畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (3): 1100-1109.doi: 10.11843/j.issn.0366-6964.2025.03.012
黄雅妮1(), 唐熹1, 李井泉1, 魏嘉诚1, 吴珍芳2, 李新云3, 肖石军1,*(
), 张志燕1,*(
)
收稿日期:
2024-07-26
出版日期:
2025-03-23
发布日期:
2025-04-02
通讯作者:
肖石军,张志燕
E-mail:yani720@163.com;shjx_jxau@hotmail.com;bioducklily@hotmail.com
作者简介:
黄雅妮(2000-),女,江西上饶人,博士生,主要从事动物遗传育种与繁殖研究,E-mail:yani720@163.com
基金资助:
HUANG Yani1(), TANG Xi1, LI Jingquan1, WEI Jiacheng1, WU Zhenfang2, LI Xinyun3, XIAO Shijun1,*(
), ZHANG Zhiyan1,*(
)
Received:
2024-07-26
Online:
2025-03-23
Published:
2025-04-02
Contact:
XIAO Shijun, ZHANG Zhiyan
E-mail:yani720@163.com;shjx_jxau@hotmail.com;bioducklily@hotmail.com
摘要:
旨在探究影响猪达100 kg体重日龄(age at 100 kg,AGE)和达100 kg体重平均日增重(average daily gain at 100 kg,ADG)的候选基因。本研究采集了来自大白、长白和杜洛克3个品种的共计4 593头健康成年猪的耳组织作为试验材料,其中公猪2 563头,母猪2 030头。通过记录猪只的日龄和体重,计算校正AGE和ADG。通过酚氯仿法提取样品DNA,利用“中芯一号”50K SNP芯片对样本进行基因分型,并对质控后的SNPs进行基因型填充,将SNPs位点数从4万填充至800万。随后,利用GEMMA混合线性模型对AGE和ADG性状进行填充前后的全基因组关联分析,使用BEDTools在显著位点上、下游1 Mb范围查找候选基因。同时,结合PigGTEx中的34个组织的表达量数量性状位点数据,使用R软件进行共定位分析,挖掘与GWAS信号共享同一因果变异的基因,通过GWAS和共定位分析,确定AGE和ADG性状的候选基因。GWAS分析结果显示,AGE与ADG性状的显著SNP为1号染色体上的1_270827213。在该位点上、下游1 Mb范围内,共鉴定到32个基因。共定位分析结果显示,对于AGE性状,有10个基因的eQTL信号与GWAS信号共定位。对于ADG性状,有11个基因的eQTL信号与GWAS信号共定位。最终,确定了CRAT、GPR107和USP20这3个基因作为AGE的候选基因,确定了CRAT、GPR107、USP20、FNBP1、PTGES和HMCN2这6个基因作为ADG的候选基因。本研究为猪品种改良提供了分子标记,对猪生长相关性状功能基因挖掘奠定基础。
中图分类号:
黄雅妮, 唐熹, 李井泉, 魏嘉诚, 吴珍芳, 李新云, 肖石军, 张志燕. 大规模群体解析猪日增重及达百千克体重日龄的潜在因果基因[J]. 畜牧兽医学报, 2025, 56(3): 1100-1109.
HUANG Yani, TANG Xi, LI Jingquan, WEI Jiacheng, WU Zhenfang, LI Xinyun, XIAO Shijun, ZHANG Zhiyan. Large-scale Population Analysis of Potential Causal Genes for Daily Weight Gain and Age at 100 kg in Pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1100-1109.
表 4
AGE性状的GWAS与eQTL共定位,其中阳性的(PP.H4>0.75)共定位结果"
组织 Tissue | 基因 Gene | SNP数量 SNP number | PP.H0.abf | PP.H1.abf | PP.H2.abf | PP.H3.abf | PP.H4.abf |
血液Blood | SPTAN1 | 49 | 0.036 909 816 | 0.010 126 732 | 0.101 001 093 | 0.026 886 008 | 0.825 076 351 |
血液Blood | DYNC212 | 27 | 0.097 667 167 | 0.017 861 012 | 0.108 656 142 | 0.019 113 934 | 0.756 701 746 |
大脑Brain | GLE1 | 69 | 5.87×10-5 | 1.43×10-5 | 0.058 270 568 | 0.013 224 164 | 0.928 432 334 |
大脑Brain | CRAT | 75 | 0.002 547 613 | 0.001 575 547 | 0.059 611 937 | 0.035 966 132 | 0.900 298 771 |
大脑Brain | TORA1 | 48 | 0.000 407 217 | 0.000 101 622 | 0.006 065 363 | 0.000 520 716 | 0.992 905 082 |
大脑Brain | GPR107 | 15 | 0.153 769 887 | 0.034 532 902 | 0.033 007 367 | 0.006 640 586 | 0.772 049 258 |
肝Liver | EXOSC2 | 55 | 0.068 160 145 | 0.051 873 945 | 0.050 815 144 | 0.037 882 094 | 0.791 268 673 |
肌肉Muscle | ENDOG | 25 | 0.000 221 142 | 0.000 108 116 | 0.016 117 346 | 0.006 903 087 | 0.976 650 309 |
肌肉Muscle | NUP188 | 3 | 0.090 167 323 | 0.000 845 334 | 0.143 226 173 | 0.000 577 585 | 0.765 183 585 |
脾Spleen | USP20 | 142 | 7.18×10-5 | 0.006 173 712 | 0.001 301 539 | 0.111 076 123 | 0.881 376 855 |
睾丸Testis | DYNC212 | 82 | 0.000 440 394 | 0.000 372 687 | 0.102 408 901 | 0.085 853 531 | 0.810 924 486 |
表 5
ADG性状的GWAS与eQTL共定位,其中阳性的(PP.H4>0.75)共定位结果"
组织 Tissue | 基因 Gene | SNP数量 SNP number | PP.H0.abf | PP.H1.abf | PP.H2.abf | PP.H3.abf | PP.H4.abf |
大脑Brain | CRAT | 75 | 0.007 236 723 | 0.002 530 961 | 0.169 333 086 | 0.058 459 875 | 0.762 439 354 |
大脑Brain | TOR1A | 48 | 0.000 187 523 | 0.000 111 277 | 0.002 793 096 | 0.000 661 182 | 0.996 246 923 |
大脑Brain | GPR107 | 15 | 0.068 069 088 | 0.037 270 208 | 0.014 611 322 | 0.007 127 288 | 0.872 922 094 |
肝Liver | EXOSC2 | 55 | 0.054 799 403 | 0.074 246 459 | 0.040 854 366 | 0.054 577 125 | 0.775 522 646 |
肌肉Muscle | TMEFF1 | 393 | 1.24×10-12 | 1.43×10-12 | 0.105 640 671 | 0.120 898 331 | 0.773 460 997 |
肌肉Muscle | ENDOG | 25 | 0.000 349 317 | 0.000 102 806 | 0.025 459 119 | 0.006 525 219 | 0.967 563 539 |
肌肉Muscle | PTGES | 82 | 4.09×10-7 | 7.29×10-8 | 0.161 141 799 | 0.027 926 643 | 0.810 931 076 |
肌肉Muscle | HMCN2 | 23 | 0.042 582 626 | 0.021 305 938 | 0.080 703 68 | 0.039 563 714 | 0.815 844 042 |
肌肉Muscle | ASS1 | 1 | 0.061 347 848 | 0.040 059 076 | 0.001 374 032 | 0 | 0.897 219 043 |
小肠 Small intestine | FNBP1 | 8 | 0.151 455 241 | 0.054 482 732 | 0.019 121 876 | 0.006 109 849 | 0.768 830 301 |
脾Spleen | USP20 | 142 | 0.000 256 969 | 0.006 037 688 | 0.004 660 025 | 0.108 610 336 | 0.880 434 982 |
1 | 张海峰, 王祖力, 陈泽芳, 等. 2023年全球生猪产业发展情况及2024年的趋势[J]. 猪业科学, 2024, 41 (2): 32- 36. |
ZHANG H F , WANG Z L , CHEN Z F , et al. The global pig industry development in 2023 and trends for 2024[J]. Swine Industry Science, 2024, 41 (2): 32- 36. | |
2 |
JIANG Y , TANG S , WANG C , et al. A genome-wide association study of growth and fatness traits in two pig populations with different genetic backgrounds[J]. J Anim Sci, 2018, 96 (3): 806- 816.
doi: 10.1093/jas/skx038 |
3 |
TANG Z S , XU J Y , YIN L L , et al. Genome-wide association study reveals candidate genes for growth relevant traits in pigs[J]. Front Genet, 2019, 10, 302.
doi: 10.3389/fgene.2019.00302 |
4 |
HERRERA-CÁCERES W , SÁNCHEZ J P . Selection for feed efficiency using the social effects animal model in growing Duroc pigs: evaluation by simulation[J]. Genet Sel Evol, 2020, 52 (1): 53.
doi: 10.1186/s12711-020-00572-4 |
5 |
RUAN D L , ZHUANG Z W , DING R R , et al. Weighted single-step GWAS identified candidate genes associated with growth traits in a duroc pig population[J]. Genes (Basel), 2021, 12 (1): 117.
doi: 10.3390/genes12010117 |
6 | 许迪, 颜港, 张帅, 等. 大白猪生长性状影响因素分析及遗传参数估计[J]. 中国畜牧兽医, 2024, 51 (1): 193- 202. |
XU D , YAN G , ZHANG S , et al. Influencing factors analysis and genetic parameters estimation of growth traits in yorkshire pigs[J]. China Animal Husbandry & Veterinary Medicine, 2024, 51 (1): 193- 202. | |
7 |
张笑科, 廖伟莉, 陈信佑, 等. 杜洛克猪生长性状全基因组关联分析及候选基因鉴定[J]. 畜牧兽医学报, 2023, 54 (5): 1868- 1876.
doi: 10.11843/j.issn.0366-6964.2023.05.010 |
ZHANG X K , LIAO W L , CHEN X Y , et al. Genome-wide association study for identifying candidate genes of growth traits in Duroc pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (5): 1868- 1876.
doi: 10.11843/j.issn.0366-6964.2023.05.010 |
|
8 |
贺婕妤, 王斌虎, 廖柱, 等. 长白和大白猪主要生长性状的遗传参数估计[J]. 畜牧兽医学报, 2021, 52 (8): 2115- 2123.
doi: 10.11843/j.issn.0366-6964.2021.08.005 |
HE J Y , WANG B H , LIAO Z , et al. Estimation of genetic parameters of main growth traits in landrace and large white pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52 (8): 2115- 2123.
doi: 10.11843/j.issn.0366-6964.2021.08.005 |
|
9 |
LOOS R J F , YEO G S H . The genetics of obesity: from discovery to biology[J]. Nat Rev Genet, 2022, 23 (2): 120- 133.
doi: 10.1038/s41576-021-00414-z |
10 |
NICA A C , MONTGOMERY S B , DIMAS A S , et al. Candidate causal regulatory effects by integration of expression QTLs with complex trait genetic associations[J]. PLoS Genet, 2010, 6 (4): e1000895.
doi: 10.1371/journal.pgen.1000895 |
11 |
PURCELL S , NEALE B , TODD-BROWN K , et al. PLINK: a tool set for whole-genome association and population-based linkage analyses[J]. Am J Hum Genet, 2007, 81 (3): 559- 575.
doi: 10.1086/519795 |
12 |
HOFMEISTER R J , RIBEIRO D M , RUBINACCI S , et al. Accurate rare variant phasing of whole-genome and whole-exome sequencing data in the UK Biobank[J]. Nat Genet, 2023, 55 (7): 1243- 1249.
doi: 10.1038/s41588-023-01415-w |
13 |
BROWNING B L , ZHOU Y , BROWNING S R . A one-penny imputed genome from next-generation reference panels[J]. Am J Hum Genet, 2018, 103 (3): 338- 348.
doi: 10.1016/j.ajhg.2018.07.015 |
14 |
TONG X K , CHEN D , HU J C , et al. Accurate haplotype construction and detection of selection signatures enabled by high quality pig genome sequences[J]. Nat Commun, 2023, 14 (1): 5126.
doi: 10.1038/s41467-023-40434-3 |
15 |
ZHOU X , STEPHENS M . Genome-wide efficient mixed-model analysis for association studies[J]. Nat Genet, 2012, 44 (7): 821- 824.
doi: 10.1038/ng.2310 |
16 |
JANNOT A S , EHRET G , PERNEGER T . P < 5×10-8 has emerged as a standard of statistical significance for genome-wide association studies[J]. J Clin Epidemiol, 2015, 68 (4): 460- 465.
doi: 10.1016/j.jclinepi.2015.01.001 |
17 |
DONG S S , HE W M , JI J J , et al. LDBlockShow: a fast and convenient tool for visualizing linkage disequilibrium and haplotype blocks based on variant call format files[J]. Brief Bioinform, 2021, 22 (4): bbaa227.
doi: 10.1093/bib/bbaa227 |
18 |
QUINLAN A R , HALL I M . BEDTools: a flexible suite of utilities for comparing genomic features[J]. Bioinformatics, 2010, 26 (6): 841- 842.
doi: 10.1093/bioinformatics/btq033 |
19 |
SHERMAN B T , HAO M , QIU J , et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update)[J]. Nucleic Acids Res, 2022, 50 (W1): W216- W221.
doi: 10.1093/nar/gkac194 |
20 |
GIAMBARTOLOMEI C , VUKCEVIC D , SCHADT E E , et al. Bayesian Test for colocalisation between Pairs of genetic association studies using summary statistics[J]. PLoS Genet, 2014, 10 (5): e1004383.
doi: 10.1371/journal.pgen.1004383 |
21 |
TENG J Y , GAO Y H , YIN H W , et al. A compendium of genetic regulatory effects across pig tissues[J]. Nat Genet, 2024, 56 (1): 112- 123.
doi: 10.1038/s41588-023-01585-7 |
22 |
GUI J X , YANG X Y , TAN C , et al. A cross-tissue transcriptome-wide association study reveals novel susceptibility genes for migraine[J]. J Headache Pain, 2024, 25 (1): 94.
doi: 10.1186/s10194-024-01802-6 |
23 | 邹若男, 时坤鹏, 张志勇, 等. 杜洛克猪生长性状全基因组关联分析[J/OL]. 中国畜牧杂志, (2024-04-18). https://doi.org/10.19556/j.0258-7033.20230629-08. |
ZOU R N, SHI K P, ZHANG Z Y, et al. Genome-wide association analysis of growth traits in Duroc pigs[J/OL]. Chinese Journal of Animal Science, (2024-04-18). https://doi.org/10.19556/j.0258-7033.20230629-08. (in Chinese) | |
24 | 窦腾飞, 吴姿仪, 白利瑶, 等. 全基因组关联分析鉴定大白猪生长性状遗传变异及候选基因[J]. 中国畜牧杂志, 2023, 59 (8): 264- 272. |
DOU T F , WU Z Y , BAI L Y , et al. Genome-wide association analysis identifies genetic variations and candidate genes for growth traits in Large White pigs[J]. Chinese Journal of Animal Science, 2023, 59 (8): 264- 272. | |
25 |
ZHOU S P , DING R R , MENG F M , et al. A meta-analysis of genome-wide association studies for average daily gain and lean meat percentage in two Duroc pig populations[J]. BMC Genomics, 2021, 22 (1): 12.
doi: 10.1186/s12864-020-07288-1 |
26 |
JUNG J H , LEE S M , OH S H . A genome-wide association study on growth traits of Korean commercial pig breeds using Bayesian methods[J]. Anim Biosci, 2024, 37 (5): 807- 816.
doi: 10.5713/ab.23.0443 |
27 | 王文斌. 基于低深度重测序挖掘猪经济性状相关突变位点[D]. 武汉: 华中农业大学, 2023. |
WANG W B. Mining of mutation sites related to economic traits of pigs based on low depth resequencing[D]. Wuhan: Huazhong Agricultural University, 2023. (in Chinese) | |
28 |
VIOLANTE S , IJLST L , RUITER J , et al. Substrate specificity of human carnitine acetyltransferase: implications for fatty acid and branched-chain amino acid metabolism[J]. Biochim Biophys Acta, 2013, 1832 (6): 773- 779.
doi: 10.1016/j.bbadis.2013.02.012 |
29 |
MUOIO D M , NOLAND R C , KOVALIK J P , et al. Muscle-specific deletion of carnitine acetyltransferase compromises glucose tolerance and metabolic flexibility[J]. Cell Metab, 2012, 15 (5): 764- 777.
doi: 10.1016/j.cmet.2012.04.005 |
30 | FEITOSA N M , ZHANG J L , CARNEY T J , et al. Hemicentin 2 and Fibulin 1 are required for epidermal-dermal junction formation and fin mesenchymal cell migration during zebrafish development[J]. Dev Biol, 2012, 369 (2): 235- 248. |
31 | SAMPEY A V , MONRAD S , CROFFORD L J . Microsomal prostaglandin E synthase-1:the inducible synthase for prostaglandin E2[J]. Arthritis Res Ther, 2005, 7 (3): 114- 117. |
32 |
LU X Y , SHI X J , HU A , et al. Feeding induces cholesterol biosynthesis via the mTORC1-USP20-HMGCR axis[J]. Nature, 2020, 588 (7838): 479- 484.
doi: 10.1038/s41586-020-2928-y |
33 |
TSUJITA K , SUETSUGU S , SASAKI N , et al. Coordination between the actin cytoskeleton and membrane deformation by a novel membrane tubulation domain of PCH proteins is involved in endocytosis[J]. J Cell Biol, 2006, 172 (2): 269- 279.
doi: 10.1083/jcb.200508091 |
34 |
YOSTEN G L C , REDLINGER L J , SAMSON W K . Evidence for an interaction of neuronostatin with the orphan G protein-coupled receptor, GPR107[J]. Am J Physiol Regul Integr Comp Physiol, 2012, 303 (9): R941- R949.
doi: 10.1152/ajpregu.00336.2012 |
35 |
SAMSON W K , ZHANG J V , AVSIAN-KRETCHMER O , et al. Neuronostatin encoded by the somatostatin gene regulates neuronal, cardiovascular, and metabolic functions[J]. J Biol Chem, 2008, 283 (46): 31949- 31959.
doi: 10.1074/jbc.M804784200 |
[1] | 刘爱军, 张传亮, 黄晓兵, 周彩琴. 猪繁殖与呼吸综合征病毒生命周期的研究进展[J]. 畜牧兽医学报, 2025, 56(3): 1027-1041. |
[2] | 邬沛伶, 李依璇, 王浩杰, 李亚菲, 刘绍蒙, 刘青芸, 王湘如. 猪流行性腹泻疫苗研究进展[J]. 畜牧兽医学报, 2025, 56(3): 1042-1058. |
[3] | 吴嘉浩, 吴姿仪, 窦腾飞, 白利瑶, 张永前, 董联合, 李鹏飞, 李新建, 韩雪蕾, 李秀领. 豫农黑猪生长相关性状的拷贝数变异全基因组关联分析研究[J]. 畜牧兽医学报, 2025, 56(3): 1110-1119. |
[4] | 杨宇婷, 陈国梁, 常巧宁, 鲍武, 刘靖超, 姬梦婷, 荣晓音, 郭晓红, 杨阳, 李步高. miR-375-3p靶向Fam229a调控猪前体脂肪细胞分化[J]. 畜牧兽医学报, 2025, 56(3): 1120-1133. |
[5] | 贾万里, 王继英, 李菁璇, 王彦平, 耿立英, 张传生, 赵雪艳. 基于转录组测序技术鉴别影响莱芜猪滴水损失的关键基因[J]. 畜牧兽医学报, 2025, 56(3): 1134-1146. |
[6] | 王红, 赵为民, 程金花, 李惠侠, 方晓敏. 猪CYP3A29基因核心启动子鉴定及转录调控分析[J]. 畜牧兽医学报, 2025, 56(3): 1147-1158. |
[7] | 周泰增, 杨祎挺, 朱悦华, 钱洪喜, 刘一辉, 甘麦邻, 朱砺, 沈林園. 母猪死胎和木乃伊全基因组关联分析[J]. 畜牧兽医学报, 2025, 56(3): 1231-1241. |
[8] | 刘晨龙, 季华员, 卢丹, 万明春, 胡耀, 周泉勇. FST对猪卵巢颗粒细胞增殖凋亡及激素分泌的影响[J]. 畜牧兽医学报, 2025, 56(3): 1242-1251. |
[9] | 周文涛, 王晨昱, 周辉, 刘洪彪, 冯舒锾, 范高升, 李铁军, 何流琴. 单宁酸对免疫应激断奶仔猪肌肉形态、风味氨基酸及肌纤维相关基因表达的影响[J]. 畜牧兽医学报, 2025, 56(3): 1290-1301. |
[10] | 张越, 茹毅, 郝荣增, 杨锐, 赵陇和, 李亚军, 杨洋, 张荣, 蒋成辉, 郑海学. 非洲猪瘟病毒H108R蛋白的制备及其免疫原性评价[J]. 畜牧兽医学报, 2025, 56(3): 1344-1354. |
[11] | 马晓莉, 李段, 曾道平, 刘燕玲, 王晓敏, 彭国良, 宋长绪, 王磊, 徐铮. 非洲猪瘟病毒p72蛋白抗体全自动化学发光酶免疫检测方法的建立[J]. 畜牧兽医学报, 2025, 56(3): 1355-1365. |
[12] | 余昕雅, 何海健, 王磊, 倪语晨, 杜静, 周莹珊, 董婉玉, 王晓杜. LncRNA 18850对猪流行性腹泻病毒复制的影响[J]. 畜牧兽医学报, 2025, 56(3): 1366-1375. |
[13] | 范杰, 邰易润, 朱艳丽, 陈志雄, 胡巧云, 陈智, 刘甜甜, 李欣, 范仲鑫, 葛猛. 近年湖南省猪圆环病毒2型感染状况的调查及遗传演化分析[J]. 畜牧兽医学报, 2025, 56(3): 1376-1385. |
[14] | 潘俊毅, 吴青瑶, 谭碧娥, 郭秋平, 黄瑞林, 陈家顺. 生长育肥猪精准营养供给技术及智能化养殖设备研究进展[J]. 畜牧兽医学报, 2025, 56(2): 501-512. |
[15] | 张冬萱, 王智豪, 乔岩, 赵肖肖, 范松杰, 张超. 猪流行性腹泻病毒S1蛋白的原核表达及其核酸适配体的筛选[J]. 畜牧兽医学报, 2025, 56(2): 839-850. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||