畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (1): 11-21.doi: 10.11843/j.issn.0366-6964.2024.01.002
肖艺梅, 王胜男, 许悦雯, 何晓琳, 尹福泉*
收稿日期:
2023-07-03
出版日期:
2024-01-23
发布日期:
2024-01-24
通讯作者:
尹福泉,主要从事动物营养与饲料科学研究,E-mail:yinfuquan01@163.com
作者简介:
肖艺梅(1996-),女,四川广安人,硕士生,主要从事动物营养研究,E-mail:xiaoym007@163.com
基金资助:
XIAO Yimei, WANG Shengnan, XU Yuewen, HE Xiaolin, YIN Fuquan*
Received:
2023-07-03
Online:
2024-01-23
Published:
2024-01-24
摘要: 作为雄性动物产生精子和分泌雄激素的重要器官,睾丸的温度调节对其正常生育能力的维持至关重要。热应激诱导的睾丸细胞氧化应激、凋亡、DNA损伤、血睾屏障损伤、雄激素分泌异常等一系列反应,会对睾丸细胞、精子质量、精子使卵母细胞受精的能力和支持胚胎发育的能力产生不利的影响。本文旨在综述睾丸的温度调节机制、热应激对睾丸细胞和精子质量的负面影响,以期为热应激对雄性生殖的影响研究提供参考。
中图分类号:
肖艺梅, 王胜男, 许悦雯, 何晓琳, 尹福泉. 热应激对雄性哺乳动物生殖机能影响的研究[J]. 畜牧兽医学报, 2024, 55(1): 11-21.
XIAO Yimei, WANG Shengnan, XU Yuewen, HE Xiaolin, YIN Fuquan. Research on the Influence of Heat Stress on Male Reproduction[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 11-21.
[1] | MORRELL J M.Heat stress and bull fertility[J].Theriogenology, 2020, 153:62-67. |
[2] | ALDAHHAN R A, STANTON P G.Heat stress response of somatic cells in the testis[J].Mol Cell Endocrinol, 2021, 527:111216. |
[3] | ROBINSON B R, NETHERTON J K, OGLE R A, et al.Testicular heat stress, a historical perspective and two postulates for why male germ cells are heat sensitive[J].Biol Rev Camb Philos Soc, 2023, 98(2):603-622. |
[4] | SHAHAT A M, RIZZOTO G, KASTELIC J P.Amelioration of heat stress-induced damage to testes and sperm quality[J].Theriogenology, 2020, 158:84-96. |
[5] | WAITES G M H, VOGLMAYR J K.Apocrine sweat glands of the scrotum of the ram[J].Nature, 1962, 196(4858):965-967. |
[6] | KASTELIC J P, COOK R B, COULTER G H.Scrotal/testicular thermoregulation and the effects of increased testicular temperature in the bull[J].Vet Clin North Am Food Anim Pract, 1997, 13(2):271-282. |
[7] | SENGUL G, ERTEKIN C.Human cremaster muscle and cremasteric reflex:a comprehensive review[J].Clin Neurophysiol, 2020, 131(6):1354-1364. |
[8] | DAHL E V, HERRICK J F.A vascular mechanism for maintaining testicular temperature by counter-current exchange[J].Surg Gynecol Obstet, 1959, 108(6):697-705. |
[9] | DURAIRAJANAYAGAM D, AGARWAL A, ONG C.Causes, effects and molecular mechanisms of testicular heat stress[J].Reprod Biomed Online, 2015, 30(1):14-27. |
[10] | WANG J, GAO W J, DENG S L, et al.High temperature suppressed SSC self-renewal through S phase cell cycle arrest but not apoptosis[J].Stem Cell Res Ther, 2019, 10(1):227. |
[11] | GAO W J, LI H X, FENG J, et al.Transcriptome analysis in high temperature inhibiting spermatogonial stem cell differentiation in vitro[J].Reprod Sci, 2023, 30(6):1938-1951. |
[12] | 邓成宸, 霍元楠, 王鲜忠.热应激诱导的氧化应激对雄性生殖的影响[J].中国细胞生物学学报, 2021, 43(11):2219-2227. |
DENG C C, HUO Y N, WANG X Z.Influences of heat stress-induced oxidative stress on male reproduction[J].Chinese Journal of Cell Biology, 2021, 43(11):2219-2227.(in Chinese) | |
[13] | CHEN K Y, WU L M, LIU Q Z, et al.Glutathione improves testicular spermatogenesis through inhibiting oxidative stress, mitochondrial damage, and apoptosis induced by copper deposition in mice with Wilson disease[J].Biomed Pharmacother, 2023, 158:114107. |
[14] | DE TONI L, FINOCCHI F, JAWICH K, et al.Global warming and testis function:a challenging crosstalk in an equally challenging environmental scenario[J].Front Cell Dev Biol, 2023, 10:1104326. |
[15] | SHAHAT A M, THUNDATHIL J C, KASTELIC J P.Scrotal subcutaneous temperature is increased by scrotal insulation or whole-body heating, but not by scrotal neck insulation;however, all three heat-stress models decrease sperm quality in bulls and rams[J].J Therm Biol, 2021, 100:103064. |
[16] | KUCHAKULLA M, NARASIMMAN M, KHODAMORADI K, et al.How defective spermatogenesis affects sperm DNA integrity[J].Andrologia, 2021, 53(1):e13615. |
[17] | ABD EL-EMAM M M, RAY M N, OZONO M, et al.Heat stress disrupts spermatogenesis via modulation of sperm-specific calcium channels in rats[J].J Therm Biol, 2023, 112:103465. |
[18] | WU Q H, NI X H.ROS-mediated DNA methylation pattern alterations in carcinogenesis[J].Curr Drug Targets, 2015, 16(1):13-19. |
[19] | RITCHIE C, KO E Y.Oxidative stress in the pathophysiology of male infertility[J].Andrologia, 2021, 53(1):e13581. |
[20] | AITKEN R J, GIBB Z, BAKER M A, et al.Causes and consequences of oxidative stress in spermatozoa[J].Reprod Fertil Dev, 2015, 28(1-2):1-10. |
[21] | CAPELA L, LEITES I, ROMÃO R, et al.Impact of heat stress on bovine sperm quality and competence[J].Animals (Basel), 2022, 12(8):975. |
[22] | KANTER M, AKTAS C, ERBOGA M.Heat stress decreases testicular germ cell proliferation and increases apoptosis in short term:an immunohistochemical and ultrastructural study[J].Toxicol Ind Health, 2013, 29(2):99-113. |
[23] | RAHMAN M B, SCHELLANDER K, LUCEÑO N L, et al.Heat stress responses in spermatozoa:mechanisms and consequences for cattle fertility[J].Theriogenology, 2018, 113:102-112. |
[24] | RIZZOTO G, KASTELIC J P.A new paradigm regarding testicular thermoregulation in ruminants?[J].Theriogenology, 2019, 147:166-175. |
[25] | XU Y R, DONG H S, YANG W X.Regulators in the apoptotic pathway during spermatogenesis:killers or guards?[J].Gene, 2016, 582(2):97-111. |
[26] | ZHANG M Q, JIANG M, BI Y, et al.Autophagy and apoptosis act as partners to induce germ cell death after heat stress in mice[J].PLoS One, 2012, 7(7):e41412. |
[27] | ABSALAN F, MOVAHEDIN M, MOWLA S J.Germ cell apoptosis induced by experimental cryptorchidism is mediated by molecular pathways in mouse testis[J].Andrologia, 2010, 42(1):5-12. |
[28] | CAI H, QIN D Z, PENG S.Responses and coping methods of different testicular cell types to heat stress:overview and perspectives[J].Biosci Rep, 2021, 41(6):BSR20210443. |
[29] | HENGARTNER M O.The biochemistry of apoptosis[J].Nature, 2000, 407(6805):770-776. |
[30] | KHERADMAND A, DEZFOULIAN O, ALIREZAEI M.Ghrelin regulates Bax and PCNA but not Bcl-2 expressions following scrotal hyperthermia in the rat[J].Tissue Cell, 2012, 44(5):308-315. |
[31] | MA W Z, WANG J, GAO W J, et al.The safe recipient of SSC transplantation prepared by heat shock with busulfan treatment in mice[J].Cell Transplant, 2018, 27(10):1451-1458. |
[32] | PARRISH J J, WILLENBURG K L, GIBBS K M, et al.Scrotal insulation and sperm production in the boar[J].Mol Reprod Dev, 2017, 84(9):969-978. |
[33] | BLACKSHAW A W, HAMILTON D.The effect of heat on hydrolytic enzymes and spermatogenesis in the rat testis[J].J Reprod Fertil, 1970, 22(3):569-571. |
[34] | VAN ZELST S J, ZUPP J L, HAYMAN D L, et al.X-Y chromosome dissociation in mice and rats exposed to increased testicular or environmental temperatures[J].Reprod Fertil Dev, 1995, 7(5):1117-1121. |
[35] | WAN X Y, HE X M, LIU Q, et al.Frequent and mild scrotal heat stress impairs embryo development, implantation and offspring sex ratio in mice[J].Reprod BioMed Online, 2020, 40(5):617-626. |
[36] | ROCKETT J C, MAPP F L, GARGES J B, et al.Effects of hyperthermia on spermatogenesis, apoptosis, gene expression, and fertility in adult male mice[J].Biol Reprod, 2001, 65(1):229-239. |
[37] | ALDAHHAN R A, STANTON P G, LUDLOW H, et al.Acute heat-treatment disrupts inhibin-related protein production and gene expression in the adult rat testis[J].Mol Cell Endocrinol, 2019, 498:110546. |
[38] | LUACES J P, TORO-URREGO N, OTERO-LOSADA M, et al.What do we know about blood-testis barrier?Current understanding of its structure and physiology[J].Front Cell Dev Biol, 2023, 11:1114769. |
[39] | LIU D L, LIU S J, HU S Q, et al.Probing the potential mechanism of quercetin and kaempferol against heat stress-induced sertoli cell injury:through integrating network pharmacology and experimental validation[J].Int J Mol Sci, 2022, 23(19):11163. |
[40] | GUO X T, CHI S K, CONG X, et al.Baicalin protects sertoli cells from heat stress-induced apoptosis via activation of the Fas/FasL pathway and Hsp72 expression[J].Reprod Toxicol, 2015, 57:196-203. |
[41] | JIN X H, ZHANG S, DING T B, et al.Testicular Lmcd1 regulates phagocytosis by Sertoli cells through modulation of NFAT1/Txlna signaling pathway[J].Aging Cell, 2020, 19(10):e13217. |
[42] | ZHOU R, WU J R Z, LIU B, et al.The roles and mechanisms of Leydig cells and myoid cells in regulating spermatogenesis[J].Cell Mol Life Sci, 2019, 76(14):2681-2695. |
[43] | BILEZIKJIAN L M, JUSTICE N J, BLACKLER A N, et al.Cell-type specific modulation of pituitary cells by activin, inhibin and follistatin[J].Mol Cell Endocrinol, 2012, 359(1-2):43-52. |
[44] | KAPRARA A, HUHTANIEMI I T.The hypothalamus-pituitary-gonad axis:tales of mice and men[J].Metabolism, 2018, 86:3-17. |
[45] | ALDAHHAN R A, STANTON P G, LUDLOW H, et al.Experimental cryptorchidism causes chronic inflammation and a progressive decline in sertoli cell and leydig cell function in the adult rat testis[J].Reprod Sci, 2021, 28(10):2916-2928. |
[46] | ZIRKIN B R, PAPADOPOULOS V.Leydig cells:formation, function, and regulation[J].Biol Reprod, 2018, 99(1):101-111. |
[47] | AKTAS C, KANTER M.A morphological study on Leydig cells of scrotal hyperthermia applied rats in short-term[J].J Mol Histol, 2009, 40(1):31-39. |
[48] | COSTA G M J, LACERDA S M S N, FIGUEIREDO A F A, et al.Higher environmental temperatures promote acceleration of spermatogenesis in vivo in mice (Mus musculus)[J].J Therm Biol, 2018, 77:14-23. |
[49] | HWANG E C, MIN K D, JUNG S I, et al.Testicular steroidogenesis is decreased by hyperthermia in old rats[J].Urol Int, 2010, 84(3):347-352. |
[50] | AITKEN R J, DREVET J R.The importance of oxidative stress in determining the functionality of mammalian spermatozoa:a two-edged sword[J].Antioxidants (Basel), 2020, 9(2):111. |
[51] | QAMAR A Y, NAVEED M I, RAZA S, et al.Role of antioxidants in fertility preservation of sperm-A narrative review[J].Anim Biosci, 2023, 36(3):385-403. |
[52] | YUAN C S, WANG J, LU W F.Regulation of semen quality by fatty acids in diets, extender, and semen[J].Front Vet Sci, 2023, 10:1119153. |
[53] | HASAN H, BHUSHAN S, FIJAK M, et al.Mechanism of inflammatory associated impairment of sperm function, spermatogenesis and steroidogenesis[J].Front Endocrinol (Lausanne), 2022, 13:897029. |
[54] | SAKATANI M.Effects of heat stress on bovine preimplantation embryos produced in vitro[J].J Reprod Dev, 2017, 63(4):347-352. |
[55] | 施力光, 彭维祺, 胡海超, 等.持续性环境热应激对公羊血液生化指标、生殖激素及精液品质的影响[J].家畜生态学报, 2018, 39(3):53-57. |
SHI L G, PENG W Q, HU H C, et al.Effect of long-term heat stress on blood biochemical and physiological index, hormone, and semen quality of goat[J].Acta Ecologae Animalis Domastici, 2018, 39(3):53-57.(in Chinese) | |
[56] | BAUER N C, CORBETT A H, DOETSCH P W.The current state of eukaryotic DNA base damage and repair[J].Nucleic Acids Res, 2015, 43(21):10083-10101. |
[57] | ABDELHAMID M H M, WALSCHAERTS M, AHMAD G, et al.Mild experimental increase in testis and epididymis temperature in men:effects on sperm morphology according to spermatogenesis stages[J].Transl Androl Urol, 2019, 8(6):651-665. |
[58] | ZHU Z D, KAWAI T, UMEHARA T, et al.Negative effects of ROS generated during linear sperm motility on gene expression and ATP generation in boar sperm mitochondria[J].Free Radic Biol Med, 2019, 141:159-171. |
[59] | GUPTA N, SARKAR S, MEHTA P, et al.Polymorphisms in the HSF2, LRRC6, MEIG1 and PTIP genes correlate with sperm motility in idiopathic infertility[J].Andrologia, 2022, 54(9):e14517. |
[60] | KIM H H, GOLDSTEIN M, PADUCH D A.Sperm apoptosis is activated through the mitochondrial pathway[J].J Urol, 2009, 181(4S):685. |
[61] | 张鹏飞.热应激诱发睾丸生殖细胞损伤机制的研究[D].杨凌:西北农林科技大学, 2021. |
ZHANG P F.The research on the mechanism of heat-stress induced testicular germ cell injury[D].Yangling:Northwest A&F University, 2021.(in Chinese) | |
[62] | MEYERHOEFFER D C, WETTEMANN R P, COLEMAN S W, et al.Reproductive criteria of beef bulls during and after exposure to increased ambient temperature[J].J Anim Sci, 1985, 60(2):352-357. |
[63] | GARCIA-OLIVEROS L N, DE ARRUDA R P, BATISSACO L, et al.Chronological characterization of sperm morpho-functional damage and recovery after testicular heat stress in Nellore bulls[J].J Therm Biol, 2022, 106:103237. |
[64] | XU B B, BAI X, ZHANG J, et al.Metabolomic analysis of seminal plasma to identify goat semen freezability markers[J].Front Vet Sci, 2023, 10:1132373. |
[65] | PATLAR B.On the role of seminal fluid protein and nucleic acid content in paternal epigenetic inheritance[J].Int J Mol Sci, 2022, 23(23):14533. |
[66] | DRUART X, RICKARD J P, TSIKIS G, et al.Seminal plasma proteins as markers of sperm fertility[J].Theriogenology, 2019, 137:30-35. |
[67] | RECUERO S, FERNANDEZ-FUERTES B, BONET S, et al.Potential of seminal plasma to improve the fertility of frozen-thawed boar spermatozoa[J].Theriogenology, 2019, 137:36-42. |
[68] | MANJUNATH P, LEFEBVRE J, JOIS P S, et al.New nomenclature for mammalian BSP genes[J].Biol Reprod, 2009, 80(3):394-397. |
[69] | PEREIRA G R, DE LAZARI F L, DALBERTO P F, et al.Effect of scrotal insulation on sperm quality and seminal plasma proteome of Brangus bulls[J].Theriogenology, 2020, 144:194-203. |
[70] | WANG F L, YANG W N, OUYANG S J, et al.The vehicle determines the destination:the significance of seminal plasma factors for male fertility[J].Int J Mol Sci, 2020, 21(22):8499. |
[71] | AKHTAR M F, MA Q S, LI Y, et al.Effect of sperm cryopreservation in farm animals using nanotechnology[J].Animals (Basel), 2022, 12(17):2277. |
[72] | BOE-HANSEN G B, RÊGO J P A, SATAKE N, et al.Effects of increased scrotal temperature on semen quality and seminal plasma proteins in Brahman bulls[J].Mol Reprod Dev, 2020, 87(5):574-597. |
[73] | ROCHA D R, MARTINS J A M, VAN TILBURG M F, et al.Effect of increased testicular temperature on seminal plasma proteome of the ram[J].Theriogenology, 2015, 84(8):1291-1305. |
[74] | ALI M A, QIN Z Y, DOU S, et al.Cryopreservation induces acetylation of metabolism-related proteins in boar sperm[J].Int J Mol Sci, 2023, 24(13):10983. |
[75] | PÉREZ-PATIÑO C, PARRILLA I, BARRANCO I, et al.New in-depth analytical approach of the porcine seminal plasma proteome reveals potential fertility biomarkers[J].J Proteome Res, 2018, 17(3):1065-1076. |
[76] | ĎURAČKA M, BENKO F, TVRDÁ E.Molecular markers:a new paradigm in the prediction of sperm freezability[J].Int J Mol Sci, 2023, 24(4):3379. |
[77] | SOLEILHAVOUP C, TSIKIS G, LABAS V, et al.Ram seminal plasma proteome and its impact on liquid preservation of spermatozoa[J].J Proteomics, 2014, 109:245-260. |
[78] | O'FLAHERTY C, MATSUSHITA-FOURNIER D.Reactive oxygen species and protein modifications in spermatozoa[J].Biol Reprod, 2017, 97(4):577-585. |
[79] | YAERAM J, SETCHELL B P, MADDOCKS S.Effect of heat stress on the fertility of male mice in vivo and in vitro[J].Reprod Fertil Dev, 2006, 18(6):647-653. |
[80] | ZHENG W W, SONG G, WANG Q L, et al.Sperm DNA damage has a negative effect on early embryonic development following in vitro fertilization[J].Asian J Androl, 2018, 20(1):75-79. |
[81] | PEÑA S T JR, STONE F, GUMMOW B, et al.Tropical summer induces DNA fragmentation in boar spermatozoa:implications for evaluating seasonal infertility[J].Reprod Fertil Dev, 2019, 31(3):590-601. |
[82] | PEÑA S T JR, GUMMOW B, PARKER A J, et al.Revisiting summer infertility in the pig:could heat stress-induced sperm DNA damage negatively affect early embryo development?[J].Anim Prod Sci, 2017, 57(10):1975-1983. |
[83] | VAN WETTERE W H E J, KIND K L, GATFORD K L, et al.Review of the impact of heat stress on reproductive performance of sheep[J].J Anim Sci Biotechnol, 2021, 12(1):26. |
[1] | 王潇, 张昊, 栾庆江, 李慧, 杨鼎, 王婷月, 田菁, 赵濛, 陈陆, 田如刚. 冷热应激对肉牛生理指标及基因表达影响的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 894-904. |
[2] | 霍元楠, 邱美佳, 张姣姣, 杨炜蓉, 王鲜忠. 精氨酸及其代谢物抑制热应激诱导仔猪支持细胞凋亡的机制[J]. 畜牧兽医学报, 2024, 55(2): 587-597. |
[3] | 张航, 杨柏高, 徐茜, 冯肖艺, 杜卫华, 郝海生, 朱化彬, 张培培, 赵学明. 热应激影响奶牛胚胎发育作用机制的研究进展[J]. 畜牧兽医学报, 2023, 54(7): 2692-2700. |
[4] | 王子渲, 王巧, 张锦, Astrid Lissette Barreto Sánchez, 郑麦青, 李庆贺, 崔焕先, 安炳星, 赵桂苹, 文杰, 李和刚. 基于脾脏转录组筛选北京油鸡和广明白鸡抗热应激相关功能基因[J]. 畜牧兽医学报, 2023, 54(5): 1905-1914. |
[5] | 冯肖艺, 杨柏高, 郝海生, 杜卫华, 朱化彬, 崔凯, 赵学明. 热应激导致奶牛胚胎质量下降的机制及解决措施[J]. 畜牧兽医学报, 2023, 54(3): 868-876. |
[6] | 薛鸿雁, 杨孟雨, 杨欢, 董丽君, 蔡霞清, 赵泽民, 王鲜忠. ALOX15B-JNK在热应激诱导支持细胞氧化应激和凋亡中的作用[J]. 畜牧兽医学报, 2023, 54(12): 5056-5065. |
[7] | 蔡佳炜, 张琛, 靳荣帅, 鲍志远, 张希宇, 王璠, 翟频, 赵博昊, 陈阳, 汤先伟, 吴信生. 热应激下公兔睾丸组织形态和精液转录组分析[J]. 畜牧兽医学报, 2023, 54(11): 4653-4663. |
[8] | 周婉婷, 杨晨, 彭翠甜, 付新亮, 钟焯华, 许丹宁, 黄运茂, 田允波, 刘文俊. 白藜芦醇对急性热应激条件下鸭肝抗氧化能力和细胞凋亡的影响[J]. 畜牧兽医学报, 2023, 54(1): 239-251. |
[9] | 刘慧娟, 庄苏, 张佳琦, 周斌斌, 熊玮, 王恬, 王超. 日粮添加不同水平芦丁对热应激小鼠睾丸组织的影响[J]. 畜牧兽医学报, 2022, 53(8): 2586-2597. |
[10] | 车大璐, 程素彩, 张伟涛, 赵娟娟, 刘爱瑜, 李晓宇, 周英昊, 高玉红, 孙新胜, 李雪梅. 热应激条件下藿朴蒲苓散对育肥羔羊生长性能、消化性能和血清生化指标的影响[J]. 畜牧兽医学报, 2022, 53(6): 1829-1840. |
[11] | 豆梦莹, 张才, 李元晓, 邵琦, 朱佳丽, 李旺, 曹志军. 精氨酸对热应激处理的奶牛原代小肠上皮细胞增殖和凋亡的影响[J]. 畜牧兽医学报, 2022, 53(2): 493-504. |
[12] | 乌恩吉雅, 马雪妮, 杜冬华, 哈斯苏荣. 骆驼乳清蛋白对热应激所致大鼠肝氧化损伤的保护作用[J]. 畜牧兽医学报, 2021, 52(9): 2642-2649. |
[13] | 刘迎生, 焦洪超, 林海, 王晓鹃. 早期热应激对肉仔鸡后期生长发育的影响[J]. 畜牧兽医学报, 2021, 52(7): 2052-2058. |
[14] | 张帆, 张海亮, 罗汉鹏, 米思远, 邱文卿, 初芹, 王雅春. 奶牛热应激遗传机制研究知识图谱分析[J]. 畜牧兽医学报, 2021, 52(5): 1141-1153. |
[15] | 张宇, 徐子洁, 黄晓瑜, 邢晓南, 张小强, 赵雷云, 张恩平. 白藜芦醇对热应激诱导的山羊小肠上皮细胞炎性反应调节作用的研究[J]. 畜牧兽医学报, 2020, 51(8): 1886-1894. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||