畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (3): 1242-1251.doi: 10.11843/j.issn.0366-6964.2025.03.024
刘晨龙1,2(), 季华员1,2, 卢丹3, 万明春1,2, 胡耀1,2, 周泉勇1,2,*(
)
收稿日期:
2024-09-24
出版日期:
2025-03-23
发布日期:
2025-04-02
通讯作者:
周泉勇
E-mail:liuchenlong1204@163.com;89629577@qq.com
作者简介:
刘晨龙(1988-),男,江西吉安人,副研究员,博士,主要从事畜禽遗传育种研究, Tel:0791-82728433,E-mail: liuchenlong1204@163.com
基金资助:
LIU Chenlong1,2(), JI Huayuan1,2, LU Dan3, WAN Mingchun1,2, HU Yao1,2, ZHOU Quanyong1,2,*(
)
Received:
2024-09-24
Online:
2025-03-23
Published:
2025-04-02
Contact:
ZHOU Quanyong
E-mail:liuchenlong1204@163.com;89629577@qq.com
摘要:
旨在明确卵泡抑素(follistatin,FST)对猪卵巢颗粒细胞增殖、凋亡和激素分泌的影响,以期为探讨FST在猪卵泡生长过程中发挥的作用提供科学依据。本研究以永生化猪卵巢颗粒细胞为试验材料,将细胞分为过表达对照组、过表达组、干扰对照组和干扰组共4个试验组,每个试验组设置3个重复孔,根据FST基因的mRNA序列构建过表达质粒和设计siRNA,通过将其转染至颗粒细胞中,验证过表达及抑制效果。使用CCK-8和流式细胞法分析转染24、48和72 h后颗粒细胞增殖及凋亡情况,ELISA法检测细胞中雌二醇和孕酮含量变化,并进一步利用RT-PCR和WB法分别检测此过程中增殖、凋亡和激素合成相关基因的mRNA和蛋白表达水平。结果表明,构建的过表达质粒和siRNA可显著改变细胞中FST的表达水平(P < 0.01),且转染至猪卵巢颗粒细胞后,FST抑制细胞增殖,诱导细胞凋亡,并可显著降低细胞中增殖凋亡相关基因FSHR、GDF9、BCL2、CDKN1B的mRNA(P < 0.05)和蛋白表达水平(P < 0.01)。而干扰FST后,卵巢颗粒细胞中雌二醇和孕酮的含量极显著增加(P < 0.01),且STAR、CYP11A1、CYP19A1、3β-HSD、17β-HSD等激素合成相关基因的mRNA和蛋白表达量同样极显著升高(P < 0.01)。综上所述,在猪卵巢颗粒细胞中,FST基因表达水平的降低可有效促进细胞的增殖及雌二醇和孕酮的分泌,这一作用发挥可能与上调增殖凋亡相关基因和激素合成限速酶的表达有关。
中图分类号:
刘晨龙, 季华员, 卢丹, 万明春, 胡耀, 周泉勇. FST对猪卵巢颗粒细胞增殖凋亡及激素分泌的影响[J]. 畜牧兽医学报, 2025, 56(3): 1242-1251.
LIU Chenlong, JI Huayuan, LU Dan, WAN Mingchun, HU Yao, ZHOU Quanyong. Effect of FST on Proliferation, Apoptosis and Hormone Secretion of Porcine Ovarian Granulosa Cells[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1242-1251.
表 2
引物序列"
引物 Primer | 引物序列(5'→3') Sequence | 片段大小/bp Products size |
FST | F: GCCGCTGCCAGGTCCTGTAT R: CCACGTTCTCGCACGTTTCTTT | 177 |
FSHR | F: TGCCACCACTGGGAACAT R: CACATAAGGAACCGAGGGAC | 81 |
GDF9 | F: AGAGGGCTGTCTGAGGGTGTA R: CAGTAGCGAGGGTTGTATTTGTG | 230 |
BCL2 | F: GCGACTTTGCCGAGATGTC R: CCGAACTCAAAGAAGGCCAC | 133 |
CDKN1B | F: TCAGGCCAACTCAGAGGACA R: CAGGTCGCTTCCTTATCCCA | 104 |
STAR | F: TGGCTGGAAGTCCCTCAAAG R: GCAAAGTCCACCTGGGTCTG | 115 |
CYP11A1 | F: GCTCGGCAACTTGGAATCTGT R: GGCGGGATGTTGTATCGTTCT | 99 |
CYP19A1 | F: CTGGGTTGCAGTTCATTGGC R: TTGTCCAGGTGCTTGGTGATG | 163 |
3β-HSD | F: TGAGCTTCCTGCTGAGTCCA R: AGACGGTGAACACGCTGTTG | 87 |
17β-HSD | F: TGCTTTGCTTCATTTAGCCCTAC R: CTCATTCTTCCAGTTAGCCTTGC | 111 |
GAPDH | F: ATTCCACCCACGGCAAGTT R: TTTGATGTTGGCGGGATCT | 110 |
1 | GUPTA C , CHAPEKAR T , CHHABRA Y , et al. Differential response to sustained stimulation by hCG & LH on goat ovarian granulosa cells[J]. Indian J Med Res, 2012, 135 (3): 331- 340. |
2 |
MATSUDA F , INOUE N , MANABE N , et al. Follicular growth and atresia in mammalian ovaries: regulation by survival and death of granulosa cells[J]. J Reprod Dev, 2012, 58 (1): 44- 50.
doi: 10.1262/jrd.2011-012 |
3 |
WANG L , CHEN Y R , WU S , et al. PIM2-mediated phosphorylation contributes to granulosa cell survival via resisting apoptosis during folliculogenesis[J]. Clin Transl Med, 2021, 11 (3): e359.
doi: 10.1002/ctm2.359 |
4 |
ARCHILIA E C , BELLO C A P , BATALHA I M , et al. Effects of follicle-stimulating hormone, insulin-like growth factor 1, fibroblast growth factor 2, and fibroblast growth factor 9 on sirtuins expression and histone deacetylase activity in bovine granulosa cells[J]. Theriogenology, 2023, 210, 1- 8.
doi: 10.1016/j.theriogenology.2023.07.011 |
5 |
宋浩然, 冯肖艺, 张培培, 等. 奶牛卵泡颗粒细胞在卵泡发育中的作用机制[J]. 畜牧兽医学报, 2024, 55 (6): 2313- 2324.
doi: 10.11843/j.issn.0366-6964.2024.06.004 |
SONG H R , FENG X Y , ZHANG P P , et al. The mechanism of follicular granulosa cells in follicular development in dairy cows[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (6): 2313- 2324.
doi: 10.11843/j.issn.0366-6964.2024.06.004 |
|
6 |
KIMURA F , BONOMI L M , SCHNEYER A L . Follistatin regulates germ cell nest breakdown and primordial follicle formation[J]. Endocrinology, 2011, 152 (2): 697- 706.
doi: 10.1210/en.2010-0950 |
7 |
WOODRUFF T K , LYON R J , HANSEN S E , et al. Inhibin and activin locally regulate rat ovarian folliculogenesis[J]. Endocrinology, 1990, 127 (6): 3196- 3205.
doi: 10.1210/endo-127-6-3196 |
8 |
PATEL O V , BETTEGOWDA A , IRELAND J J , et al. Functional genomics studies of oocyte competence: evidence that reduced transcript abundance for follistatin is associated with poor developmental competence of bovine oocytes[J]. Reproduction, 2007, 133 (1): 95- 106.
doi: 10.1530/rep.1.01123 |
9 |
JORGEZ C J , KLYSIK M , JAMIN S P , et al. Granulosa cell-specific inactivation of follistatin causes female fertility defects[J]. Mol Endocrinol, 2004, 18 (4): 953- 967.
doi: 10.1210/me.2003-0301 |
10 |
LI D R , QIN G S , WEI Y M , et al. Immunisation against inhibin enhances follicular development, oocyte maturation and superovulatory response in water buffaloes[J]. Reprod Fertil Dev, 2011, 23 (6): 788- 797.
doi: 10.1071/RD10279 |
11 |
WANG H X , CHEN W L , SHEN P L , et al. Follistatin (FST) is expressed in buffalo (Bubalus bubalis) ovarian follicles and promotes oocyte maturation and early embryonic development[J]. Reprod Domest Anim, 2023, 58 (12): 1718- 1731.
doi: 10.1111/rda.14490 |
12 | SILVA C C , KNIGHT P G . Modulatory actions of activin-A and follistatin on the developmental competence of in vitro-matured bovine oocytes[J]. Biol Reprod, 1998, 58 (2): 558- 565. |
13 |
LI M D , DEPAOLO L V , FORD J J . Expression of follistatin and inhibin/activin subunit genes in porcine follicles[J]. Biol Reprod, 1997, 57 (1): 112- 118.
doi: 10.1095/biolreprod57.1.112 |
14 |
GUO Z , ISLAM M S , LIU D , et al. Differential effects of follistatin on porcine oocyte competence and cumulus cell gene expression in vitro[J]. Reprod Domest Anim, 2018, 53 (1): 3- 10.
doi: 10.1111/rda.13035 |
15 |
ZHOU Q Y , WAN M C , WEI Q P , et al. Expression, regulation, and functional characterization of FST gene in porcine granulosa cells[J]. Anim Biotechnol, 2016, 27 (4): 295- 302.
doi: 10.1080/10495398.2016.1184675 |
16 | 周泉勇, 刘敬, 刘晨龙, 等. DIRAS3诱导猪子宫内膜上皮细胞自噬及对容受性相关基因表达的影响[J]. 江西农业大学学报, 2023, 45 (1): 169- 178. |
ZHOU Q Y , LIU J , LIU C L , et al. DIRAS3 induces autophagy in porcine endometrial epithelial cells and its effect on the expression of receptivity related genes[J]. Acta Agriculturae Universitatis Jiangxiensis, 2023, 45 (1): 169- 178. | |
17 | 张焱, 张华. 哺乳动物卵巢卵泡发育调控机制研究进展[J]. 生理学报, 2020, 72 (1): 63- 74. |
ZHANG Y , ZHANG H . Research advances in regulating mechanisms of mammalian ovarian folliculogenesis[J]. Acta Physiologica Sinica, 2020, 72 (1): 63- 74. | |
18 |
ZHANG X Y , YU T , GUO X Y , et al. Ufmylation regulates granulosa cell apoptosis via ER stress but not oxidative stress during goat follicular atresia[J]. Theriogenology, 2021, 169, 47- 55.
doi: 10.1016/j.theriogenology.2021.04.009 |
19 | GAO Y Y , ZOU Y G , WU G J , et al. Oxidative stress and mitochondrial dysfunction of granulosa cells in polycystic ovarian syndrome[J]. Front Med (Lausanne), 2023, 10, 1193749. |
20 |
凌英会, 朱露, 吴昊, 等. 山羊FST慢病毒载体构建及其对卵巢卵泡颗粒细胞增殖的影响[J]. 畜牧兽医学报, 2019, 50 (9): 1888- 1896.
doi: 10.11843/j.issn.0366-6964.2019.09.017 |
LING Y H , ZHU L , WU H , et al. Construction of goat FST lentivirus vectors and its effect on the proliferation of ovarian follicular granulosa cells[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50 (9): 1888- 1896.
doi: 10.11843/j.issn.0366-6964.2019.09.017 |
|
21 |
WANG Z P , NIU W B , WANG Y J , et al. Follistatin288 regulates germ cell cyst breakdown and primordial follicle assembly in the mouse ovary[J]. PLoS One, 2015, 10 (6): e0129643.
doi: 10.1371/journal.pone.0129643 |
22 | CAI H , XIANG Y B , QU S M , et al. Association of genetic polymorphisms in cell-cycle control genes and susceptibility to endometrial cancer among Chinese women[J]. Am J Epidemiol, 2011, 173 (11): 1263- 1271. |
23 | WEI J , ZENG Y , YANG Q , et al. GAS5 suppresses cell proliferation, migration, and invasion via the miR-455-5p/CDKN1B axis in cutaneous squamous cell carcinoma[J]. Crit Rev Eukaryot Gene Expr, 2022, 32 (5): 63- 76. |
24 | KIM H S , NOH Y K , MIN K W , et al. Low CDKN1B expression associated with reduced CD8+T lymphocytes predicts poor outcome in breast cancer in a machine learning analysis[J]. J Pers Med, 2023, 14 (1): 30. |
25 | 王雪峰, 谭峰, 陈燕英, 等. 携带bcl-2基因慢病毒感染人原代卵巢颗粒细胞的凋亡[J]. 中国组织工程研究, 2013, 17 (28): 5209- 5215. |
WANG X F , TAN F , CHEN Y Y , et al. Apoptosis of human primary ovarian granulose cells infected with lentivirus carrying bcl-2 gene[J]. Chinese Journal of Tissue Engineering Research, 2013, 17 (28): 5209- 5215. | |
26 | EMORI C , SUGIURA K . Role of oocyte-derived paracrine factors in follicular development[J]. Anim Sci J, 2014, 85 (6): 627- 633. |
27 | HILKER R E , PAN B , ZHAN X S , et al. MicroRNA-21 enhances estradiol production by inhibiting WT1 expression in granulosa cells[J]. J Mol Endocrinol, 2021, 68 (1): 11- 22. |
28 | BABAYEV E , XU M , SHEA L D , et al. Follicle isolation methods reveal plasticity of granulosa cell steroidogenic capacity during mouse in vitro follicle growth[J]. Mol Hum Reprod, 2022, 28 (10): gaac033. |
29 | SHAO T , KE H N , LIU R , et al. Autophagy regulates differentiation of ovarian granulosa cells through degradation of WT1[J]. Autophagy, 2022, 18 (8): 1864- 1878. |
30 | GLISTER C , TANNETTA D S , GROOME N P , et al. Interactions between follicle-stimulating hormone and growth factors in modulating secretion of steroids and inhibin-related peptides by nonluteinized bovine granulosa cells[J]. Biol Reprod, 2001, 65 (4): 1020- 1028. |
31 | JOHNSON A L , WOODS D C . Dynamics of avian ovarian follicle development: cellular mechanisms of granulosa cell differentiation[J]. Gen Comp Endocrinol, 2009, 163 (1-2): 12- 17. |
32 | MOSA A , NEUNZIG J , GERBER A , et al. 2β- and 16β-hydroxylase activity of CYP11A1 and direct stimulatory effect of estrogens on pregnenolone formation[J]. J Steroid Biochem Mol Biol, 2015, 150, 1- 10. |
33 | TUGAEVA K V , SLUCHANKO N N . Steroidogenic acute regulatory protein: Structure, functioning, and regulation[J]. Biochemistry (Mosc), 2019, 84 (Suppl 1): S233- S253. |
34 | SGRÒ P , ANTINOZZI C , WASSON C W , et al. Sexual dimorphism in sex hormone metabolism in human skeletal muscle cells in response to different testosterone exposure[J]. Biology (Basel), 2024, 13 (10): 796. |
35 | DING Z Q , DUAN H W , GE W B , et al. Regulation of progesterone during follicular development by FSH and LH in sheep[J]. Anim Reprod, 2022, 19 (2): e20220027. |
36 | AN L P , MAEDA T , SAKAUE T , et al. Purification, molecular cloning and functional characterization of swine phosphatidylethanolamine-binding protein 4 from seminal plasma[J]. Biochem Biophys Res Commun, 2012, 423 (4): 690- 696. |
37 | GHOSH D , EGBUTA C , KANYO J E , et al. Phosphorylation of human placental aromatase CYP19A1[J]. Biochem J, 2019, 476 (21): 3313- 3331. |
38 | TANG X R , MA L Z , GUO S , et al. High doses of FSH induce autophagy in bovine ovarian granulosa cells via the AKT/mTOR pathway[J]. Reprod Domest Anim, 2021, 56 (2): 324- 332. |
39 | CHEN H Y , LIU C , JIANG H , et al. Regulatory role of miRNA-375 in expression of BMP15/GDF9 receptors and its effect on proliferation and apoptosis of bovine cumulus cells[J]. Cell Physiol Biochem, 2017, 41 (2): 439- 450. |
40 | TANAKA K , HAYASHI Y , TAKEHARA A , et al. Abnormal early folliculogenesis due to impeded pyruvate metabolism in mouse oocytes[J]. Biol Reprod, 2021, 105 (1): 64- 75. |
41 | 杨贞, 江少如, 陈小燕, 等. 经后增殖方对控制性超促排卵大鼠卵巢GDF9分泌及颗粒细胞凋亡的影响[J]. 实用医学杂志, 2024, 40 (7): 918- 923. |
YANG Z , JIANG S R , CHEN X Y , et al. Effect of Jinghou Zengzhi Granules on ovarian GDF9 secretion and granulosa cells apoptosis in controlled ovarian hyperstimulation rats[J]. The Journal of Practical Medicine, 2024, 40 (7): 918- 923. |
[1] | 刘爱军, 张传亮, 黄晓兵, 周彩琴. 猪繁殖与呼吸综合征病毒生命周期的研究进展[J]. 畜牧兽医学报, 2025, 56(3): 1027-1041. |
[2] | 邬沛伶, 李依璇, 王浩杰, 李亚菲, 刘绍蒙, 刘青芸, 王湘如. 猪流行性腹泻疫苗研究进展[J]. 畜牧兽医学报, 2025, 56(3): 1042-1058. |
[3] | 黄雅妮, 唐熹, 李井泉, 魏嘉诚, 吴珍芳, 李新云, 肖石军, 张志燕. 大规模群体解析猪日增重及达百千克体重日龄的潜在因果基因[J]. 畜牧兽医学报, 2025, 56(3): 1100-1109. |
[4] | 吴嘉浩, 吴姿仪, 窦腾飞, 白利瑶, 张永前, 董联合, 李鹏飞, 李新建, 韩雪蕾, 李秀领. 豫农黑猪生长相关性状的拷贝数变异全基因组关联分析研究[J]. 畜牧兽医学报, 2025, 56(3): 1110-1119. |
[5] | 杨宇婷, 陈国梁, 常巧宁, 鲍武, 刘靖超, 姬梦婷, 荣晓音, 郭晓红, 杨阳, 李步高. miR-375-3p靶向Fam229a调控猪前体脂肪细胞分化[J]. 畜牧兽医学报, 2025, 56(3): 1120-1133. |
[6] | 贾万里, 王继英, 李菁璇, 王彦平, 耿立英, 张传生, 赵雪艳. 基于转录组测序技术鉴别影响莱芜猪滴水损失的关键基因[J]. 畜牧兽医学报, 2025, 56(3): 1134-1146. |
[7] | 王红, 赵为民, 程金花, 李惠侠, 方晓敏. 猪CYP3A29基因核心启动子鉴定及转录调控分析[J]. 畜牧兽医学报, 2025, 56(3): 1147-1158. |
[8] | 周泰增, 杨祎挺, 朱悦华, 钱洪喜, 刘一辉, 甘麦邻, 朱砺, 沈林園. 母猪死胎和木乃伊全基因组关联分析[J]. 畜牧兽医学报, 2025, 56(3): 1231-1241. |
[9] | 周文涛, 王晨昱, 周辉, 刘洪彪, 冯舒锾, 范高升, 李铁军, 何流琴. 单宁酸对免疫应激断奶仔猪肌肉形态、风味氨基酸及肌纤维相关基因表达的影响[J]. 畜牧兽医学报, 2025, 56(3): 1290-1301. |
[10] | 张越, 茹毅, 郝荣增, 杨锐, 赵陇和, 李亚军, 杨洋, 张荣, 蒋成辉, 郑海学. 非洲猪瘟病毒H108R蛋白的制备及其免疫原性评价[J]. 畜牧兽医学报, 2025, 56(3): 1344-1354. |
[11] | 马晓莉, 李段, 曾道平, 刘燕玲, 王晓敏, 彭国良, 宋长绪, 王磊, 徐铮. 非洲猪瘟病毒p72蛋白抗体全自动化学发光酶免疫检测方法的建立[J]. 畜牧兽医学报, 2025, 56(3): 1355-1365. |
[12] | 余昕雅, 何海健, 王磊, 倪语晨, 杜静, 周莹珊, 董婉玉, 王晓杜. LncRNA 18850对猪流行性腹泻病毒复制的影响[J]. 畜牧兽医学报, 2025, 56(3): 1366-1375. |
[13] | 范杰, 邰易润, 朱艳丽, 陈志雄, 胡巧云, 陈智, 刘甜甜, 李欣, 范仲鑫, 葛猛. 近年湖南省猪圆环病毒2型感染状况的调查及遗传演化分析[J]. 畜牧兽医学报, 2025, 56(3): 1376-1385. |
[14] | 潘俊毅, 吴青瑶, 谭碧娥, 郭秋平, 黄瑞林, 陈家顺. 生长育肥猪精准营养供给技术及智能化养殖设备研究进展[J]. 畜牧兽医学报, 2025, 56(2): 501-512. |
[15] | 何雨, 王翔宇, 狄冉, 储明星, 梁琛. BMP4/SMAD4通过下调GJA1基因表达影响绵羊卵巢颗粒间隙连接活性[J]. 畜牧兽医学报, 2025, 56(2): 679-688. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||