANG F M , et al. Effects of recombinant human AMH on SCF expression in human granulosa cells[J]. Cell Biochem Biophys, 2013, 67 (3): 1481- 1485.
doi: 10.1007/s12013-013-9649-x |
86 |
BABAYEV E , DUNCAN F E . Age-associated changes in cumulus cells and follicular fluid: the local oocyte microenvironment as a determinant of gamete quality[J]. Biol Reprod, 2022, 106 (2): 351- 365.
doi: 10.1093/biolre/ioab241 |
87 | LIU J F , CAO Y H , FENG T , et al. Expression patterns of BMP15 gene in folliculogenesis of buffalo (Bubalus bubalis)[J]. Pak J Zool, 2019, 52 (1): 37- 47. |
88 |
SAFDAR M , LIANG A X , RAJPUT S A , et al. Orexin-a regulates follicular growth, proliferation, cell cycle and apoptosis in mouse primary granulosa cells via the AKT/ERK signaling pathway[J]. Molecules, 2021, 26 (18): 5635.
doi: 10.3390/molecules26185635 |
89 |
EPPIG J J . Intercommunication between mammalian oocytes and companion somatic cells[J]. Bioessays, 1991, 13 (11): 569- 574.
doi: 10.1002/bies.950131105 |
90 |
WANG F P , TANG Y W , CAI Y J , et al. Intrafollicular retinoic acid signaling is important for luteinizing hormone-induced oocyte meiotic resumption[J]. Genes (Basel), 2023, 14 (4): 946.
doi: 10.3390/genes14040946 |
91 | CONTI M , HSIEH M , ZAMAH A M , et al. Novel signaling mechanisms in the ovary during oocyte maturation and ovulation[J]. Mol Cell Endocrinol, 2012, 356 (1/2): 65- 73. |
92 |
PEI Z L , DENG K , XU C J , et al. The molecular regulatory mechanisms of meiotic arrest and resumption in oocyte development and maturation[J]. Reprod Biol Endocrinol, 2023, 21 (1): 90.
doi: 10.1186/s12958-023-01143-0 |
93 | BERNAL-ULLOA S M , HEINZMANN J , HERRMANN D , et al. Cyclic AMP affects oocyte maturation and embryo development in prepubertal and adult cattle[J]. PLoS One, 2017, 11 (2): e0150264. |
94 |
GILCHRIST R B , LUCIANO A M , RICHANI D , et al. Oocyte maturation and quality: role of cyclic nucleotides[J]. Reproduction, 2016, 152 (5): R143- R157.
doi: 10.1530/REP-15-0606 |
95 |
JAFFE L A , EGBERT J R . Regulation of mammalian oocyte meiosis by intercellular communication within the ovarian follicle[J]. Annu Rev Physiol, 2017, 79, 237- 260.
doi: 10.1146/annurev-physiol-022516-034102 |
96 | WIGGLESWORTH K , LEE K B , O'BRIEN M J , et al. Bidirectional communication between oocytes and ovarian follicular somatic cells is required for meiotic arrest of mammalian oocytes[J]. Proc Natl Acad Sci U S A, 2013, 110 (39): E3723- E3729. |
97 | FRANCIOSI F , COTICCHIO G , LODDE V , et al. Natriuretic peptide precursor c delays meiotic resumption and sustains gap junction-mediated communication in bovine cumulus-enclosed oocytes[J]. Biol Reprod, 2014, 91 (3): 61. |
98 |
ZHANG M J , SU Y Q , SUGIURA K , et al. Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes[J]. Science, 2010, 330 (6002): 366- 369.
doi: 10.1126/science.1193573 |
99 |
SATO E . Intraovarian control of selective follicular growth and induction of oocyte maturation in mammals[J]. Proc Jpn Acad Ser B Phys Biol Sci, 2015, 91 (3): 76- 91.
doi: 10.2183/pjab.91.76 |
100 |
OWEN C M , JAFFE L A . Luteinizing hormone stimulates ingression of mural granulosa cells within the mouse preovulatory follicle[J]. Biol Reprod, 2024, 110 (2): 288- 299.
doi: 10.1093/biolre/ioad142 |
101 |
DUFFY D M , KO C , JO M , et al. Ovulation: parallels with inflammatory processes[J]. Endocr Rev, 2019, 40 (2): 369- 416.
doi: 10.1210/er.2018-00075 |
102 | MARA J N , ZHOU L T , LARMORE M , et al. Ovulation and ovarian wound healing are impaired with advanced reproductive age[J]. Aging (Albany NY), 2020, 12 (10): 9686- 9713. |
103 |
KOSSOWSKA-TOMASZCZUK K , DE GEYTER C , DE GEYTER M , et al. The multipotency of luteinizing granulosa cells collected from mature ovarian follicles[J]. Stem Cells, 2009, 27 (1): 210- 219.
doi: 10.1634/stemcells.2008-0233 |
104 |
ROVANI M T , GASPERIN B G , FERREIRA R , et al. Methods to study ovarian function in monovulatory species using the cow as a model[J]. Anim Reprod, 2017, 14 (2): 383- 391.
doi: 10.21451/1984-3143-AR832 |
105 | THAQI G , BERISHA B , PFAFFL M W . Local expression dynamics of various adipokines during induced luteal regression (Luteolysis) in the bovine corpus luteum[J]. Animals (Basel), 2023, 13 (20): 3221. |
106 |
LIU N , WANG S Y , YAO Q C , et al. Activin A attenuates apoptosis of granulosa cells in atretic follicles through ERβ-induced autophagy[J]. Reprod Domest Anim, 2022, 57 (6): 625- 634.
doi: 10.1111/rda.14103 |
107 |
XU G Q , DONG Y Y Y , WANG Z , et al. Melatonin attenuates oxidative stress-induced apoptosis of bovine ovarian granulosa cells by promoting mitophagy via SIRT1/FoxO1 signaling pathway[J]. Int J Mol Sci, 2023, 24 (16): 12854.
doi: 10.3390/ijms241612854 |
108 |
MATSUDA-MINEHATA F , INOUE N , GOTO Y , et al. The regulation of ovarian granulosa cell death by pro- and anti-apoptotic molecules[J]. J Reprod Dev, 2006, 52 (6): 695- 705.
doi: 10.1262/jrd.18069 |
109 |
DUMESIC D A , MELDRUM D R , KATZ-JAFFE M G , et al. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health[J]. Fertil Steril, 2015, 103 (2): 303- 316.
doi: 10.1016/j.fertnstert.2014.11.015 |
110 |
ZANJIRBAND M , HODAYI R , SAFAEINEJAD Z , et al. Evaluation of the p53 pathway in polycystic ovarian syndrome pathogenesis and apoptosis enhancement in human granulosa cells through transcriptome data analysis[J]. Sci Rep, 2023, 13 (1): 11648.
doi: 10.1038/s41598-023-38340-1 |
111 |
ESCOBAR M L , ECHEVERRIA O M , PALACIOS-MARTÍNEZ S , et al. Beclin 1 interacts with active caspase-3 and bax in oocytes from atretic follicles in the rat ovary[J]. J Histochem Cytochem, 2019, 67 (12): 873- 889.
doi: 10.1369/0022155419881127 |
112 | YANG W H , LIU R F , SUN Q Q , et al. Quercetin alleviates endoplasmic reticulum stress-induced apoptosis in buffalo ovarian granulosa cells[J]. Animals (Basel), 2022, 12 (6): 787. |
113 |
JOHNSON A L , BRIDGHAM J T . Caspase-mediated apoptosis in the vertebrate ovary[J]. Reproduction, 2002, 124 (1): 19- 27.
doi: 10.1530/rep.0.1240019 |
114 |
INOUE N , MATSUDA F , GOTO Y , et al. Role of cell-death ligand-receptor system of granulosa cells in selective follicular atresia in porcine ovary[J]. J Reprod Dev, 2011, 57 (2): 169- 175.
doi: 10.1262/jrd.10-198E |
115 |
KIST M , VUCIC D . Cell death pathways: intricate connections and disease implications[J]. EMBO J, 2021, 40 (5): e106700.
doi: 10.15252/embj.2020106700 |
116 | HU C F , ZHAO X Y , CUI C , et al. miRNA-29-3p targets PTEN to regulate follicular development through the PI3K/Akt/mTOR signaling pathway[J]. Theriogenology, 2023, 214, 173- 181. |
117 |
ZHOU L Y , XIE Y Q , LI S , et al. Rapamycin prevents cyclophosphamide-induced over-activation of primordial follicle pool through PI3K/Akt/mTOR signaling pathway in vivo[J]. J Ovarian Res, 2017, 10 (1): 56.
doi: 10.1186/s13048-017-0350-3 |
118 |
BOYER A , GOFF A K , BOERBOOM D . WNT signaling in ovarian follicle biology and tumorigenesis[J]. Trends Endocrinol Metab, 2010, 21 (1): 25- 32.
doi: 10.1016/j.tem.2009.08.005 |
119 |
MA L Z , ZHENG Y X , TANG X R , et al. miR-21-3p inhibits autophagy of bovine granulosa cells by targeting VEGFA via PI3K/AKT signaling[J]. Reproduction, 2019, 158 (5): 441- 452.
doi: 10.1530/REP-19-0285 |
120 |
HABARA O , LOGAN C Y , KANAI-AZUMA M , et al. WNT signaling in pre-granulosa cells is required for ovarian folliculogenesis and female fertility[J]. Development, 2021, 148 (9): dev198846.
doi: 10.1242/dev.198846 |
121 |
HAYAT R , MANZOOR M , HUSSAIN A . Wnt signaling pathway: a comprehensive review[J]. Cell Biol Int, 2022, 46 (6): 863- 877.
doi: 10.1002/cbin.11797 |
122 |
WANG H X , LI T Y , KIDDER G M . WNT2 regulates DNA synthesis in mouse granulosa cells through beta-catenin[J]. Biol Reprod, 2010, 82 (5): 865- 875.
doi: 10.1095/biolreprod.109.080903 |
[1] | 张馨蕊, 付予, 马思佳, 杨卓, 陶金忠. 围产期奶牛生理调控与饲养管理[J]. 畜牧兽医学报, 2024, 55(6): 2325-2333. |
[2] | 闫田田, 武建亮, 王朝军, 徐利, 孟庆利, 苏美玉, 李涵乔, 黄国英, 王超, 林佳琪. 法系大白猪繁殖性状遗传参数估计及遗传进展分析[J]. 畜牧兽医学报, 2024, 55(6): 2388-2396. |
[3] | 张航, 张培培, 杨柏高, 冯肖艺, 牛一凡, 余洲, 曹建华, 万鹏程, 赵学明. IGF1、CoQ10、MT联合添加缓解热应激对牛IVF囊胚的影响[J]. 畜牧兽医学报, 2024, 55(6): 2474-2485. |
[4] | 吕世琪, 周荣艳, 田树军, 陈晓勇. 线粒体tRNA-Lys(T7719G)基因变异影响绵羊颗粒细胞凋亡生理机制研究[J]. 畜牧兽医学报, 2024, 55(5): 2011-2021. |
[5] | 董书餐, 毛帅翔, 伍翠莹, 李耀坤, 孙宝丽, 郭勇庆, 邓铭, 刘德武, 柳广斌. 雄激素受体抑制剂恩杂鲁胺对山羊卵泡颗粒细胞增殖凋亡的影响[J]. 畜牧兽医学报, 2024, 55(5): 2022-2031. |
[6] | 费国庆, 宁致远, 赵泽芳, 刘艳秋, 刘腾飞, 李贤, 丛日华, 陈鸿, 陈树林. 妊娠期奶牛黄体细胞的分离鉴定及培养特性[J]. 畜牧兽医学报, 2024, 55(5): 2214-2225. |
[7] | 向辉, 桂林森, 杨迪, 魏士昊, 宫艳斌, 史远刚, 马云, 淡新刚. 奶牛同期发情-定时输精技术研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1412-1422. |
[8] | 沈文娟, 杨卓, 张馨蕊, 付予, 陶金忠. 奶牛生殖道微生物与繁殖及相关疾病的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 924-932. |
[9] | 片慧芳, 杜旭彬, 李妍, 张雨辰, 何惠, 虞德兵. 甜菜碱对产蛋后期蛋鸡生产性能、蛋品质和抗氧化能力的影响[J]. 畜牧兽医学报, 2024, 55(3): 1085-1094. |
[10] | 康方圆, 刘镇滔, 吴奎显, 倪晗, 钟凯, 李和平, 杨国宇, 韩立强. 脂噬对奶牛乳腺上皮细胞脂滴大小的调控研究[J]. 畜牧兽医学报, 2024, 55(3): 1095-1101. |
[11] | 张馨蕊, 付予, 杨卓, 沈文娟, 陶金忠. 奶牛早期妊娠诊断蛋白的研究[J]. 畜牧兽医学报, 2024, 55(2): 451-460. |
[12] | 张志飞, 唐雪颖, 闵力, 童雄, 陈卫东, 巨向红, 李大刚. 荷斯坦奶牛肝脏组织中与泌乳时期及繁殖力相关的基因共表达网络构建[J]. 畜牧兽医学报, 2024, 55(2): 528-539. |
[13] | 刘阳光, 章会斌, 文浩宇, 谢帆, 赵世明, 丁月云, 郑先瑞, 殷宗俊, 张晓东. 猪卵泡液外泌体处理卵巢颗粒细胞的SNP/Indel筛选分析[J]. 畜牧兽医学报, 2024, 55(2): 576-586. |
[14] | 庄翠翠, 韩博. 大肠杆菌感染奶牛乳腺上皮细胞和小鼠乳腺组织致其线粒体损伤的机制研究[J]. 畜牧兽医学报, 2024, 55(2): 822-833. |
[15] | 曹建华, 杨柏高, 张培培, 冯肖艺, 张航, 余洲, 牛一凡, 郝海生, 杜卫华, 朱化彬, 杨凌, 赵学明. 能量负平衡影响奶牛卵泡发育的机制[J]. 畜牧兽医学报, 2024, 55(1): 22-30. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||