畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (5): 2004-2014.doi: 10.11843/j.issn.0366-6964.2025.05.002
罗嘉1(), 蒲强1, 柴捷2, 陈力2, 王金勇2,*(
)
收稿日期:
2024-10-23
出版日期:
2025-05-23
发布日期:
2025-05-27
通讯作者:
王金勇
E-mail:1028400278@qq.com; b20161705@swu.edu.cn;kingyou@vip.sina.com
作者简介:
罗嘉(1990-),女,四川内江人,讲师,博士,主要从事猪的遗传育种与繁殖研究,E-mail:1028400278@qq.com;b20161705@swu.edu.cn
基金资助:
LUO Jia1(), PU Qiang1, CHAI Jie2, CHEN Li2, WANG Jinyong2,*(
)
Received:
2024-10-23
Online:
2025-05-23
Published:
2025-05-27
Contact:
WANG Jinyong
E-mail:1028400278@qq.com; b20161705@swu.edu.cn;kingyou@vip.sina.com
摘要:
全球气候变暖导致气温逐渐升高,增加了猪对热应激的敏感性,进一步加剧了热应激带来的挑战。妊娠期环境对母猪及后代健康和发育至关重要。目前相关研究已逐渐关注到宫内热应激对猪生产性能的生物学效应,并开始阐明其遗传机制。母猪在高温下排汗功能不全、体温调节困难,并且妊娠期代谢需求增加,更易于发生热应激。宫内热应激条件下的妊娠母猪还会增加胎儿发育风险,并通过子宫内环境影响其后代,进而影响仔猪胚胎存活率、出生重等重要生产性能经济指标,造成经济损失。因此,本文聚焦于猪宫内热应激对母猪产后表型、生产性能、遗传及生殖等方面的影响,探讨其生理和遗传机制,以期为猪热应激的研究及耐热新品种的培育提供参考。
中图分类号:
罗嘉, 蒲强, 柴捷, 陈力, 王金勇. 母猪子宫内热应激的生物学效应及遗传机制分析[J]. 畜牧兽医学报, 2025, 56(5): 2004-2014.
LUO Jia, PU Qiang, CHAI Jie, CHEN Li, WANG Jinyong. Biological Effects and Genetic Mechanisms of Intrauterine Heat Stress in Swine[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2004-2014.
1 | 张佳欣. 2024年全球升温或首破1.5 ℃[N]. 科技日报 https://tech.gmw.cn/2023-12/11/content_37019164.htm, 2024.9.20. |
ZHANG J X. Global warming may exceed 1.5 ℃ for the first time in 2024[N]. Science and Technology Daily, https://tech.gmw.cn/2023-12/11/content_37019164.htm, 2024.9.20. (in Chinese) | |
2 |
SUN Q , MIAO C , HANEL M , et al. Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming[J]. Environ Int, 2019, 128, 125- 136.
doi: 10.1016/j.envint.2019.04.025 |
3 | ST-PIERRE N R , COVANOV B , SCHNITKE Y . Economic losses from heat stress by US livestock industries1[J]. J Dairy Sci, 2003, 86 (supp-S): E52- E77. |
4 |
RENAUDEAU D , COLLIN A , YAHAV S , et al. Adaptation to hot climate and strategies to alleviate heat stress in livestock production[J]. Animal, 2012, 6 (05): 707- 728.
doi: 10.1017/S1751731111002448 |
5 |
ROJAS-DOWNING M M , NEJADHASHEMI A P , HARRIGAN T , et al. Climate change and livestock: Impacts, adaptation, and mitigation[J]. Clim Risk Manag, 2017, 16, 145- 163.
doi: 10.1016/j.crm.2017.02.001 |
6 |
MERKS J W , MATHUR P K , KNOL E F . New phenotypes for new breeding goals in pigs[J]. Animal, 2012, 6 (4): 535- 543.
doi: 10.1017/S1751731111002266 |
7 | HARLIZIUS B , MATHER P , KNOL E F . Breeding for resilience: new opportunities in a modern pig breeding program[J]. J Anim Sci,, 2020, 98 (Suppl 1): S150- s154. |
8 |
VAN DER WAAIJ E H . A resource allocation model describing consequences of artificial selection under metabolic stress[J]. J Anim Sci, 2004, 82 (4): 973- 981.
doi: 10.2527/2004.824973x |
9 |
MUTUA J Y , MARSHALL K , PAUL B K , et al. A methodology for mapping current and future heat stress risk in pigs[J]. Animal, 2020, 14 (9): 1952- 1960.
doi: 10.1017/S1751731120000865 |
10 |
GROSSI G , GOGLIO P , VITALI A , et al. Livestock and climate change: impact of livestock on climate and mitigation strategies[J]. Anim Front, 2019, 9 (1): 69- 76.
doi: 10.1093/af/vfy034 |
11 |
MAYROGA E J , RENAUDEAU D , RAMIREZ B C , et al. Heat stress adaptations in pigs[J]. Anim Front, 2019, 9 (1): 54- 61.
doi: 10.1093/af/vfy035 |
12 |
BERNABUCCI U , LACETERA N , BAUMGARD L H , et al. Metabolic and hormonal acclimation to heat stress in domesticated ruminants[J]. Animal, 2010, 4 (7): 1167- 1183.
doi: 10.1017/S175173111000090X |
13 |
JOHNSON J S , STEWART K R , SAFRANSKI T J , et al. In utero heat stress alters postnatal phenotypes in swine[J]. Theriogenology, 2020, 154, 110- 119.
doi: 10.1016/j.theriogenology.2020.05.013 |
14 | CAO M , ZONG C , ZHUANG Y , et al. Modeling of heat stress in sows part 2: Comparison of various thermal comfort indices[J]. Animals (Basel), 2021, 11 (6): 1498. |
15 |
XIE Q , WU M , BAO J , et al. A deep learning-based detection method for pig body temperature using infrared thermography[J]. Computers and Electronics in Agriculture, 2023, 213, 108200.
doi: 10.1016/j.compag.2023.108200 |
16 |
ESCRIBANO D , CONTRERAS-JODAR A , LOPEZ-ARJONA M , et al. Changes in cortisol and cortisone in hair of pigs reared under heat stress conditions[J]. Front Vet Sci, 2023, 10, 1156480.
doi: 10.3389/fvets.2023.1156480 |
17 |
OLUWAGBENGA EM , TETEL V , SCHOBER J , et al. Chronic heat stress part 1: Decrease in egg quality, increase in cortisol levels in egg albumen, and reduction in fertility of breeder pekin ducks[J]. Front Physiol, 2022, 13, 1019741.
doi: 10.3389/fphys.2022.1019741 |
18 |
DESAUTES C , SARRIEAU A , CARITEZ J C , et al. Behavior and pituitary-adrenal function in large white and Meishan pigs[J]. Domest Anim Endocrinol, 1999, 16 (4): 193- 205.
doi: 10.1016/S0739-7240(99)00014-4 |
19 |
FOURY A , GEVERINK N A , GIL M , et al. Stress neuroendocrine profiles in five pig breeding lines and the relationship with carcass composition[J]. Animal, 2007, 1 (7): 973- 982.
doi: 10.1017/S1751731107000249 |
20 |
LARZUL C , TERENINA E , FOURY A , et al. The cortisol response to ACTH in pigs, heritability and influence of corticosteroid-binding globulin[J]. Animal, 2015, 9 (12): 1929- 1934.
doi: 10.1017/S1751731115001767 |
21 |
MORMEDE P , FOURY A , TERENINA E , et al. Breeding for robustness: the role of cortisol[J]. Animal, 2011, 5 (5): 651- 657.
doi: 10.1017/S1751731110002168 |
22 | RUDOLPH T E , ROTHS M , FREESTONE A D , et al. Heat stress alters hematological parameters in barrows and gilts[J]. J Anim Sci, 2024, 102, 123. |
23 |
SANZ FERNANDEZ M V , STOAKES S K , ABUAJAMIEH M , et al. Heat stress increases insulin sensitivity in pigs[J]. Physiol Rep, 2015, 3 (8): e12478.
doi: 10.14814/phy2.12478 |
24 |
VICTORIA SANZ FERNANDEZ M , JOHNSON J S , ABUAJAMIEH M , et al. Effects of heat stress on carbohydrate and lipid metabolism in growing pigs[J]. Physiol Rep, 2015, 3 (2): e12315.
doi: 10.14814/phy2.12315 |
25 | LI G , ALI I S , CURRIE R W . Insulin induces myocardial protection and Hsp70 localization to plasma membranes in rat hearts[J]. Am J Physiol Heart Circ Physiol, 2006, 291 (4): H1709-1721. |
26 |
ADUR M K , SEIBERT J T , ROMOSER M R , et al. Porcine endometrial heat shock proteins are differentially influenced by pregnancy status, heat stress, and altrenogest supplementation during the peri-implantation period[J]. J Anim Sci, 2022, 100 (7): skac129.
doi: 10.1093/jas/skac129 |
27 |
CERVANTES M , COTA M , ARCE N , et al. Effect of heat stress on performance and expression of selected amino acid and glucose transporters, HSP90, leptin and ghrelin in growing pigs[J]. J Therm Biol, 2016, 59, 69- 76.
doi: 10.1016/j.jtherbio.2016.04.014 |
28 | ZAREI S , GHAFOORI H , VAHDATIRAAD L , et al. Effects of HSP inducers on the gene expression of Heat Shock Proteins (HSPs) in cells extracted from sterlet sturgeon under temperature stress with antioxidant and immunity responses[J]. Fish Physiology & Biochemistry, 2024, 50 (4): 1409- 1428. |
29 |
ROSS J W , HALE B J , SEIBERT J T , et al. Physiological mechanisms through which heat stress compromises reproduction in pigs[J]. Mol Reprod Dev, 2017, 84 (9): 934- 945.
doi: 10.1002/mrd.22859 |
30 |
WANG J , FENG C , LIU T , et al. Physiological alterations associated with intrauterine growth restriction in fetal pigs: Causes and insights for nutritional optimization[J]. Mol Reprod Dev, 2017, 84 (9): 897- 904.
doi: 10.1002/mrd.22842 |
31 |
冯肖艺, 张培培, 张航, 等. 热应激对牛卵子及其胚胎表观遗传修饰与发育能力的影响[J]. 畜牧兽医学报, 2024, 55 (6): 2460- 2473.
doi: 10.11843/j.issn.0366-6964.2024.06.018 |
FENG X Y , ZHANG P P , ZHANG H , et al. Effects of heat stress on epigenetic modifications and developmental competence of bovine oocytes and their embryos[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (6): 2460- 2473.
doi: 10.11843/j.issn.0366-6964.2024.06.018 |
|
32 |
ZHAO W , ARTAIZ O , IQBAL Y , et al. Heat stress of gilts around farrowing causes oxygen insufficiency in the umbilical cord and reduces piglet survival[J]. Animal, 2022, 16 (11): 100668.
doi: 10.1016/j.animal.2022.100668 |
33 |
RAVANELLI N , CASASOLA W , ENGLISH T , et al. Heat stress and fetal risk. Environmental limits for exercise and passive heat stress during pregnancy: a systematic review with best evidence synthesis[J]. Br J Sports Med, 2019, 53 (13): 799- 805.
doi: 10.1136/bjsports-2017-097914 |
34 |
JOHNSON J S . Heat stress: impact on livestock well-being and productivity and mitigation strategies to alleviate the negative effects[J]. Anim Prod Sci, 2018, 58 (8): 1404- 1413.
doi: 10.1071/AN17725 |
35 |
ZHENG X , MA W , WANG Y , et al. Heat stress-induced fetal intrauterine growth restriction is associated with elevated LPS levels along the maternal intestine-placenta-fetus axis in pregnant mice[J]. J Agric Food Chem, 2023, 71 (49): 19592- 19609.
doi: 10.1021/acs.jafc.3c07058 |
36 |
ZISKIN M C , MORRISSEY J . Thermal thresholds for teratogenicity, reproduction, and development[J]. Int J Hyperthermia, 2011, 27 (4): 374- 387.
doi: 10.3109/02656736.2011.553769 |
37 |
GALAN H L , HUSSEY M J , BARBERA A , et al. Relationship of fetal growth to duration of heat stress in an ovine model of placental insufficiency[J]. Am J Obstet Gynecol, 1999, 180 (5): 1278- 1282.
doi: 10.1016/S0002-9378(99)70629-0 |
38 |
COWELL W , ARD N , HERRERA T , et al. Ambient temperature, heat stress and fetal growth: A review of placenta-mediated mechanisms[J]. Mol Cell Endocrinol, 2023, 576, 112000.
doi: 10.1016/j.mce.2023.112000 |
39 |
JOHNSON J S , ABUAJAMIEH M , VICTORIA SANZ FERNANDEZ M , et al. The impact of in utero heat stress and nutrient restriction on progeny body composition[J]. J Therm Biol, 2015, 53, 143- 150.
doi: 10.1016/j.jtherbio.2015.10.002 |
40 |
BODDICKER R L , SEIBERT J T , JOHNSON J S , et al. Gestational heat stress alters postnatal offspring body composition indices and metabolic parameters in pigs[J]. PLoS One, 2014, 9 (11): e110859.
doi: 10.1371/journal.pone.0110859 |
41 |
ALVARENGA A L , CHIARINI-GARCIA H , CARDEAL P C , et al. Intra-uterine growth retardation affects birthweight and postnatal development in pigs, impairing muscle accretion, duodenal mucosa morphology and carcass traits[J]. Reprod Fertil Dev, 2013, 25 (2): 387- 395.
doi: 10.1071/RD12021 |
42 |
LYNEGAARD J C , HANSEN C F , KRISTENSEN A R , et al. Body composition and organ development of intra-uterine growth restricted pigs at weaning[J]. Animal, 2020, 14 (2): 322- 329.
doi: 10.1017/S175173111900171X |
43 |
TAO S , DAHL G E . Invited review: Heat stress effects during late gestation on dry cows and their calves[J]. J Dairy Sci, 2013, 96 (7): 4079- 4093.
doi: 10.3168/jds.2012-6278 |
44 |
JOHNSON J S , BAUMGARD L H . Physiology symposium: Postnatal consequences of in utero heat stress in pigs[J]. J Anim Sci, 2019, 97 (2): 962- 971.
doi: 10.1093/jas/sky472 |
45 | LAPORTA J , KHATIB H , ZZCHUT M . Review: Phenotypic and molecular evidence of inter- and trans-generational effects of heat stress in livestock mammals and humans[J]. Animal, 2024, 9 (18): 101121. |
46 |
TAO S , DAHL G E . Invited review: heat stress effects during late gestation on dry cows and their calves[J]. J Dairy Sci, 2013, 96 (7): 4079- 4093.
doi: 10.3168/jds.2012-6278 |
47 | CHAPEL N M , BYRD C J , LUGAR D W , et al. Determining the effects of early gestation in utero heat stress on postnatal fasting heat production and circulating biomarkers associated with metabolism in growing pigs[J]. J Anim Sci, 2017, 95 (9): 3914- 3921. |
48 | BYRD C J , ANDERSON N C , LUGAR D W , et al. Evaluating the effects of in utero heat stress on piglet physiology and behavior following weaning and transport[J]. Animals (Basel), 2019, 9 (4): 191. |
49 |
DESAULNIERS A T , LAMBERSON W R , SAFRANSKI T J . Prenatal heat stress reduces male anogenital distance at birth and adult testis size, which are rescued by concurrent maternal Artemisia absinthium consumption[J]. J Therm Biol, 2016, 57, 84- 91.
doi: 10.1016/j.jtherbio.2016.01.011 |
50 |
LUGAR D W , PROCTOR J A , SAFRANSKI T J , et al. In utero heat stress causes reduced testicular area at puberty, reduced total sperm production, and increased sperm abnormalities in boars[J]. Anim Reprod Sci, 2018, 192, 126- 135.
doi: 10.1016/j.anireprosci.2018.02.022 |
51 |
LIAN P , BRABER S , GARSSEN J , et al. Beyond heat stress: Intestinal integrity disruption and mechanism-based intervention strategies[J]. Nutrients, 2020, 12 (3): 734.
doi: 10.3390/nu12030734 |
52 | PEARCE S C , MANI V , BODDICKER R L , et al. Heat stress reduces barrier function and alters intestinal metabolism in growing pigs[J]. J Anim Sci, 2012, 90 (Suppl 4): 257- 259. |
53 | ABUAJAMIEH M , KVIDERA S K , MAYORGA E J , et al. The effect of recovery from heat stress on circulating bioenergetics and inflammatory biomarkers[J]. J Anim Sci, 2018, 96 (11): 4599- 4610. |
54 |
MAYORGA E J , ROSS J W , KEATING A F , et al. Biology of heat stress; the nexus between intestinal hyperpermeability and swine reproduction[J]. Theriogenology, 2020, 154, 73- 83.
doi: 10.1016/j.theriogenology.2020.05.023 |
55 | MAYORGA E J , RODRIGUEZ-JIMENEZ S , ABEYTA M A , et al. Investigating intestinal mast cell dynamics during acute heat stress in growing pigs[J]. J Anim Sci, 2024, 102 |
56 |
RIVERA R M , ROSS J W . Epigenetics in fertilization and preimplantation embryo development[J]. Prog Biophys Mol Biol, 2013, 113 (3): 423- 432.
doi: 10.1016/j.pbiomolbio.2013.02.001 |
57 |
SKIBIEL A L , PENAGARICANO F , AMORIN R , et al. In utero heat stress alters the offspring epigenome[J]. Sci Rep, 2018, 8 (1): 14609.
doi: 10.1038/s41598-018-32975-1 |
58 |
DADO-SENN B M , FIELD S L , DAVIDSON B D , et al. In utero hyperthermia in late gestation derails dairy calf early-life mammary development[J]. J Anim Sci, 2022, 100 (10): skac186.
doi: 10.1093/jas/skac186 |
59 |
JI Y , WU Z , DAI Z , et al. Fetal and neonatal programming of postnatal growth and feed efficiency in swine[J]. J Anim Sci Biotechnol, 2017, 8, 42.
doi: 10.1186/s40104-017-0173-5 |
60 |
WU G , BAZER F W , WALLACE J M , et al. Board-invited review: intrauterine growth retardation: implications for the animal sciences[J]. J Anim Sci, 2006, 84 (9): 2316- 2337.
doi: 10.2527/jas.2006-156 |
61 |
SINCLAIR K D , RUTHERFORD K M , WALLACE J M , et al. Epigenetics and developmental programming of welfare and production traits in farm animals[J]. Reprod Fertil Dev, 2016, 28 (10): 1443- 1478.
doi: 10.1071/RD16102 |
62 | ROSS J W , HALE B J , GABLER N K , et al. Physiological consequences of heat stress in pigs[J]. Anim Prod Sci, 2015, 55 (11): 1381- 1390. |
63 |
BERTOLDO M , GRUPEN C G , THOMSON P C , et al. Identification of sow-specific risk factors for late pregnancy loss during the seasonal infertility period in pigs[J]. Theriogenology, 2009, 72 (3): 393- 400.
doi: 10.1016/j.theriogenology.2009.03.008 |
64 |
OMTVEDT I T , NELSON R E , EDWARDS R L , et al. Influence of heat stress during early, mid and late pregnancy of gilts[J]. J Anim Sci, 1971, 32 (2): 312- 317.
doi: 10.2527/jas1971.322312x |
65 | WETTEMANN R P , BAZER F W . Influence of environmental temperature on prolificacy of pigs[J]. J Reprod Fertil Suppl, 1985, 33, 199- 208. |
66 |
BERNHARD C J , SHARP K G , SAFRANSKI T J , et al. Reproduction and reproductive tract morphology of male and female pigs whose mothers were heat stressed during the second month of gestation[J]. J Anim Sci, 2020, 98 (11): skaa352.
doi: 10.1093/jas/skaa352 |
67 |
BAGATH M , KRISHNAN G , DEVARAJ C , et al. The impact of heat stress on the immune system in dairy cattle: A review[J]. Res Vet Sci, 2019, 126, 94- 102.
doi: 10.1016/j.rvsc.2019.08.011 |
68 |
SAKAI S , YAGI M , FUJIME N , et al. Heat stress influences the attenuation of prostaglandin synthesis by interferon tau in bovine endometrial cells[J]. Theriogenology, 2021, 165, 52- 58.
doi: 10.1016/j.theriogenology.2021.02.005 |
69 |
SOUZA-CACARES M B , FIALHO ALL , SILVA WAL , et al. Oocyte quality and heat shock proteins in oocytes from bovine breeds adapted to the tropics under different conditions of environmental thermal stress[J]. Theriogenology, 2019, 130, 103- 110.
doi: 10.1016/j.theriogenology.2019.02.039 |
70 |
PEARCE S C , GABLER N K , ROSS J W , et al. The effects of heat stress and plane of nutrition on metabolism in growing pigs[J]. J Anim Sci, 2013, 91 (5): 2108- 2118.
doi: 10.2527/jas.2012-5738 |
71 | LEE S , KANG H G , JEONG P S , et al. Heat stress impairs oocyte maturation through ceramide-mediated apoptosis in pigs[J]. Sci Total Environ, 2021, 755 (Pt 1): 144144. |
72 |
ADHIKARI D , LIU K . Molecular mechanisms underlying the activation of mammalian primordial follicles[J]. Endocr Rev, 2009, 30 (5): 438- 464.
doi: 10.1210/er.2008-0048 |
73 |
MAKKER A , GOEL M M , MAHDI A A . PI3K/PTEN/Akt and TSC/mTOR signaling pathways, ovarian dysfunction, and infertility: an update[J]. J Mol Endocrinol, 2014, 53 (3): R103- 118.
doi: 10.1530/JME-14-0220 |
74 | NTEEBA J , SANZ-FERNANDEZ M V , RHOADS R P , et al. Heat stress alters ovarian insulin-mediated phosphatidylinositol-3 kinase and steroidogenic signaling in gilt ovaries[J]. Biol Reprod, 2015, 92 (6): 148. |
75 |
DICKSON M J , HAGER C L , AL-SHAIBI A , et al. Impact of heat stress during the follicular phase on porcine ovarian steroidogenic and phosphatidylinositol-3 signaling[J]. J Anim Sci, 2018, 96 (6): 2162- 2174.
doi: 10.1093/jas/sky144 |
76 |
SUZUKI C , YOSHIOKA K , IWAMURA S , et al. Endotoxin induces delayed ovulation following endocrine aberration during the proestrous phase in Holstein heifers[J]. Domest Anim Endocrinol, 2001, 20 (4): 267- 278.
doi: 10.1016/S0739-7240(01)00098-4 |
77 |
MOORE D A , CULLOR J S , BONDURANT R H , et al. Preliminary field evidence for the association of clinical mastitis with altered interestrus intervals in dairy cattle[J]. Theriogenology, 1991, 36 (2): 257- 265.
doi: 10.1016/0093-691X(91)90384-P |
78 |
HOCKETT M E , HOPKINS F M , LEWIS M J , et al. Endocrine profiles of dairy cows following experimentally induced clinical mastitis during early lactation[J]. Anim Reprod Sci, 2000, 58 (3-4): 241- 251.
doi: 10.1016/S0378-4320(99)00089-5 |
79 |
AGRAWAL V , JAISWAL M K , JAISWAL Y K . Lipopolysaccharide-induced modulation in the expression of progesterone receptor and estradiol receptor leads to early pregnancy loss in mouse[J]. Zygote, 2013, 21 (4): 337- 344.
doi: 10.1017/S0967199412000330 |
80 |
SEIBERT J T , ADUR M K , SCHULTZ R B , et al. Differentiating between the effects of heat stress and lipopolysaccharide on the porcine ovarian heat shock protein response1[J]. J Anim Sci, 2019, 97 (12): 4965- 4973.
doi: 10.1093/jas/skz343 |
81 |
BIDNE K L , ROMOSER M R , ROSS J W , et al. Heat stress during the luteal phase decreases luteal size but does not affect circulating progesterone in gilts1[J]. J Anim Sci, 2019, 97 (10): 4314- 4322.
doi: 10.1093/jas/skz251 |
82 |
HALE B J , HAGER C L , SEIBERT J T , et al. Heat stress induces autophagy in pig ovaries during follicular development[J]. Biol Reprod, 2017, 97 (3): 426- 437.
doi: 10.1093/biolre/iox097 |
83 |
HALE B J , LI Y , ADUR M K , et al. Characterization of the effects of heat stress on autophagy induction in the pig oocyte[J]. Reprod Biol Endocrinol, 2021, 19 (1): 107.
doi: 10.1186/s12958-021-00791-4 |
84 |
WELLS J C . Thermal environment and human birth weight[J]. J Theor Biol, 2002, 214 (3): 413- 425.
doi: 10.1006/jtbi.2001.2465 |
85 |
KUEHN L , MCCORMICK S . Heat exposure and maternal health in the face of climate change[J]. Int J Environ Res Public Health, 2017, 14 (8): 853.
doi: 10.3390/ijerph14080853 |
86 |
SAMUELS L , NAKSTAD B , ROOS N , et al. Physiological mechanisms of the impact of heat during pregnancy and the clinical implications: review of the evidence from an expert group meeting[J]. Int J Biometeorol, 2022, 66 (8): 1505- 1513.
doi: 10.1007/s00484-022-02301-6 |
87 | CHERSICH M F , PHAM M D , AREAL A , et al. Associations between high temperatures in pregnancy and risk of preterm birth, low birth weight, and stillbirths: systematic review and meta-analysis[J]. Bmj, 2020, 371, m3811. |
88 |
REGNAULT T R , DE VRIJER B , GALAN H L , et al. Development and mechanisms of fetal hypoxia in severe fetal growth restriction[J]. Placenta, 2007, 28 (7): 714- 723.
doi: 10.1016/j.placenta.2006.06.007 |
89 |
ZHAO W , LIU F , BELL A W , et al. Controlled elevated temperatures during early-mid gestation cause placental insufficiency and implications for fetal growth in pregnant pigs[J]. Sci Rep, 2020, 10 (1): 20677.
doi: 10.1038/s41598-020-77647-1 |
90 |
ZHAO W , LIU F , MARTH C D , et al. Maternal heat stress alters expression of genes associated with nutrient transport activity and metabolism in female placentae from Mid-Gestating pigs[J]. Int J Mol Sci, 2021, 22 (8): 4147.
doi: 10.3390/ijms22084147 |
91 | REGNAULT T R , FRIEDMAN J E , WILKENING R B , et al. Fetoplacental transport and utilization of amino acids in IUGR——a review[J]. Placenta, 2005, 26 (Suppl A): S52- 62. |
92 | BELL A W , WILKENING R B , MESCHIA G . Some aspects of placental function in chronically heat-stressed ewes[J]. J Dev Physiol, 1987, 9 (1): 17- 29. |
93 |
COLLIER R J , BAUMGARD L H , ZIMBELMAN R B , et al. Heat stress: physiology of acclimation and adaptation[J]. Anim Front, 2019, 9 (1): 12- 19.
doi: 10.1093/af/vfy031 |
94 |
GOURDINE J L , MANDONNET N , GIORGI M , et al. Genetic parameters for thermoregulation and production traits in lactating sows reared in tropical climate[J]. Animal, 2017, 11 (3): 365- 374.
doi: 10.1017/S175173111600135X |
95 |
TIEZZI F , BRITO L F , HOWARD J , et al. Genomics of heat tolerance in reproductive performance investigated in four independent maternal lines of pigs[J]. Front Genet, 2020, 11, 629.
doi: 10.3389/fgene.2020.00629 |
96 | USALA M , MACCIOTTA NPP , BERGAMASCHI M , et al. Genetic parameters for tolerance to heat stress in crossbred swine carcass traits[J]. Front Genet, 2020, 11, 612815. |
97 |
GOURDINE J L , RAUW W M , GILBERT H , et al. The Genetics of thermoregulation in pigs: A review[J]. Front Vet Sci, 2021, 8, 770480.
doi: 10.3389/fvets.2021.770480 |
98 |
GOURDINE J L , RIQUET J , ROSE R , et al. Genotype by environment interactions for performance and thermoregulation responses in growing pigs1, 2[J]. J Anim Sci, 2019, 97 (9): 3699- 3713.
doi: 10.1093/jas/skz245 |
99 | MISZTAL I . Breeding and genetics symposium: Resilience and lessons from studies in genetics of heat stress[J]. J Anim Sci, 2017, 95 (4): 1780- 1787. |
100 |
KIM K S , SEIBERT J T , EDEA Z , et al. Characterization of the acute heat stress response in gilts: III. Genome-wide association studies of thermotolerance traits in pigs[J]. J Anim Sci, 2018, 96 (6): 2074- 2085.
doi: 10.1093/jas/sky131 |
101 | FREITAS PHF , JOHNSON J S , CHEN S , et al. Definition of environmental variables and critical periods to evaluate heat tolerance in Large White pigs based on single-step genomic reaction norms[J]. Front Genet, 2021, 23 (12): 717409. |
102 | DODD G R , GRAY K , HUANG Y , et al. Single-step GBLUP and GWAS analyses suggests implementation of unweighted two trait approach for heat stress in swine[J]. Animals (Basel), 2022, 12 (3): 388. |
103 |
GHILDIYAL K , PANIGRAHI M , KUMAR H , et al. Selection signatures for fiber production in commercial species: A review[J]. Anim Genet, 2023, 54 (1): 3- 23.
doi: 10.1111/age.13272 |
104 |
AI H , FANG X , YANG B , et al. Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing[J]. Nat Genet, 2015, 47 (3): 217- 225.
doi: 10.1038/ng.3199 |
105 |
ZHONG Z Q , LI R , WANG Z , et al. Genome-wide scans for selection signatures in indigenous pigs revealed candidate genes relating to heat tolerance[J]. Animal, 2023, 17 (7): 100882.
doi: 10.1016/j.animal.2023.100882 |
106 |
CLARK E L , ARCHIBALD A L , DAETWYLER H D , et al. From FAANG to fork: application of highly annotated genomes to improve farmed animal production[J]. Genome Biol, 2020, 21 (1): 285.
doi: 10.1186/s13059-020-02197-8 |
[1] | 周泰增, 杨祎挺, 朱悦华, 钱洪喜, 刘一辉, 甘麦邻, 朱砺, 沈林園. 母猪死胎和木乃伊全基因组关联分析[J]. 畜牧兽医学报, 2025, 56(3): 1231-1241. |
[2] | 常萱, 魏冰妮, 张小丽, 赵中权, 陈俊材. 畜禽胃肠道共生真菌研究进展[J]. 畜牧兽医学报, 2025, 56(1): 63-73. |
[3] | 王贝贝, 武书庚, 张海华, 张海军, 郝二英, 邱凯. 饲粮添加大豆异黄酮对产蛋后期蛋鸡生产的影响[J]. 畜牧兽医学报, 2025, 56(1): 295-306. |
[4] | 李玮, 吴禧龙, 赵兴瑞, 许兰娇, 杨小斌, 宋小珍. 中药健脾四胃方剂对断奶湖羊生长性能、瘤胃发酵及菌群组成的影响[J]. 畜牧兽医学报, 2025, 56(1): 466-478. |
[5] | 鲜婷婷, 刘彦, 曹忻, 冯涛. 母猪子宫内膜炎阴道菌群与血清促炎细胞因子的变化及其相关性分析[J]. 畜牧兽医学报, 2024, 55(8): 3688-3698. |
[6] | 张瑞琪, 厐彦芹, 李再山, 尚秀国, 兰干球, 郭金彪, 赵云翔. 基于智能饲喂开展哺乳母猪采食量基因组遗传评估研究[J]. 畜牧兽医学报, 2024, 55(7): 2890-2900. |
[7] | 王小松, 李冬, 李淑, 陈佳力, 刘永需, 赵红, 李福昌, 刘磊. 不同饲粮铜水平对安哥拉兔生产性能及毛囊发育的影响[J]. 畜牧兽医学报, 2024, 55(7): 3032-3039. |
[8] | 王晓旭, 陈艳青, 张家麒, 王野, 王蕊, 于翰林, 杨凯淇, 包军, 张润祥. 爪趾皮肤炎对富集笼养蛋鸡生产性能、蛋品质、行为和免疫的影响[J]. 畜牧兽医学报, 2024, 55(6): 2680-2691. |
[9] | 牛佳佳, 徐丹, 刘洋, 赵小玲. 鸡芦花羽性状遗传调控机制研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1883-1892. |
[10] | 孙雯莉, 王浩奇, 泽里磋, 高雨樊, 张非凡, 张健, 段梦琪, 商鹏, 强巴央宗. 藏猪促炎因子(IL-1β、IL-6、TNF-α)多态性及其表达与免疫性状的关联分析[J]. 畜牧兽医学报, 2024, 55(5): 1958-1969. |
[11] | 吕世琪, 周荣艳, 田树军, 陈晓勇. 线粒体tRNA-Lys(T7719G)基因变异影响绵羊颗粒细胞凋亡生理机制研究[J]. 畜牧兽医学报, 2024, 55(5): 2011-2021. |
[12] | 徐俊杰, 张璐通, 王津洁, 陈晓晨, 何伟先, 蔡传江, 褚瑰燕, 杨公社. 基于多组学与网络药理学探究淫羊藿对后备母猪发情的作用[J]. 畜牧兽医学报, 2024, 55(4): 1615-1628. |
[13] | 王潇, 张昊, 栾庆江, 李慧, 杨鼎, 王婷月, 田菁, 赵濛, 陈陆, 田如刚. 冷热应激对肉牛生理指标及基因表达影响的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 894-904. |
[14] | 钟欣, 张晖, 张充, 刘小红. 母猪繁殖力基因遗传育种研究进展[J]. 畜牧兽医学报, 2024, 55(2): 438-450. |
[15] | 吴江, 万发春, 刘磊, 沈维军, 兰欣怡, 王祚. 枯草芽孢杆菌制剂对肉牛生产性能、瘤胃发酵、血液生化及免疫指标的影响[J]. 畜牧兽医学报, 2024, 55(12): 5575-5589. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||