畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (9): 4204-4214.doi: 10.11843/j.issn.0366-6964.2025.09.007
易唤明1,2, 鲍国升1,2, 万辉1,2, 欧靖渝1,2, 何小龙1,2, 任春环1,2, 陈家宏3, 张子军1,2, 王强军1,2*
收稿日期:
2024-09-09
发布日期:
2025-09-30
通讯作者:
王强军,主要从事家畜环境生理与生殖发育、生物节律、粪污处理与资源化利用研究,E-mail:wangqiangjun@ahau.edu.cn
作者简介:
易唤明(2001-),男,安徽合肥人,硕士生,主要从事动物遗传育种与繁殖研究,E-mail:1342877790@qq.com
基金资助:
YI Huanming1,2, BAO Guosheng1,2, WAN Hui1,2, OU Jingyu1,2, HE Xiaolong1,2, REN Chunhuan1,2, CHEN Jiahong3, ZHANG Zijun1,2, WANG Qiangjun1,2*
Received:
2024-09-09
Published:
2025-09-30
摘要: 近年来,随着全球温室效应愈加严重,极端天气频发对畜牧业造成了巨大经济损失。尤其在热浪频发的夏季,持续高温会引起反刍动物热应激反应,导致其生长发育受阻,病死率增加,严重制约了畜牧业高质量发展。研究发现,热应激对幼龄反刍动物肠道健康的影响尤为显著,会造成肠道微生物菌群结构紊乱、氧化应激损伤和屏障通透性增加。然而,现有的研究大多只在单一时间点对热应激引发的肠道损伤进行探讨,最新研究揭示肠道屏障功能并非静态而是呈现昼夜节律性变化。为此,本文从昼夜节律尺度,综述了热应激对反刍动物消化道生物钟和屏障功能昼夜节律的影响,以期找到热应激通过生物钟调控消化道屏障功能的潜在途径及机制,为反刍动物精准生产和环境管理提供新思路。
中图分类号:
易唤明, 鲍国升, 万辉, 欧靖渝, 何小龙, 任春环, 陈家宏, 张子军, 王强军. 热应激通过干扰生物钟系统影响反刍动物消化道屏障功能的研究进展[J]. 畜牧兽医学报, 2025, 56(9): 4204-4214.
YI Huanming, BAO Guosheng, WAN Hui, OU Jingyu, HE Xiaolong, REN Chunhuan, CHEN Jiahong, ZHANG Zijun, WANG Qiangjun. Research Progress of Heat Stress Affect Digestive Tract Barrier Function of Ruminants by Interfering with Biological Clock[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4204-4214.
[1] NICLOU A M, CHEN K Y, REDMAN L M. The juxtaposition between heat stress from global warming and human health[J]. J Appl Physiol (1985), 2024, 136(6): 1346-1347. [2] MICHAL H. From molecular and cellular to integrative heat defense during exposure to chronic heat[J]. Comp Biochem Physiol A Mol Integr Physiol, 2002, 131(3):475-483. [3] FRANZISKA K, ULRIKE T, ELKE A, et al. Heat stress directly impairs gut integrity and recruits distinct immune cell populations into the bovine intestine[J]. Proc Natl Acad Sci U S A, 2019, 116(21):10333-10338. [4] WHEELOCK J B, RHOADS R P, VANBAALE M J, et al. Effects of heat stress on energetic metabolism in lactating Holstein cows[J]. J Dairy Sci, 2010, 93(2): 644-655. [5] NEGRÓN-PÉREZ V M, FAUSNACHT D W, RHOADS M L. Invited review: Management strategies capable of improving the reproductive performance of heat-stressed dairy cattle[J]. J Dairy Sci, 2019, 102(12): 10695-10710. [6] VITALI A, SEGNALINI M, BERTOCCHI L, et al. Seasonal pattern of mortality and relationships between mortality and temperature-humidity index in dairy cows[J]. J Dairy Sci, 2009, 92(8):3781-3790. [7] DAVID O K, SIMON K W. Fertility in South Australian commercial Merino flocks: Relationships between reproductive traits and environmental cues[J]. Theriogenology, 2005, 63(9):2416-2433. [8] VAN WETTERE W H E J, CULLEY S, SWINBOURNE A M F, et al. Heat stress from current and predicted increases in temperature impairs lambing rates and birth weights in the Australian sheep flock[J]. Nature Food, 2024, 5(3): 206-210. [9] HABIBU B, YAQUB L S, DZENDA T, et al. Sensitivity, impact and consequences of changes in respiratory rate during thermoregulation in livestock-A review[J]. Annals of Animal Science, 2019, 19: 291-304. [10] YADAV R, JARYAL A K, MALLICK H N. Participation of preoptic area TRPV4 ion channel in regulation of body temperature[J]. J Therm Biol, 2017, 66: 81-86. [11] ATTIA Y A, AL-HARTHI M A, ELNAGGAR A S. Productive, physiological and immunological responses of two broiler strains fed different dietary regimens and exposed to heat stress[J]. Italian Journal of Animal Science, 2018, 17(3): 686-697. [12] BUHR E D, YOO S H, TAKAHASHI J S. Temperature as a universal resetting cue for mammalian circadian oscillators[J]. Science, 2010, 330(6002): 379-385. [13] TAKAMATSU N, SHIRAHATA Y, SEKI K, et al. Heat shock factor 1 induces a short burst of transcription of the clock gene Per2 during interbout arousal in mammalian hibernation[J]. J Biol Chem, 2023, 299(4): 104576. [14] LIU X L, DUAN Z, YU M, et al. Epigenetic control of circadian clocks by environmental signals[J]. Trends Cell Biol, 2024,34(12):992-1006. [15] GUTIERREZ LOPEZ D E, LASHINGER L M, WEINSTOCK G M, et al. Circadian rhythms and the gut microbiome synchronize the host’s metabolic response to diet[J]. Cell Metab, 2021, 33(5): 873-887. [16] CHOI H, RAO M C, CHANG E B. Gut microbiota as a transducer of dietary cues to regulate host circadian rhythms and metabolism[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(10): 679-689. [17] 张海森, 李 超, 李雅婷, 等. 生物钟与肠道菌群调控哺乳动物能量代谢研究进展[J]. 生理学报, 2022, 74(3): 443-460. ZHANG H S, LI C, LI Y T, et al. Research progress on the regulation of mammalian energy metabolism by the circadian clock system and gut microbiota.[J]. Acta Physiologica Sinica, June 25, 2022, 74(3): 443-460.(in Chinese) [18] WANG Q J, GUO Y, ZHANG K H, et al. Night-restricted feeding improves gut health by synchronizing microbe-driven serotonin rhythm and eating activity-driven body temperature oscillations in growing rabbits[J]. Front Cell Infect Microbiol, 2021, 11: 771088. [19] SEGERS A, DEPOORTERE I. Circadian clocks in the digestive system[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(4): 239-251. [20] THAISS C A, ZEEVI D, LEVY M, et al. Transkingdom control of microbiota diurnal oscillations rromotes metabolic homeostasis[J]. Cell, 2014, 159(3): 514-529. [21] TUGANBAEV T, MOR U, BASHIARDES S, et al. Diet diurnally regulates small intestinal microbiome-epithelial-immune homeostasis and enteritis[J]. Cell, 2020, 182(6): 1441-1459.e21. [22] PAGEL R, BÄR F, SCHRÖDER T, et al. Circadian rhythm disruption impairs tissue homeostasis and exacerbates chronic inflammation in the intestine[J]. Faseb j, 2017, 31(11): 4707-4719. [23] MOHAWK J A, GREEN C B, TAKAHASHI J S. Central and peripheral circadian clocks in mammals[J]. Annu Rev Neurosci, 2012, 35: 445-462. [24] HURD M W, RALPH M R. The significance of circadian organization for longevity in the golden hamster[J]. J Biol Rhythms, 1998, 13(5): 430-436. [25] GOLOMBEK D A, ROSENSTEIN R E. Physiology of circadian entrainment[J]. Physiol Rev, 2010, 90(3): 1063-1102. [26] REPPERT S M, WEAVER D R. Molecular analysis of mammalian circadian rhythms[J]. Annu Rev Physiol, 2001, 63: 647-676. [27] PATKE A, YOUNG M W, AXELROD S. Molecular mechanisms and physiological importance of circadian rhythms[J]. Nat Rev Mol Cell Biol, 2020, 21(2): 67-84. [28] DEBRUYNE J P, WEAVER D R, REPPERT S M. CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock[J]. Nat Neurosci, 2007, 10(5): 543-545. [29] 杨王浩, 王 博, 刘 薇, 等. 奶牛生物钟基因CLOCK的真核表达载体构建、生物信息学分析及其组织表达谱[J]. 畜牧与兽医, 2023, 55(6): 49-58.(in Chinese) YANG W H,WANG B,LIU W,et al. Eukaryotic expression vector construction,bioinformatics analysis and tissue expression profile of the dairy cow CLOCK gene[J]. Animal Husbandry & Veterinary Medicine,2023,55 (6):49-58.(in Chinese) [30] 李 丹, 张海森, 王逸群, 等. 奶牛CRY1基因真核表达载体构建、生物信息学分析及组织表达谱研究[J]. 中国畜牧兽医, 2023, 50(3): 870-881. LI D, ZHANG H S, WANG Y Q, et al. Eukaryotic expression vector construction, bioinformatics and tissue expression profiles analysis of CRY1 gene in dairy cows[J]. China Animal Husbandry & Veterinary Medicine, 2023,50(3):870-881.(in Chinese) [31] 刘 薇, 王 博, 王逢博, 等. 奶牛RORα基因的生物信息学分析与组织表达谱检测[J]. 基因组学与应用生物学, 2023, 42(1): 13-24. LIU W, WANG B, WANG F B, et al., 2023. Bioinformatics analysis and tissue expression profiles detection of RORa gene in Bos taurus[J]. Genomics and Applied Biology, 2023, 42(1): 13-24.(in Chinese) [32] 徐皓东, 王逸群, 刘祖培, 等. 奶牛生物钟基因BMAL1真核表达载体的构建及生物信息学分析[J]. 中国畜牧杂志, 2023, 59(4): 161-167. XU H D, WANG Y Q, LIU Z P, et al. Construction and bioinformatics of eukaryotic expression vector of bovine body clock gene BMAL1[J]. Chinese Journal of Animal Science, 2023, 59(4): 161-167.(in Chinese) [33] 王逸群, 刘祖培, 李雅婷, 等. 奶牛NR1D1基因的真核表达载体构建、表达谱及其在卵巢组织的定位[J]. 畜牧兽医学报, 2023, 54(1): 133-145. WANG Y Q, LIU Z P, LI Y T,et al. The dairy cow NR1D1 gene’s eukaryotic expression vector construction, expression profile and its ovarian localization[J]. Acta Veterinaria et Zootechnica Sinica, 2023,54(1): 133-145.(in Chinese) [34] 马白荣, 张海森, 高登科, 等. 山羊隐花色素2基因真核表达载体的构建及生物信息学分析[J]. 中国兽医杂志, 2022, 58(5): 1-9. MA B R,ZHANG H S,GAO D K,et al.Construction of an eukaryotic expression vector in goat cryptochrome 2 gene and its bioinformatics analysis[J]. Chinese Journal of Veterinary Medicine, 2022, 58(5): 1-9.(in Chinese) [35] 高登科, 赵泓淙, 董 浩, 等. 山羊RORα基因的克隆、表达载体构建及功能分析[J]. 畜牧兽医学报, 2022, 53(6): 1779-1794. GAO D K, ZHAO H C, DONG H, et al. The cloning, expression vector construction and function analysis of goat RORa. gene[J].Acta Veterinaria et Zootechnica Sinica, 2022,53(6):1779-1794.(in Chinese) [36] 王逸群, 高登科, 赵泓淙, 等. 山羊NR1D1基因真核表达载体的构建及生物信息学分析[J]. 中国畜牧杂志, 2022, 58(10): 215-222. WANG Y Q, GAO D K, ZHAO H C,et al.Construction of a eukaryotic expression vector of goat NR1D1 gene and its bioinformatics analysis[J].Chinese Journal of Animal Science, 2022, 58(10): 215-222.(in Chinese) [37] 赵泓淙, 高登科, 江海圳, 等. 山羊生物钟基因CLOCK真核表达载体的构建和生物信息学分析[J]. 中国畜牧兽医, 2021, 48(12): 4327-4338. ZHAO H C, GAO D K, JIANG H Z,et al. Construction of eukaryotic expression vector and bioinformatics analysisof circadian CLOCK gene in goats[J].China Animal Husbandry & Veterinary Medicine, 2021, 48(12): 4327-4338.(in Chinese) [38] GAO D, ZHAO H, DONG H, et al. Transcriptional feedback loops in the caprine circadian clock system[J]. Front Vet Sci, 2022, 9: 814562. [39] DARDENTE H, FUSTIN J M, HAZLERIGG D G. Transcriptional feedback loops in the ovine circadian clock[J]. Comp Biochem Physiol A Mol Integr Physiol, 2009, 153(4): 391-398. [40] KYOKO O O, KONO H, ISHIMARU K, et al. Expressions of tight junction proteins Occludin and Claudin-1 are under the circadian control in the mouse large intestine: implications in intestinal permeability and susceptibility to colitis[J]. PLoS One, 2014, 9(5): e98016. [41] ZHANG Z, LI W, HAN X, et al. Circadian rhythm disruption-mediated downregulation of Bmal1 exacerbates DSS-induced colitis by impairing intestinal barrier[J]. Front Immunol, 2024, 15: 1402395. [42] TIAN Y, ZHANG D. Biological clock and inflammatory bowel disease review: from the standpoint of the intestinal barrier[J]. Gastroenterol Res Pract, 2022: 2939921. [43] MARCINKEVICIUS E V, SHIRASU-HIZA M M. Message in a biota: gut microbes signal to the circadian clock[J]. Cell Host Microbe, 2015, 17(5): 541-543. [44] SCHEIERMANN C, GIBBS J, INCE L, et al. Clocking in to immunity[J]. Nat Rev Immuno, 2018, 18(7): 423-437. [45] 任 洁, 罗彦英. 肠道微生物与肠道疾病[J]. 中国中西医结合外科杂志, 2015, 21(6): 632-635. REN J, LUO Y Y. Intestinal microorganisms and intestinal diseases[J]. Chinese Journal of Surgery of Integrated Traditional and Western Medicine, 2015, 21(6): 632-635.(in Chinese) [46] XIAO Y, ZHAO J, ZHANG H, et al. Mining Lactobacillus and Bifidobacterium for organisms with long-term gut colonization potential[J]. Clin Nutr, 2020, 39(5): 1315-1323. [47] SONG J, XIAO K, KE Y L, et al. Effect of a probiotic mixture on intestinal microflora, morphology, and barrier integrity of broilers subjected to heat stress[J]. Poult Sci, 2014, 93(3): 581-588. [48] GUO P, WANG W, XIANG Q, et al. Engineered probiotic ameliorates ulcerative colitis by restoring gut microbiota and redox homeostasis[J]. Cell Host Microbe, 2024,32(9):1502-1518.e9. [49] SHI X, MA T, SAKANDAR H A, et al. Gut microbiome and aging nexus and underlying mechanism[J]. Appl Microbiol Biotechnol, 2022, 106(17): 5349-5358. [50] LOTTI S, DINU M, COLOMBINI B, et al. Circadian rhythms, gut microbiota, and diet: Possible implications for health[J]. Nutr Metab Cardiovasc Dis, 2023, 33(8): 1490-1500. [51] 潘文兰, 李红霞, 蔡梦宇, 等. 热应激对肠道及认知功能的影响[J]. 环境与职业医学, 2023, 40(11): 1341-1346,1353. PAN W L, LI H X, CAI M Y, et al. Effects of heat stress on intestinal tract and cognitive function[J]. Journal of Environmental and Occupational Medicine, 2023, 40(11): 1341-1346,1353.(in Chinese) [52] 陆 安, 李焕荣, 刘凤华. 热应激对大鼠肠道细菌移位及肠黏膜免疫屏障功能的研究[C]. 中国畜牧兽医学会2014年家畜环境卫生学分会学术年会, 2014: 14. LU A, LI H R, LIU F H.The effect of heat stress on intestinal bacterial translocation and Intestinal mucosal immune in rats[C]. Proceedings of the 2014 Annual Meeting of the Livestock Environmental Sanitation Branch of the Chinese Association of Animal Husbandry and Veterinary Medicine, 2014: 14.(in Chinese) [53] LI Y, LI J, ZHANG N, et al. Diversity analysis of the intestinal microbial flora of laying hens under heat stress[J]. Acta Ecologica Sinica, 2015, 35(10):5846. [54] 刘春峰, 袁 壮. 内脏缺血缺氧代谢障碍在SIRS和MODS中的作用[J]. 小儿急救医学, 2000(4): 180-182. LIU C F, YUAN Z.The role of splanchnic ischemia-hypoxia in SIRS and MODS[J]. Chinese Pediatric Emergency Medicine, 2000(4): 180-182.(in Chinese) [55] 李 磊, 王 曼, 许硕贵. 热射病肠道损伤机制及防治研究进展[J]. 华南国防医学杂志, 2020, 34(12): 905-910. LI L, WANG M, XU S G. Advances in the study of intestinal injury mechanism and prevention of heat stroke[J].Military Medicine of Joint Logistics, 2020, 34(12): 905-910.(in Chinese) [56] BHATTACHARYYA A, CHATTOPADHYAY R, MITRA S, et al. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases[J]. Physiol Rev, 2014, 94(2): 329-354. [57] YU J, LIU F, YIN P, et al. Involvement of oxidative stress and mitogen-activated protein kinase signaling pathways in heat stress-induced injury in the rat small intestine[J]. Stress, 2013, 16(1): 99-113. [58] OLIVER S R, PHILLIPS N A, NOVOSAD V L, et al. Hyperthermia induces injury to the intestinal mucosa in the mouse: evidence for an oxidative stress mechanism[J]. Am J Physiol Regul Integr Comp Physiol, 2012, 302(7): R845-R853. [59] 严啊妮, 沈 奔, 王洪荣. 热应激对反刍动物生产性能、瘤胃生理代谢和机体免疫功能的影响[J]. 中国饲料, 2022(21): 14-17.(in Chinese) YAN A N, SHEN B, WANG H R. Effects of heat stress on performance, rumen physiological metabolism and immune function of ruminants[J].China Feed, 2022(21): 14-17.(in Chinese) [60] MCMANUS C M, FARIA D A, LUCCI C M, et al. Heat stress effects on sheep: Are hair sheep more heat resistant?[J]. Theriogenology, 2020, 155: 157-167. [61] GILL R, TSUNG A, BILLIAR T. Linking oxidative stress to inflammation: Toll-like receptors[J]. Free Radic Biol Med, 2010, 48(9): 1121-1132. [62] DE LA FUENTE M, MIQUEL J. An update of the oxidation-inflammation theory of aging: the involvement of the immune system in oxi-inflamm-aging[J]. Curr Pharm Des, 2009, 15(26): 3003-3026. [63] 孟 钰. 温度对丽斑麻蜥和黑龙江草蜥生理活动和肠道菌群的影响[D].哈尔滨:哈尔滨师范大学, 2022. MENG Y. Effects of temperature on physiological activity and intestinal microflora of eremias argus and takydromus amurensis[D]. Harbin:Harbin Normal University, 2022.(in Chinese) [64] BARNA J, CSERMELY P, VELLAI T. Roles of heat shock factor 1 beyond the heat shock response[J]. Cell Mol Life Sci, 2018, 75(16): 2897-2916. [65] TAMARU T, IKEDA M. Circadian adaptation to cell injury stresses: a crucial interplay of BMAL1 and HSF1[J]. J Physiol Sci, 2016, 66(4): 303-306. [66] TAHARA Y, YOKOTA A, SHIRAISHI T, et al. In vitro and in vivo phase changes of the mouse circadian clock by oxidative stress[J]. J Circadian Rhythms, 2016;14(1):4. [67] MEZHNINA V, EBEIGBE O P, POE A, et al. Circadian control of mitochondria in reactive oxygen species homeostasis[J]. Antioxid Redox Signal, 2022, 37(10-12): 647-663. [68] RIJO-FERREIRA F, TAKAHASHI J S. Genomics of circadian rhythms in health and disease[J]. Genome Med, 2019, 11(1): 82. [69] BISHEHSARI F, VOIGT R M, KESHAVARZIAN A. Circadian rhythms and the gut microbiota: from the metabolic syndrome to cancer[J]. Nat Rev Endocrinol, 2020, 16(12): 731-739. [70] TEICHMAN E M, O’RIORDAN K J, GAHAN C G M, et al. When rhythms meet the blues: circadian interactions with the microbiota-gut-brain axis[J]. Cell Metab, 2020, 31(3): 448-471. [71] PAULOSE J K, WRIGHT J M, PATEL A G, et al. Human gut bacteria are sensitive to melatonin and express endogenous circadian rhythmicity[J]. PLoS One, 2016, 11(1): e0146643. [72] SZOKE H, KOVÁCS Z, BÓKKON I, et al. Gut dysbiosis and serotonin: intestinal 5-HT as a ubiquitous membrane permeability regulator in host tissues, organs, and the brain[J]. Rev Neurosci, 2020, 31(4): 415-425. [73] KACZMAREK J L, THOMPSON S V, HOLSCHER H D. Complex interactions of circadian rhythms, eating behaviors, and the gastrointestinal microbiota and their potential impact on health[J]. Nutr Rev, 2017, 75(9): 673-682. [74] 刘 帅. 热应激对生长猪肠道健康和HPA轴的影响及机制[D]. 武汉:华中农业大学, 2022. LIU S.Effects of heat stress on intestinal health and hpa axis in growing pigs.[D]. Wuhan:Huazhong Agricultural University, 2022.(in Chinese) [75] RADA-IGLESIAS A, ENROTH S, AMEUR A, et al. Butyrate mediates decrease of histone acetylation centered on transcription start sites and down-regulation of associated genes[J]. Genome Res, 2007, 17(6): 708-719. [76] FRAZIER K, CHANG E B. Intersection of the gut microbiome and circadian rhythms in metabolism[J]. Trends Endocrinol Metab, 2020, 31(1): 25-36. [77] YANG G, ZHOU X, CHEN S, et al. Effects of heat stress and lipopolysaccharides on gene expression in chicken immune cells[J]. Animals (Basel), 2024, 14(4): 542. [78] KIRSCH S, THIJSSEN S, ALARCON SALVADOR S, et al. T-cell numbers and antigen-specific T-cell function follow different circadian rhythms[J]. J Clin Immunol, 2012, 32(6): 1381-1389. [79] MUKHERJI A, KOBIITA A, YE T, et al. Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs[J]. Cell, 2013, 153(4): 812-827. [80] LIU Y, WANG Z, XIE W, et al. Oxidative stress regulates mitogen-activated protein kinases and c-Jun activation involved in heat stress and lipopolysaccharide-induced intestinal epithelial cell apoptosis[J]. Mol Med Rep, 2017, 16(3): 2579-2587. [81] YANO J M, YU K, DONALDSON G P, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis[J]. Cell, 2015, 161(2): 264-276. [82] LI H, CHEN H, ZHANG S, et al. Taurine alleviates heat stress-induced mammary inflammation and impairment of mammary epithelial integrity via the ERK1/2-MLCK signaling pathway[J]. J Therm Biol, 2023, 116: 103587. [83] AOKI N, WATANABE H, OKADA K, et al. Involvement of 5-HT3 and 5-HT4 receptors in the regulation of circadian clock gene expression in mouse small intestine[J]. J Pharmacol Sci, 2014, 124(2): 267-275. [84] KU K, PARK I, KIM D, et al. Gut microbial metabolites induce changes in circadian oscillation of clock gene expression in the mouse embryonic fibroblasts[J]. Mol Cells, 2020, 43(3): 276-285. [85] 杜肖肖, 邓 铭, 孙宝丽, 等. 奶牛热应激调控措施研究进展[J]. 中国奶牛, 2024(5): 1-7. DU X X, DENG M, SUN B L,et al.Research progress on measures to relieve heat stress in dairy cows[J].China Dairy Cattle, 2024(5): 1-7.(in Chinese) [86] 石富磊, 赵继政, 庄蒲宁, 等. 缓解奶牛热应激喷淋降温控制条件和节水措施研究进展[J]. 黑龙江畜牧兽医, 2022(9): 27-33. SHI F L, ZHAO J Z,ZHUANG P N,et al.Review on cooling control conditions and water-saving measures of spraying to relieve heat stress in dairy cows[J].Heilongjiang Animal Science and Veterinary Medicine, 2022(09): 27-33.(in Chinese) [87] LI G, WANG Z, SHI Z, et al. Analysing the motions of spray droplets on a cow’s surface to relieve heat stress[J]. Sci Rep, 2019, 9(1): 2146. [88] DENG C, ZHENG J, ZHOU H, et al. Dietary glycine supplementation prevents heat stress-induced impairment of antioxidant status and intestinal barrier function in broilers[J]. Poult Sci, 2023, 102(3): 102408. [89] DOU L, LIU C, CHEN X, et al. Supplemental Clostridium butyricum modulates skeletal muscle development and meat quality by shaping the gut microbiota of lambs[J]. Meat Sci, 2023, 204: 109235. [90] DONG B, JAEGER A M, HUGHES P F, et al. Targeting therapy-resistant prostate cancer via a direct inhibitor of the human heat shock transcription factor 1[J]. Sci Transl Med, 2020, 12(574):eabb5647. |
[1] | 罗嘉, 蒲强, 柴捷, 陈力, 王金勇. 母猪子宫内热应激的生物学效应及遗传机制分析[J]. 畜牧兽医学报, 2025, 56(5): 2004-2014. |
[2] | 王昕昕, 刘小英, 王宜, 王芳, 赵晗, 杜志强, 杨彩侠. 急性热应激通过降低牛磺酸水平影响猪睾丸支持细胞的功能[J]. 畜牧兽医学报, 2025, 56(4): 1779-1790. |
[3] | 梁慧, 赵静, 王妍雅, 龙润泽, 刘旭阳, 吴英杰, 刘宁, 秦应和. 饲粮中添加绿原酸对热应激母兔繁殖性能及其仔兔生长的影响[J]. 畜牧兽医学报, 2025, 56(2): 755-764. |
[4] | 武永杰, 徐英环, 刘腾飞, 马琳, 陈鸿, 徐永平. 阴囊热应激对山羊血睾屏障结构和功能的影响[J]. 畜牧兽医学报, 2024, 55(7): 2973-2982. |
[5] | 冯肖艺, 张培培, 张航, 郝海生, 杜卫华, 朱化彬, 崔凯, 赵学明. 热应激对牛卵子及其胚胎表观遗传修饰与发育能力的影响[J]. 畜牧兽医学报, 2024, 55(6): 2460-2473. |
[6] | 张航, 张培培, 杨柏高, 冯肖艺, 牛一凡, 余洲, 曹建华, 万鹏程, 赵学明. IGF1、CoQ10、MT联合添加缓解热应激对牛IVF囊胚的影响[J]. 畜牧兽医学报, 2024, 55(6): 2474-2485. |
[7] | 王吉, 周馨妍, 郭芳瑞, 徐秋容, 武东怡, 毛妍, 袁志航, 易金娥, 文利新, 邬静. 紫花地丁对热应激下肉鸡生长性能、肉品质和肠道菌群的改善作用[J]. 畜牧兽医学报, 2024, 55(6): 2761-2774. |
[8] | 王潇, 张昊, 栾庆江, 李慧, 杨鼎, 王婷月, 田菁, 赵濛, 陈陆, 田如刚. 冷热应激对肉牛生理指标及基因表达影响的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 894-904. |
[9] | 霍元楠, 邱美佳, 张姣姣, 杨炜蓉, 王鲜忠. 精氨酸及其代谢物抑制热应激诱导仔猪支持细胞凋亡的机制[J]. 畜牧兽医学报, 2024, 55(2): 587-597. |
[10] | 刘勇庆, 张刚, 熊艳玲, 孙忠鑫, 高凡, 刘婷, 李慧. 热应激对从江香猪十二指肠黏膜结构、HIF-1及其相关蛋白表达的影响[J]. 畜牧兽医学报, 2024, 55(10): 4690-4699. |
[11] | 肖艺梅, 王胜男, 许悦雯, 何晓琳, 尹福泉. 热应激对雄性哺乳动物生殖机能影响的研究[J]. 畜牧兽医学报, 2024, 55(1): 11-21. |
[12] | 张航, 杨柏高, 徐茜, 冯肖艺, 杜卫华, 郝海生, 朱化彬, 张培培, 赵学明. 热应激影响奶牛胚胎发育作用机制的研究进展[J]. 畜牧兽医学报, 2023, 54(7): 2692-2700. |
[13] | 王子渲, 王巧, 张锦, Astrid Lissette Barreto Sánchez, 郑麦青, 李庆贺, 崔焕先, 安炳星, 赵桂苹, 文杰, 李和刚. 基于脾脏转录组筛选北京油鸡和广明白鸡抗热应激相关功能基因[J]. 畜牧兽医学报, 2023, 54(5): 1905-1914. |
[14] | 冯肖艺, 杨柏高, 郝海生, 杜卫华, 朱化彬, 崔凯, 赵学明. 热应激导致奶牛胚胎质量下降的机制及解决措施[J]. 畜牧兽医学报, 2023, 54(3): 868-876. |
[15] | 薛鸿雁, 杨孟雨, 杨欢, 董丽君, 蔡霞清, 赵泽民, 王鲜忠. ALOX15B-JNK在热应激诱导支持细胞氧化应激和凋亡中的作用[J]. 畜牧兽医学报, 2023, 54(12): 5056-5065. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||