畜牧兽医学报 ›› 2023, Vol. 54 ›› Issue (7): 2692-2700.doi: 10.11843/j.issn.0366-6964.2023.07.003
张航, 杨柏高, 徐茜, 冯肖艺, 杜卫华, 郝海生, 朱化彬, 张培培, 赵学明*
收稿日期:
2022-12-01
出版日期:
2023-07-23
发布日期:
2023-07-21
通讯作者:
赵学明,主要从事家畜胚胎生物技术研究,E-mail:zhaoxueming@caas.cn
作者简介:
张航(1998-),男,河南郑州人,硕士,主要从事动物繁殖研究,E-mail:2113884879@qq.com
基金资助:
ZHANG Hang, YANG Baigao, XU Xi, FENG Xiaoyi, DU Weihua, HAO Haisheng, ZHU Huabin, ZHANG Peipei, ZHAO Xueming*
Received:
2022-12-01
Online:
2023-07-23
Published:
2023-07-21
摘要: 奶牛热应激是高温环境引起的奶牛生理上的非特异性反应,会严重影响奶牛自身生理状态,损害胚胎发育,进而造成巨大经济损失。因此,如何提高热应激条件下奶牛胚胎发育能力,对于促进奶牛养殖业健康发展意义重大。本文就热应激对奶牛内分泌、卵母细胞及胚胎的负面影响,以及物理降温、激素治疗、添加IGF1、基因编辑技术修饰HSPA1L和PRLR基因等解决措施进行综述,为促进热应激奶牛胚胎发育提供一定参考。
中图分类号:
张航, 杨柏高, 徐茜, 冯肖艺, 杜卫华, 郝海生, 朱化彬, 张培培, 赵学明. 热应激影响奶牛胚胎发育作用机制的研究进展[J]. 畜牧兽医学报, 2023, 54(7): 2692-2700.
ZHANG Hang, YANG Baigao, XU Xi, FENG Xiaoyi, DU Weihua, HAO Haisheng, ZHU Huabin, ZHANG Peipei, ZHAO Xueming. Research Progress on the Mechanism of Heat Stress Affecting the Development of Dairy Cow Embryos[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2692-2700.
[1] | 刘秀娟.中国奶业发展策略研究[D].保定:河北农业大学, 2019.LIU X J.Research on the development strategy of China's dairy industry[D].Baoding:Hebei Agricultural University, 2019.(in Chinese) |
[2] | 杨祯妮, 祝文琪, 程广燕.2021年奶业市场形势回顾与2022年趋势研判[J].中国畜牧杂志, 2022, 58(5):273-276.YANG Z N, ZHU W Q, CHENG G Y.Review of dairy market situation in 2021 and analysis of trend in 2022[J].Chinese Journal of Animal Science, 2022, 58(5):273-276.(in Chinese) |
[3] | DASH S, CHAKRAVARTY A K, SINGH A, et al.Effect of heat stress on reproductive performances of dairy cattle and buffaloes:a review[J].Vet World, 2016, 9(3):235-244. |
[4] | THORNTON P, NELSON G, MAYBERRY D, et al.Impacts of heat stress on global cattle production during the 21st century:a modelling study[J].Lancet Planet Health, 2022, 6(3):e192-e201. |
[5] | WANKAR A K, RINDHE S N, DOIJAD N S.Heat stress in dairy animals and current milk production trends, economics, and future perspectives:the global scenario[J].Trop Anim Health Prod, 2021, 53(1):70. |
[6] | 亓建刚.热应激对北京地区荷斯坦牛生产性状的影响[D].乌鲁木齐:新疆农业大学, 2018.QI J G.Effects of heat stress on the production traits of Holstein in Beijing[D].Urumqi:Xinjiang Agricultural University, 2018.(in Chinese) |
[7] | WOLFENSON D, ROTH Z.Impact of heat stress on cow reproduction and fertility[J].Anim Front, 2019, 9(1):32-38. |
[8] | GERNAND E, KÖNIG S, KIPP C.Influence of on-farm measurements for heat stress indicators on dairy cow productivity, female fertility, and health[J].J Dairy Sci, 2019, 102(7):6660-6671. |
[9] | BERMAN A.An overview of heat stress relief with global warming in perspective[J].Int J Biometeorol, 2019, 63(4):493-498. |
[10] | RANJITKAR S, BU D P, VAN WIJK M, et al.Will heat stress take its toll on milk production in China?[J].Clim Change, 2020, 161(4):637-652. |
[11] | ROTH Z.Reproductive physiology and endocrinology responses of cows exposed to environmental heat stress-experiences from the past and lessons for the present[J].Theriogenology, 2020, 155:150-156. |
[12] | KASIMANICKAM R, KASIMANICKAM V.Impact of heat stress on embryonic development during first 16 days of gestation in dairy cows[J].Sci Rep, 2021, 11(1):14839. |
[13] | BESENFELDER U, BREM G, HAVLICEK V.Review:environmental impact on early embryonic development in the bovine species[J].Animal, 2020, 14(S1):s103-s112. |
[14] | NANAS I, CHOUZOURIS T M, DOVOLOU E, et al.Early embryo losses, progesterone and pregnancy associated glycoproteins levels during summer heat stress in dairy cows[J].J Therm Biol, 2021, 98:102951. |
[15] | 张志登, 刘 影, 王 玲.热应激对奶牛繁殖性能的影响研究进展[J].中国畜牧杂志, 2019, 55(5):5-10.ZHANG Z D, LIU Y, WANG L.Progress in research on effects of heat stress on reproductive performance of dairy cows[J].Chinese Journal of Animal Science, 2019, 55(5):5-10.(in Chinese) |
[16] | STAMPERNA K, DOVOLOU E, GIANNOULIS T, et al.Developmental competence of heat stressed oocytes from Holstein and limousine cows matured in vitro[J].Reprod Domest Anim, 2021, 56(10):1302-1314. |
[17] | WOLFENSON D, ROTH Z, MEIDAN R.Impaired reproduction in heat-stressed cattle:basic and applied aspects[J].Anim Reprod Sci, 2000, 60-61:535-547. |
[18] | BÁEZ F, LÓPEZ DARRIULAT R, RODRÍGUEZ-OSORIO N, et al.Effect of season on germinal vesicle stage, quality, and subsequent in vitro developmental competence in bovine cumulus-oocyte complexes[J].J Therm Biol, 2022, 103:103171. |
[19] | CAMARGO L S A, AGUIRRE-LAVIN T, ADENOT P, et al.Heat shock during in vitro maturation induces chromatin modifications in the bovine embryo[J].Reproduction, 2019, 158(4):313-322. |
[20] | ROTH Z, WOLFENSON D.Comparing the effects of heat stress and mastitis on ovarian function in lactating cows:basic and applied aspects[J].Domest Anim Endocrinol, 2016, 56(S):S218-S227. |
[21] | ROTH Z.Heat stress, the follicle, and its enclosed oocyte:mechanisms and potential strategies to improve fertility in dairy cows[J]. Reprod Domest Anim, 2008, 43:238-244. |
[22] | ROTH Z.Effect of heat stress on reproduction in dairy cows:insights into the cellular and molecular responses of the oocyte[J]. Annu Rev Anim Biosci, 2017, 5:151-170. |
[23] | CORDEIRO A L L, SATRAPA R A, GREGIANINI H A G, et al.Influence of temperature-humidity index on conception rate of Nelore embryos produced in vitro in northern Brazil[J].Trop Anim Health Prod, 2020, 52(3):1527-1532. |
[24] | ABDEL AZIZ R L, HUSSEIN M M, MOHAMED M A A, et al.Heat stress during critical windows of the oestrous cycle and risk of pregnancy establishment in embryo-recipient dairy heifers[J].Reprod Domest Anim, 2022, 57(8):856-863. |
[25] | STAMPERNA K, GIANNOULIS T, DOVOLOU E, et al.The effects of heat shock protein 70 addition in the culture medium on the development and quality of in vitro produced heat shocked bovine embryos[J].Animals, 2021, 11(12):3347. |
[26] | NARANJO-GÓMEZ J S, URIBE-GARCÍA H F, HERRERA-SÁNCHEZ M P, et al.Heat stress on cattle embryo:gene regulation and adaptation[J].Heliyon, 2021, 7(3):e06570. |
[27] | HANSEN P J.Reproductive physiology of the heat-stressed dairy cow:implications for fertility and assisted reproduction[J].Anim Reprod, 2019, 16(3):497-507. |
[28] | 张 弛.热应激对牛体细胞克隆胚胎早期发育的影响[D].杨凌:西北农林科技大学, 2007.ZHANG C.The effect of heat shock on development of cloned embryo[D].Yangling:Northwest Agriculture and Forestry University, 2007.(in Chinese) |
[29] | 赵 园, 齐晓楠, 田文儒.热应激影响奶牛繁殖力及其应对措施[J].黑龙江畜牧兽医, 2015(11):109-112.ZHAO Y, QI X N, TIAN W R.Effect of heat stress on cow fecundity and its countermeasures[J].Heilongjiang Animal Science and Veterinary Medicine, 2015(11):109-112.(in Chinese) |
[30] | ROTH Z.Cooling is the predominant strategy to alleviate the effects of heat stress on dairy cows[J].Reprod Domest Anim, 2022, 57(S1):16-22. |
[31] | FLAMENBAUM I, GALON N.Management of heat stress to improve fertility in dairy cows in Israel[J].J Reprod Dev, 2010, 56(S):S36-S41. |
[32] | DOS SANTOS S G C G, SARAIVA E P, GONZAGA NETO S, et al.Heat tolerance, thermal equilibrium and environmental management strategies for dairy cows living in intertropical regions[J].Front Vet Sci, 2022, 9:988775. |
[33] | FARIA A F P A, MAIA A S C, MOURA G A B, et al.Use of solar panels for shade for Holstein heifers[J].Animals (Basel), 2023, 13(3):329. |
[34] | FRIEDMAN E, VOET H, REZNIKOV D, et al.Hormonal treatment before and after artificial insemination differentially improves fertility in subpopulations of dairy cows during the summer and autumn[J].J Dairy Sci, 2014, 97(12):7465-7475. |
[35] | MISHRA S R.Behavioural, physiological, neuro-endocrine and molecular responses of cattle against heat stress:an updated review[J].Trop Anim Health Prod, 2021, 53(3):400. |
[36] | HANSEN P J, TRÍBULO P.Regulation of present and future development by maternal regulatory signals acting on the embryo during the morula to blastocyst transition-insights from the cow[J].Biol Reprod, 2019, 101(3):526-537. |
[37] | BONILLA A Q S, OZAWA M, HANSEN P J.Timing and dependence upon mitogen-activated protein kinase signaling for pro-developmental actions of insulin-like growth factor 1 on the preimplantation bovine embryo[J].Growth Horm IGF Res, 2011, 21(2):107-111. |
[38] | HANSEN P J.To be or not to be-determinants of embryonic survival following heat shock[J].Theriogenology, 2007, 68(S1):S40-S48. |
[39] | JOUSAN F D, HANSEN P J.Insulin-like growth factor-I as a survival factor for the bovine preimplantation embryo exposed to heat shock[J].Biol Reprod, 2004, 71(5):1665-1670. |
[40] | ASCARI I J, ALVES N G, JASMIN J, et al.Addition of insulin-like growth factor I to the maturation medium of bovine oocytes subjected to heat shock:effects on the production of reactive oxygen species, mitochondrial activity and oocyte competence[J].Domest Anim Endocrinol, 2017, 60:50-60. |
[41] | RODRIGUES T A, ISPADA J, RISOLIA P H B, et al.Thermoprotective effect of insulin-like growth factor 1 on in vitro matured bovine oocyte exposed to heat shock[J].Theriogenology, 2016, 86(8):2028-2039. |
[42] | LIMA R S, RISOLIA P H B, ISPADA J, et al.Role of insulin-like growth factor 1 on cross-bred Bos indicus cattle germinal vesicle oocytes exposed to heat shock[J].Reprod Fertil Dev, 2017, 29(7):1405-1414. |
[43] | BLOCK J, HANSEN P J.Interaction between season and culture with insulin-like growth factor-1 on survival of in vitro produced embryos following transfer to lactating dairy cows[J].Theriogenology, 2007, 67(9):1518-1529. |
[44] | BLOCK J, WRENZYCKI C, NIEMANN H, et al.Effects of insulin-like growth factor-1 on cellular and molecular characteristics of bovine blastocysts produced in vitro[J].Mol Reprod Dev, 2008, 75(5):895-903. |
[45] | BONILLA A Q S, OLIVEIRA L J, OZAWA M, et al.Developmental changes in thermoprotective actions of insulin-like growth factor-1 on the preimplantation bovine embryo[J].Mol Cell Endocrinol, 2011, 332(1-2):170-179. |
[46] | JOUSAN F D, OLIVEIRA L J, HANSEN P J.Short-term culture of in vitro produced bovine preimplantation embryos with insulin-like growth factor-I prevents heat shock-induced apoptosis through activation of the phosphatidylinositol 3-kinase/Akt pathway[J].Mol Reprod Dev, 2008, 75(4):681-688. |
[47] | MI[XCE.TIF;S*4, JZ] TKIEWSKA K, KORDOWITZKI P, PAREEK C S.Effects of heat stress on bovine oocytes and early embryonic development-an update[J].Cells, 2022, 11(24):4073. |
[48] | GENDELMAN M, ROTH Z.Incorporation of coenzyme Q10 into bovine oocytes improves mitochondrial features and alleviates the effects of summer thermal stress on developmental competence[J].Biol Reprod, 2012, 87(5):118. |
[49] | ABDULHASAN M K, LI Q, DAI J, et al.CoQ10 increases mitochondrial mass and polarization, ATP and Oct4 potency levels, and bovine oocyte MII during IVM while decreasing AMPK activity and oocyte death[J].J Assist Reprod Genet, 2017, 34(12):1595-1607. |
[50] | YANG C X, LIU S, MIAO J K, et al.CoQ10 improves meiotic maturation of pig oocytes through enhancing mitochondrial function and suppressing oxidative stress[J].Theriogenology, 2021, 159:77-86. |
[51] | LEE C H, KANG M K, SOHN D H, et al.Coenzyme Q10 ameliorates the quality of mouse oocytes during in vitro culture[J].Zygote, 2022, 30(2):249-257. |
[52] | BEN-MEIR A, BURSTEIN E, BORREGO-ALVAREZ A, et al.Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging[J].Aging Cell, 2015, 14(5):887-895. |
[53] | CAVALLARI F D C, LEAL C L V, ZVI R, et al.Effects of melatonin on production of reactive oxygen species and developmental competence of bovine oocytes exposed to heat shock and oxidative stress during in vitro maturation[J].Zygote, 2019, 27(3):180-186. |
[54] | YAACOBI-ARTZI S, SHIMONI C, KALO D, et al.Melatonin slightly alleviates the effect of heat shock on bovine oocytes and resulting blastocysts[J].Theriogenology, 2020, 158:477-489. |
[55] | CEBRIAN-SERRANO A, SALVADOR I, RAGA E, et al.Beneficial effect of melatonin on blastocyst in vitro production from heat-stressed bovine oocytes[J].Reprod Domest Anim, 2013, 48(5):738-746. |
[56] | AN Q L, PENG W, CHENG Y Y, et al.Melatonin supplementation during in vitro maturation of oocyte enhances subsequent development of bovine cloned embryos[J].J Cell Physiol, 2019, 234(10):17370-17381. |
[57] | TIAN X Z, WANG F, HE C J, et al.Beneficial effects of melatonin on bovine oocytes maturation:a mechanistic approach[J].J Pineal Res, 2014, 57(3):239-247. |
[58] | SU J M, WANG Y S, XING X P, et al.Melatonin significantly improves the developmental competence of bovine somatic cell nuclear transfer embryos[J].J Pineal Res, 2015, 59(4):455-468. |
[59] | 武秀香.中国南方黄牛系统地位、抗热特性及HSP70-1、SCD1和DGAT1基因的遗传效应研究[D].扬州:扬州大学, 2011.WU X X.Phenogenetic status and heat-resistance characters of Chinese southern cattle and genetic effects of HSP70-l, SCD1 and DGAT1 gene on the corresponding traits[D].Yangzhou:Yangzhou University, 2011.(in Chinese) |
[60] | 吴珑韬.中国荷斯坦奶牛HSP70-1基因多态性与耐热性能相关性分析[D].福州:福建农林大学, 2015.WU L T.Association of HSP70-1 polymorphisms and relationship with thermal tolerance in Chinese Hostein cows[D].Fuzhou:Fujian Agriculture and Forestry University, 2015.(in Chinese) |
[61] | STAMPERNA K, GIANNOULIS T, DOVOLOU E, et al.Heat shock protein 70 improves in vitro embryo yield and quality from heat stressed bovine oocytes[J].Animals (Basel), 2021, 11(6):1794. |
[62] | HANSEN P J.Prospects for gene introgression or gene editing as a strategy for reduction of the impact of heat stress on production and reproduction in cattle[J].Theriogenology, 2020, 154:190-202. |
[63] | BASIRICÒ L, MORERA P, PRIMI V, et al.Cellular thermotolerance is associated with heat shock protein 70.1 genetic polymorphisms in Holstein lactating cows[J].Cell Stress Chaperones, 2011, 16(4):441-448. |
[64] | ORTEGA M S, ROCHA-FRIGONI N A S, MINGOTI G Z, et al.Modification of embryonic resistance to heat shock in cattle by melatonin and genetic variation in HSPA1L[J].J Dairy Sci, 2016, 99(11):9152-9164. |
[65] | SARLO DAVILA K M, HOWELL A, NUNEZ A, et al.Genome-wide association study identifies variants associated with hair length in Brangus cattle[J].Anim Genet, 2020, 51(5):811-814. |
[66] | CRAVEN A J, ORMANDY C J, ROBERTSON F G, et al.Prolactin signaling influences the timing mechanism of the hair follicle:analysis of hair growth cycles in prolactin receptor knockout mice[J].Endocrinology, 2001, 142(6):2533-2539. |
[67] | FOITZIK K, KRAUSE K, NIXON A J, et al.Prolactin and its receptor are expressed in murine hair follicle epithelium, show hair cycle-dependent expression, and induce Catagen[J].Am J Pathol, 2003, 162(5):1611-1621. |
[68] | SOSA F, SANTOS J E P, RAE D O, et al.Effects of the SLICK1 mutation in PRLR on regulation of core body temperature and global gene expression in liver in cattle[J].Animal, 2022, 16(5):100523. |
[69] | 热阳古·阿布拉.伊犁马及其杂交马催乳素与催乳素受体基因多态性的初步研究[D].乌鲁木齐:新疆农业大学, 2012.ABULA R.Preliminary research on polymorphisms in prolactin (PRL) and prolactin receptor (PRLR) gene of Yili horse and its hybrids[D].Urumqi:Xinjiang Agricultural University, 2012.(in Chinese) |
[70] | SOSA F, CARMICKLE A T, JIMÉNEZ-CABÁN E, et al.Inheritance of the SLICK1 allele of PRLR in cattle[J].Anim Genet, 2021, 52(6):887-890. |
[71] | CARMICKLE A T, ZAMARONI M R, PEREIRA J, et al.PSVI-19 evaluation of birth weight, weaning weight and average daily weight gain of Holstein female calves carrying the SLICK1 allele of the prolactin receptor (PRLR) gene[J].J Anim Sci, 2021, 99(S3):229-230. |
[72] | DENICOL A C, CARMICKLE A T, PEREIRA J, et al.253 Physiological responses to heat stress of Holstein heifers carrying the SLICK1 allele of the prolactin receptor (PRLR) gene[J].J Anim Sci, 2021, 99(S3):137. |
[73] | LITTLEJOHN M D, HENTY K M, TIPLADY K, et al.Functionally reciprocal mutations of the prolactin signalling pathway define hairy and slick cattle[J].Nat Commun, 2014, 5:5861. |
[74] | PORTO-NETO L R, BICKHART D M, LANDAETA-HERNANDEZ A J, et al.Convergent evolution of slick coat in cattle through truncation mutations in the prolactin receptor[J].Front Genet, 2018, 9:57. |
[1] | 李婉君, 徐皆欢, 何孟纤, 孔钰婷, 张德福, 戴建军. 细胞松弛素B改善冷冻引起的猪卵母细胞皮质颗粒迁移障碍[J]. 畜牧兽医学报, 2024, 55(5): 1999-2010. |
[2] | 费国庆, 宁致远, 赵泽芳, 刘艳秋, 刘腾飞, 李贤, 丛日华, 陈鸿, 陈树林. 妊娠期奶牛黄体细胞的分离鉴定及培养特性[J]. 畜牧兽医学报, 2024, 55(5): 2214-2225. |
[3] | 向辉, 桂林森, 杨迪, 魏士昊, 宫艳斌, 史远刚, 马云, 淡新刚. 奶牛同期发情-定时输精技术研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1412-1422. |
[4] | 蓝昕蕊, 赵宝宝, 张碧菡, 林晓语, 马会明, 王勇胜. β-谷甾醇对猪卵母细胞体外成熟和胚胎发育的影响[J]. 畜牧兽医学报, 2024, 55(4): 1629-1637. |
[5] | 王潇, 张昊, 栾庆江, 李慧, 杨鼎, 王婷月, 田菁, 赵濛, 陈陆, 田如刚. 冷热应激对肉牛生理指标及基因表达影响的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 894-904. |
[6] | 李钰浚, 何翃闳, 杨丽雪, 杨小耿, 李键, 张慧珠. 线粒体自噬调控哺乳动物胚胎发育的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 905-912. |
[7] | 沈文娟, 杨卓, 张馨蕊, 付予, 陶金忠. 奶牛生殖道微生物与繁殖及相关疾病的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 924-932. |
[8] | 康方圆, 刘镇滔, 吴奎显, 倪晗, 钟凯, 李和平, 杨国宇, 韩立强. 脂噬对奶牛乳腺上皮细胞脂滴大小的调控研究[J]. 畜牧兽医学报, 2024, 55(3): 1095-1101. |
[9] | 张馨蕊, 付予, 杨卓, 沈文娟, 陶金忠. 奶牛早期妊娠诊断蛋白的研究[J]. 畜牧兽医学报, 2024, 55(2): 451-460. |
[10] | 张志飞, 唐雪颖, 闵力, 童雄, 陈卫东, 巨向红, 李大刚. 荷斯坦奶牛肝脏组织中与泌乳时期及繁殖力相关的基因共表达网络构建[J]. 畜牧兽医学报, 2024, 55(2): 528-539. |
[11] | 霍元楠, 邱美佳, 张姣姣, 杨炜蓉, 王鲜忠. 精氨酸及其代谢物抑制热应激诱导仔猪支持细胞凋亡的机制[J]. 畜牧兽医学报, 2024, 55(2): 587-597. |
[12] | 庄翠翠, 韩博. 大肠杆菌感染奶牛乳腺上皮细胞和小鼠乳腺组织致其线粒体损伤的机制研究[J]. 畜牧兽医学报, 2024, 55(2): 822-833. |
[13] | 肖艺梅, 王胜男, 许悦雯, 何晓琳, 尹福泉. 热应激对雄性哺乳动物生殖机能影响的研究[J]. 畜牧兽医学报, 2024, 55(1): 11-21. |
[14] | 曹建华, 杨柏高, 张培培, 冯肖艺, 张航, 余洲, 牛一凡, 郝海生, 杜卫华, 朱化彬, 杨凌, 赵学明. 能量负平衡影响奶牛卵泡发育的机制[J]. 畜牧兽医学报, 2024, 55(1): 22-30. |
[15] | 张晨俭, 李隐侠, 丁强, 刘伟佳, 王慧利, 何南, 吴家顺, 曹少先. CRISPR/Cas9技术高效制备山羊SOCS2基因编辑胚胎[J]. 畜牧兽医学报, 2024, 55(1): 129-141. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||