1 |
LE COZLER Y , GUYOMARC'H C , PICHODO X , et al. Factors associated with stillborn and mummified piglets in high-prolific sows[J]. Anim Res, 2002, 51 (3): 261- 268.
doi: 10.1051/animres:2002017
|
2 |
张辉. 引起母猪产木乃伊胎和死胎的因素[J]. 畜牧兽医科技信息, 2018 (8): 92.
|
|
ZHANG H . Factors causing mummified fetus and stillbirth in sows[J]. Chinese Journal of Animal Husbandry and Veterinary Medicine, 2018 (8): 92.
|
3 |
邓实健. 目前猪死胎原因剖析[J]. 湖南畜牧兽医, 2009 (2): 30- 32.
|
|
DENG S J . The current analysis of causes of stillbirth in pigs[J]. Hunan Journal of Animal Science & Veterinary Medicine, 2009 (2): 30- 32.
|
4 |
VANDERHAEGHE C , DEWULF J , DE VLIEGHER S , et al. Longitudinal field study to assess sow level risk factors associated with stillborn piglets[J]. Anim Reprod Sci, 2010, 120 (1-4): 78- 83.
doi: 10.1016/j.anireprosci.2010.02.010
|
5 |
BHATTARAI S , FRAMSTAD T , NIELSEN J P . Association between sow and piglet blood hemoglobin concentrations and stillbirth risk[J]. Acta Vet Scand, 2019, 61 (1): 61.
doi: 10.1186/s13028-019-0496-7
|
6 |
VANDERHAEGHE C , DEWULF J , DE KRUIF A , et al. Non-infectious factors associated with stillbirth in pigs: a review[J]. Anim Reprod Sci, 2013, 139 (1-4): 76- 88.
doi: 10.1016/j.anireprosci.2013.03.007
|
7 |
BORGES V F , BERNARDI M L , BORTOLOZZO F P , et al. Risk factors for stillbirth and foetal mummification in four Brazilian swine herds[J]. Prev Vet Med, 2005, 70 (3-4): 165- 176.
doi: 10.1016/j.prevetmed.2005.03.003
|
8 |
WANG S J , WU P X , WANG K , et al. Transcriptome analysis reveals key genes and pathways associated with piglet fetal mummification[J]. Genome, 2021, 64 (12): 1029- 1040.
doi: 10.1139/gen-2021-0026
|
9 |
LAN Q , DENG Q C , QI S J , et al. Genome-wide association analysis identified variants associated with body measurement and reproduction traits in Shaziling pigs[J]. Genes (Basel), 2023, 14 (2): 522.
doi: 10.3390/genes14020522
|
10 |
WU P X , WANG K , ZHOU J , et al. A genome wide association study for the number of animals born dead in domestic pigs[J]. BMC Genet, 2019, 20 (1): 4.
doi: 10.1186/s12863-018-0692-x
|
11 |
ONTERU S K , FAN B , DU Z Q , et al. A whole-genome association study for pig reproductive traits[J]. Anim Genet, 2012, 43 (1): 18- 26.
doi: 10.1111/j.1365-2052.2011.02213.x
|
12 |
WANG Y , DING X , TAN Z , et al. Genome-wide association study for reproductive traits in a Large White pig population[J]. Anim Genet, 2018, 49 (2): 127- 131.
|
13 |
HOLM B , BAKKEN M , VANGEN O , et al. Genetic analysis of age at first service, return rate, litter size, and weaning-to-first service interval of gilts and sows[J]. J Anim Sci, 2005, 83 (1): 41- 48.
|
14 |
林晓坤, 都萌萌, 周李生, 等. 敖汉细毛羊羊毛经济性状的全基因组关联分析[J]. 畜牧兽医学报, 2024, 55 (10): 4346- 4359.
doi: 10.11843/j.issn.0366-6964.2024.10.010
|
|
LIN X K , DU M M , ZHOU L S , et al. Genome-wide association study of wool economic traits in Aohan fine wool sheep[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (10): 4346- 4359.
doi: 10.11843/j.issn.0366-6964.2024.10.010
|
15 |
PACHECO A , BANOS G , LAMBE N , et al. Genome-wide association studies of parasite resistance, productivity and immunology traits in Scottish Blackface sheep[J]. Animal, 2024, 18 (2): 101069.
doi: 10.1016/j.animal.2023.101069
|
16 |
崔晟頔, 王凯, 赵真坚, 等. 利用GWAS和DNA甲基化共定位鉴定猪肉质性状的候选基因[J]. 畜牧兽医学报, 2024, 55 (5): 1945- 1957.
doi: 10.11843/j.issn.0366-6964.2024.05.013
|
|
CUI S D , WANG K , ZHAO Z J , et al. Identification of candidate genes for pork texture traits using GWAS combined with Co-localisation of DNA methylation[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (5): 1945- 1957.
doi: 10.11843/j.issn.0366-6964.2024.05.013
|
17 |
吴平先, 陈力, 龙熙, 等. 荣昌猪初产繁殖性状的全基因组关联研究[J]. 畜牧兽医学报, 2023, 54 (1): 103- 112.
doi: 10.11843/j.issn.0366-6964.2023.01.010
|
|
WU P X , CHEN L , LONG X , et al. Genome-wide association studies for reproductive traits at first farrowing in Rongchang pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (1): 103- 112.
doi: 10.11843/j.issn.0366-6964.2023.01.010
|
18 |
PURCELL S , NEALE B , TODD-BROWN K , et al. PLINK: a tool set for whole-genome association and population-based linkage analyses[J]. Am J Hum Genet, 2007, 81 (3): 559- 575.
doi: 10.1086/519795
|
19 |
GALLI G, GEZAN S A, MURILLO D A, et al. ASRgwas: an R package to perform complex genome-wide association studies (GWAS)[CP]. Hemel Hempstead, United Kingdom: VSN International, 2022.
|
20 |
BARRETT J C , FRY B , MALLER J , et al. Haploview: analysis and visualization of LD and haplotype maps[J]. Bioinformatics, 2005, 21 (2): 263- 265.
|
21 |
YU G C , WANG L G , HAN Y Y , et al. clusterProfiler: an R package for comparing biological themes among gene clusters[J]. OMICS, 2012, 16 (5): 284- 287.
|
22 |
LIU H T , SONG H L , JIANG Y F , et al. A Single-Step genome wide association Study on body size traits using imputation-based whole-genome sequence data in Yorkshire pigs[J]. Front Genet, 2021, 12, 629049.
|
23 |
GUO Y L , TOMLINSON B , CHU T Y , et al. A genome-wide linkage and association scan reveals novel loci for hypertension and blood pressure traits[J]. PLoS One, 2012, 7 (2): e31489.
|
24 |
SZABO L , MOREY R , PALPANT N J , et al. Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development[J]. Genome Biol, 2015, 16 (1): 126.
|
25 |
LI X P , KIM S W , DO K T , et al. Analyses of porcine public SNPs in coding-gene regions by re-sequencing and phenotypic association studies[J]. Mol Biol Rep, 2011, 38 (6): 3805- 3820.
|
26 |
KULUS J , KRANC W , KULUS M , et al. Expression of genes regulating cell division in porcine follicular granulosa cells[J]. Cell Div, 2023, 18 (1): 12.
|
27 |
MIKA D , BOBIN P , LINDNER M , et al. Synergic PDE3 and PDE4 control intracellular cAMP and cardiac excitation-contraction coupling in a porcine model[J]. J Mol Cell Cardiol, 2019, 133, 57- 66.
|
28 |
LYNCH D C , DYMENT D A , HUANG L J , et al. Identification of novel mutations confirms PDE4D as a major gene causing acrodysostosis[J]. Hum Mutat, 2013, 34 (1): 97- 102.
|
29 |
CLARKE R A , EAPEN V . LRRTM4 terminal exon duplicated in family with tourette syndrome, autism and ADHD[J]. Genes (Basel), 2022, 13 (1): 66.
|
30 |
SUN X Y , NIU Q H , JIANG J , et al. Identifying candidate genes for litter size and three morphological traits in Youzhou dark goats based on genome-wide SNP markers[J]. Genes (Basel), 2023, 14 (6): 1183.
|
31 |
MAY K , SAMES L , SCHEPER C , et al. Genomic loci and genetic parameters for uterine diseases in first-parity Holstein cows and associations with milk production and fertility[J]. J Dairy Sci, 2022, 105 (1): 509- 524.
|
32 |
ABRISHAMCAR S , ZHUANG B C , THOMAS M , et al. Association between maternal perinatal stress and depression and infant DNA methylation in the first year of life[J]. Transl Psychiatry, 2024, 14 (1): 445.
|
33 |
SKOTTE L , FADISTA J , BYBJERG-GRAUHOLM J , et al. Genome-wide association study of febrile seizures implicates fever response and neuronal excitability genes[J]. Brain, 2022, 145 (2): 555- 568.
|
34 |
YOU J S , SINGH N , REYES-ORDONEZ A , et al. ARHGEF3 regulates skeletal muscle regeneration and strength through autophagy[J]. Cell Rep, 2021, 34 (1): 108594.
|
35 |
SERBANOVIC-CANIC J , CVEJIC A , SORANZO N , et al. Silencing of RhoA nucleotide exchange factor, ARHGEF3, reveals its unexpected role in iron uptake[J]. Blood, 2011, 118 (18): 4967- 4976.
|
36 |
METODIEV S , THEKKOOT D M , YOUNG J M , et al. A whole-genome association study for litter size and litter weight traits in pigs[J]. Livest Sci, 2018, 211, 87- 97.
|
37 |
LI T T , WAN P C , LIN Q , et al. Genome-wide association study meta-analysis elucidates genetic structure and identifies candidate genes of teat number traits in pigs[J]. Int J Mol Sci, 2024, 25 (1): 451.
|
38 |
YIN C , WANG Y W , ZHOU P , et al. Genomic scan for runs of homozygosity and selective signature analysis to identify candidate genes in Large White pigs[J]. Int J Mol Sci, 2023, 24 (16): 12914.
|
39 |
GETMANTSEVA L , KOLOSOVA M , FEDE K , et al. Finding predictors of leg defects in pigs using CNV-GWAS[J]. Genes (Basel), 2023, 14 (11): 2054.
|