畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (3): 1134-1146.doi: 10.11843/j.issn.0366-6964.2025.03.015
贾万里1,2(), 王继英2, 李菁璇2, 王彦平2, 耿立英1, 张传生1,*(
), 赵雪艳2,*(
)
收稿日期:
2024-10-08
出版日期:
2025-03-23
发布日期:
2025-04-02
通讯作者:
张传生,赵雪艳
E-mail:3311896682@qq.com;cszhang1976@126.com;zhaoxueyan0102@163.com
作者简介:
贾万里(1996-),男,河南驻马店人,硕士生,主要从事猪遗传育种与繁殖研究,E-mail: 3311896682@qq.com
基金资助:
JIA Wanli1,2(), WANG Jiying2, LI Jingxuan2, WANG Yanping2, GENG Liying1, ZHANG Chuansheng1,*(
), ZHAO Xueyan2,*(
)
Received:
2024-10-08
Online:
2025-03-23
Published:
2025-04-02
Contact:
ZHANG Chuansheng, ZHAO Xueyan
E-mail:3311896682@qq.com;cszhang1976@126.com;zhaoxueyan0102@163.com
摘要:
旨在筛选影响莱芜猪滴水损失的关键基因,以提高猪肉质品质并减少滴水带来的经济损失。本研究选取胴体重为(72.30±1.26) kg的28头莱芜猪(公猪19头,母猪9头),测定48 h滴水损失、肉色、肌内脂肪含量和pH等肉质性状,并进行背最长肌组织的转录组测序。利用滴水损失极端个体(每组各3头公猪,1头母猪),在log2(差异倍数) ≥1且校正后P≤0.01的筛选标准下,筛选差异表达基因。结合差异基因与表型的相关分析和蛋白互作分析进一步鉴别影响莱芜猪滴水损失的关键候选基因。结果发现,莱芜猪滴水损失与肌内脂肪含量以及1 h和24 h肉色a*值呈显著负相关(P < 0.05)。滴水损失高、低组间共筛选到166个差异表达基因,这些基因显著富集在与血管系统发育与功能、细胞骨架与运动、蛋白质调控与功能等相关的GO条目和通路中。在28个个体中的相关性分析发现,差异表达基因中有110个基因与滴水损失呈显著相关(P < 0.05),前10位显著相关的差异表达基因包含了KLF2和IGF2等功能上与滴水损失密切相关的基因。进一步的蛋白互作分析发现,差异表达基因中UBR1和TTBK2所表达的蛋白与其它蛋白存在最多的互作,其基因mRNA表达量与滴水损失显著相关(P < 0.05),且已报道的基因功能也与滴水损失密切相关。因此,结合差异表达基因分析、相关性分析和蛋白互作分析将KLF2、IGF2、UBR1和TTBK2作为影响滴水损失的重要候选基因。本研究为猪滴水损失分子机制的解析奠定基础,也为猪肉质性状改良提供了重要借鉴。
中图分类号:
贾万里, 王继英, 李菁璇, 王彦平, 耿立英, 张传生, 赵雪艳. 基于转录组测序技术鉴别影响莱芜猪滴水损失的关键基因[J]. 畜牧兽医学报, 2025, 56(3): 1134-1146.
JIA Wanli, WANG Jiying, LI Jingxuan, WANG Yanping, GENG Liying, ZHANG Chuansheng, ZHAO Xueyan. Identification of Key Genes Affecting Drip Loss in Laiwu Pigs Based on Transcriptome Sequencing Technology[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1134-1146.
表 1
28头莱芜猪肉质性状表型统计"
性状 Trait | 平均值±标准误 Mean±Standard error | 中位数 Median | 最小值 Minimum value | 最大值 Maximum value | 变异系数/% Coefficient of variation |
胴体重/kg Carcass weight | 72.30±1.26 | 6.64 | 72.48 | 60.00 | 83.10 |
亮度L*1 Lightness L*1 | 43.74±0.60 | 44.20 | 38.53 | 49.75 | 7.31 |
红度a*1 Redness a*1 | 16.19±0.43 | 15.97 | 11.89 | 20.19 | 14.02 |
黄度b*1 Yellowness b*1 | 8.95±0.20 | 8.93 | 6.73 | 10.98 | 11.86 |
亮度L*24 Lightness L*24 | 45.49±0.91 | 44.73 | 37.80 | 60.83 | 10.60 |
红度a*24 Redness a*24 | 17.62±0.36 | 17.29 | 13.72 | 20.97 | 10.70 |
黄度b*24 Yellowness b*24 | 9.41±0.24 | 9.29 | 7.31 | 12.03 | 13.41 |
1小时pH pH1h | 6.69±0.05 | 6.76 | 6.15 | 7.18 | 3.89 |
24小时pH pH24h | 6.47±0.06 | 6.47 | 5.73 | 6.95 | 4.61 |
肌内脂肪含量/% Intramuscular fat content | 8.82±0.80 | 8.10 | 3.19 | 18.57 | 48.20 |
48小时滴水损失/% 48 h drip loss(DL48h) | 1.44±0.14 | 1.30 | 0.49 | 3.97 | 52.17 |
表 2
28头莱芜猪转录组测序数据统计"
项目 Item | 平均值 Mean | 最小值 Minimum value | 最大值 Maximum value | 标准差 Standard deviation |
原始读段/bp Raw reads | 45 781 549.43 | 41 020 608 | 51 117 088 | 442 854.90 |
去冗余片段/bp Clean reads | 44 329 938.71 | 40 346 978 | 49 275 354 | 458 787.63 |
总比对率/% Total mapping rate | 95.13 | 92.63 | 96.65 | 0.19 |
单一比对率/% Unique mapping rate | 92.04 | 89.71 | 93.04 | 0.17 |
碱基数/G Base count | 6.65 | 6.05 | 7.39 | 0.07 |
碱基质量分值/% (Q20) Base quality score (Q20) | 98.04 | 97.14 | 98.47 | 0.07 |
碱基质量分值/% (Q30) Base quality score (Q30) | 94.56 | 92.50 | 95.74 | 0.18 |
表 3
滴水损失高、低两组表型性状统计"
项目 Item | 低滴水损失组 DL-L | 高滴水损失组 DL-H | P值 P-value |
胴体重/kg Carcass weight | 65.68±2.02 | 73.34±3.10 | 0.091 6 |
亮度L*1 Lightness L*1 | 40.91±1.32 | 44.86±0.98 | 0.056 5 |
红度a*1 Redness a*1 | 18.58±0.94 | 13.78±0.98 | 0.012 3* |
黄度b*1 Yellowness b*1 | 8.69±0.55 | 8.55±0.18 | 0.826 6 |
亮度L*24 Lightness L*24 | 46.04±1.70 | 42.71±3.09 | 0.391 1 |
红度a*24 Redness a*24 | 19.61±0.60 | 16.21±0.87 | 0.021 1* |
黄度b*24 Yellowness b*24 | 9.56±0.35 | 8.84±0.85 | 0.480 4 |
1小时pH pH1 h | 6.98±0.07 | 6.78±0.03 | 0.060 9 |
24小时pH pH24 h | 6.68±0.03 | 6.63±0.16 | 0.795 3 |
肌内脂肪含量/% Intramuscular fat content | 11.93±1.90 | 5.10±0.62 | 0.031 2* |
48小时滴水损失/% 48 h drip loss(DL48 h) | 0.61±0.07 | 2.88±0.37 | 0.007 6** |
表 4
前10位显著差异表达基因"
基因ID Gene ID | 基因名称 Gene name | 差异倍数 Fold change | P值 P-value | 染色体 Chromosome | 基因描述 Gene description |
ENSSSCG00000011363 | PRKAR2A | 5.920 | 1.63×10-11 | 13 | 蛋白激酶c AMP依赖的Ⅱ型调节亚基α protein kinase cAMP-dependent type Ⅱ regulatory subunit alpha |
ENSSSCG00000039290 | MTPN | 5.727 | 1.55×10-9 | 18 | 肌营养蛋白myotrophin |
ENSSSCG00000029558 | EXTL1 | 0.172 | 3.98×10-9 | 6 | 外泌体样糖基转移酶1 exostosin like glycosyltransferase 1 |
ENSSSCG00000050398 | - | 5.607 | 5.70×10-9 | 5 | - |
ENSSSCG00000004980 | THSD4 | 4.182 | 6.70×10-9 | 1 | 含血小板反应蛋白1型结构域4 thrombospondin type 1 domain containing 4 |
ENSSSCG00000030921 | APOA1 | 0.293 | 8.47×10-9 | 9 | 载脂蛋白A1 apolipoprotein A1 |
ENSSSCG00000014291 | AFF4 | 4.812 | 9.87×10-9 | 2 | AF4/FMR2家族成员4 AF4/FMR2 family member 4 |
ENSSSCG00000017268 | PRKCA | 3.909 | 2.01×10-8 | 12 | 蛋白激酶Cα protein kinase C alpha |
ENSSSCG00000017791 | - | 4.414 | 2.34×10-8 | 12 | 弹弓蛋白磷酸酶2 slingshot protein phosphatase 2 |
ENSSSCG00000013598 | KANK3 | 0.296 | 2.44×10-8 | 2 | KN基序和锚蛋白重复结构域3 KN motif and ankyrin repeat domains 3 |
表 5
滴水损失差异表达基因最显著富集的前3项GO条目和通路"
类别 Category | 项目 Item | 编号 ID | 描述 Description | P值 P-value | 富集基因个数 Enriched gene count |
GO | BP | GO: 0003018 | 循环系统中的血管过程 vascular process in circulatory system | 2.60×10-5 | 6 |
GO: 0001944 | 脉管系统发育 vasculature development | 2.70×10-5 | 14 | ||
GO: 0072358 | 心血管系统发育 cardiovascular system development | 2.70×10-5 | 14 | ||
CC | GO: 0001725 | 应力纤维stress fiber | 2.05×10-3 | 3 | |
GO: 0097517 | 收缩型肌动蛋白丝束 contractile actin filament bundle | 2.05×10-3 | 3 | ||
GO: 0032432 | 肌动蛋白丝束 actin filament bundle | 2.89×10-3 | 3 | ||
MF | GO: 0035173 | 组蛋白激酶活性 histone kinase activity | 3.58×10-3 | 2 | |
GO: 0051393 | α-辅肌动蛋白结合 alpha-actinin binding | 4.28×10-3 | 2 | ||
GO: 0005518 | 胶原结合 collagen binding | 4.71×10-3 | 3 | ||
KEGG | ssc04371 | Apelin信号通路 Apelin signaling pathway | 2.30×10-5 | 8 | |
ssc04730 | 长时程抑制 long-term depression | 1.20×10-4 | 5 | ||
ssc04921 | 催产素信号通路 oxytocin signaling pathway | 1.47×10-4 | 7 |
表 6
前10位与滴水损失显著相关的差异表达基因"
基因 Gene | 相关系数r Correlation coefficient r | 相关性P值 Correlation P-value | 差异倍数 Fold change | P值 P-value |
RBPMS2 | -0.656 | 1.50×10-4 | 0.327 | 5.56×10-5 |
KLF2 | -0.586 | 1.04×10-3 | 0.373 | 5.44×10-5 |
IGF2 | -0.583 | 1.13×10-3 | 0.388 | 1.89×10-5 |
EDRF1 | 0.583 | 1.14×10-3 | 2.481 | 1.08×10-4 |
DDIT4 | -0.574 | 1.42×10-3 | 0.323 | 5.44×10-6 |
GATA2 | -0.573 | 1.45×10-3 | 0.353 | 1.14×10-4 |
ENSSSCG00000001341 | -0.570 | 1.54×10-3 | 0.384 | 3.25×10-6 |
RHOBTB2 | 0.570 | 1.55×10-3 | 3.563 | 1.88×10-5 |
TCP11L1 | 0.568 | 1.62×10-3 | 2.472 | 1.11×10-4 |
ID3 | -0.560 | 1.97×10-3 | 0.330 | 3.55×10-7 |
表 7
滴水损失显著相关、高互作度的差异表达基因编码蛋白"
蛋白名称 Protein name | 互作 程度 Degree | 相关系数r Correlation coefficient | 相关P值 Correlation P-value | 差异倍数 Fold change | 差异P值 P-value | 基因描述 Gene description |
UBR1 | 3 | 0.446 | 1.734×10-2 | 2.749 | 1.021×10-4 | 泛素蛋白连接酶E3组分n-识别蛋白1 ubiquitin protein ligase E3 component n-recognin 1 |
TTBK2 | 3 | 0.408 | 3.118×10-2 | 2.681 | 8.160×10-5 | Tau微管蛋白激酶2 tau tubulin kinase 2 |
GATA2 | 2 | -0.573 | 1.447×10-3 | 0.353 | 1.139×10-4 | GATA结合蛋白2 GATA binding protein 2 |
PDLIM4 | 2 | -0.525 | 4.121×10-3 | 0.359 | 9.710×10-5 | PDZ和LIM结构域4 PDZ and LIM domain 4 |
SPG11 | 2 | 0.517 | 4.811×10-3 | 2.510 | 1.033×10-4 | SPG11囊泡转运相关蛋白, Spatacsin SPG11 vesicle trafficking associated, spatacsin |
ATMIN | 2 | 0.509 | 5.704×10-3 | 2.412 | 9.030×10-5 | ATM相互作用蛋白ATM interactor |
CHUK | 2 | 0.488 | 8.443×10-3 | 2.679 | 3.470×10-5 | 核因子κB激酶复合物抑制组分 component of inhibitor of nuclear factor kappa B kinase complex |
USP24 | 2 | 0.425 | 2.417×10-2 | 2.580 | 8.300×10-5 | 泛素特异性肽酶24 ubiquitin specific peptidase 24 |
ARHGAP35 | 2 | 0.396 | 3.691×10-2 | 2.436 | 5.240×10-6 | Rho GTPase激活蛋白35 Rho GTPase activating protein 35 |
1 | 王波, 罗海玲. 氧化反应对肌肉滴水损失的影响及抗氧化剂对其调控机制的研究进展[J]. 中国畜牧杂志, 2019, 55 (6): 1- 5. |
WANG B , LUO H L . Research progress on the effect of oxidation reaction on drip loss of muscle and the regulation mechanism of antioxidants[J]. Chinese Journal of Animal Science, 2019, 55 (6): 1- 5. | |
2 | HAN X Y , LI Y , WANG Y , et al. Exploration on antifreeze potential of thawed drip enzymatic hydrolysates on myofibrillar proteins in pork patties during freeze-thaw cycles[J]. Food Chem, 2024, 467, 142248. |
3 | LIAO J L , ZHANG P G , YIN J D , et al. New insights into the effects of dietary amino acid composition on meat quality in pigs: a review[J]. Meat Sci, 2024, 221, 109721. |
4 | 刘汇鑫, 薛超, 董立才, 等. 江泉黑猪、江泉白猪和杜长大猪的胴体性能及肉品质分析[J]. 中国畜牧杂志, 2024, 60 (8): 275- 278. |
LIU H X , XUE C , DONG L C , et al. Analysis of carcass performance and meat quality of Jiangquan Black Pig, Jiangquan white pig and DLY pig[J]. Chinese Journal of Animal Science, 2024, 60 (8): 275- 278. | |
5 | 李宏新. 不同品种及其杂交组合对育肥猪生产性能和肉品质的影响[D]. 沈阳: 沈阳农业大学, 2016. |
LI H X. Effect of different breeds and hybrid combinations on growth performance and meat quality in finishing pigs[D]. Shenyang: Shenyang Agricultural University, 2016. (in Chinese) | |
6 | 丁荣荣, 杨明, 全建平, 等. 杜长大三元杂交猪与皮杜长大四元杂交猪胴体性状和肉质性状比较研究[J]. 畜牧兽医学报, 2016, 47 (9): 1795- 1805. |
DING R R , YANG M , QUAN J P , et al. A comparative study of carcass and meat quality traits between DLY and PDLY pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47 (9): 1795- 1805. | |
7 |
WANG Y B , ZHANG H L , YAN E F , et al. Carcass and meat quality traits and their relationships in Duroc×Landrace×Yorkshire barrows slaughtered at various seasons[J]. Meat Sci, 2023, 198, 109117.
doi: 10.1016/j.meatsci.2023.109117 |
8 |
杨杰, 周李生, 刘先先, 等. 莱芜猪与杜长大三元杂交猪肉质性状种质资源比较研究[J]. 畜牧兽医学报, 2014, 45 (11): 1752- 1759.
doi: 10.11843/j.issn.0366-6964.2014.11.003 |
YANG J , ZHOU L S , LIU X X , et al. A comparative study of meat quality traits between Laiwu and DLY pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2014, 45 (11): 1752- 1759.
doi: 10.11843/j.issn.0366-6964.2014.11.003 |
|
9 | 王贵荣. 2023年农业经济形势总体良好[N]. 中国信息报, 2024-01-19(002). |
WANG G R. Overall good agricultural economic situation in 2023[N]. China Information News, 2024-01-19(002). (in Chinese) | |
10 |
LIU X X , XIONG X W , YANG J , et al. Genome-wide association analyses for meat quality traits in Chinese Erhualian pigs and a Western Duroc×(Landrace×Yorkshire) commercial population[J]. Genet Sel Evol, 2015, 47 (1): 44.
doi: 10.1186/s12711-015-0120-x |
11 | MA J W , YANG J , ZHOU L S , et al. A splice mutation in the PHKG1 gene causes high glycogen content and low meat quality in pig skeletal muscle[J]. PLoS Genet, 2014, 10 (10) |
12 |
MILAN D , JEON J T , LOOFT C , et al. A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle[J]. Science, 2000, 288 (5469): 1248- 1251.
doi: 10.1126/science.288.5469.1248 |
13 |
LI B J , LIU K Q , WENG Q N , et al. RNA-seq analysis reveals new candidate genes for drip loss in a Pietrain×Duroc×Landrace×Yorkshire population[J]. Anim Genet, 2016, 47 (2): 192- 199.
doi: 10.1111/age.12401 |
14 | 中华人民共和国农业农村部. NY/T 821—2019猪肉品质测定技术规程[S]. 北京: 中国农业出版社, 2019. |
Ministry of Agriculture and Rural Affairs of the People 's Republic of China. NY/T 821—2019 Technical code of practice for pork quality assessment[S]. Beijing: China Agriculture Press, 2019. (in Chinese) | |
15 | 中华人民共和国农业部. NY/T 825-2004瘦肉型猪胴体性状测定技术规范[S]. 北京: 中国农业出版社, 2004. |
Ministry of Agriculture of the PRC. NY/T 825-2004 Technical regulation for testing of carcass traits in lean-type pig[S]. Beijing: China Agriculture Press, 2004. (in Chinese) | |
16 | 国家卫生和计划生育委员会, 国家食品药品监督管理总局. GB 5009.6-2016食品安全国家标准食品中脂肪的测定[S]. 北京: 中国标准出版社, 2017. |
National Health and Family Planning Commission of the People 's Republic of China, CFDA. GB 5009.6-2016 National food safety standard Determination of fat in food[S]. Beijing: Standards Press of China, 2017. (in Chinese) | |
17 |
LOVE M I , HUBER W , ANDERS S . Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biol, 2014, 15 (12): 550.
doi: 10.1186/s13059-014-0550-8 |
18 |
YU G C , WANG L G , HAN Y Y , et al. clusterProfiler: an R package for comparing biological themes among gene clusters[J]. OMICS, 2012, 16 (5): 284- 287.
doi: 10.1089/omi.2011.0118 |
19 |
WANG L J , WANG Y . Molecular characterization, expression patterns and subcellular localization of Myotrophin (MTPN) gene in porcine skeletal muscle[J]. Mol Biol Rep, 2012, 39 (3): 2733- 2738.
doi: 10.1007/s11033-011-1028-3 |
20 |
KAKINUMA N , ZHU Y , WANG Y , et al. Kank proteins: structure, functions and diseases[J]. Cell Mol Life Sci, 2009, 66 (16): 2651- 2659.
doi: 10.1007/s00018-009-0038-y |
21 | LYU W T , XIANG Y , WANG X X , et al. Differentially expressed hepatic genes revealed by transcriptomics in pigs with different liver lipid Contents[J]. Oxid Med Cell Longev, 2022, 2022, 2315575. |
22 |
KOOMKRONG N , GONGRUTTANANUN N , BOONKAEWWAN C , et al. Fiber characteristics of pork muscle exhibiting different levels of drip loss[J]. Anim Sci J, 2017, 88 (12): 2044- 2049.
doi: 10.1111/asj.12859 |
23 |
SAVAGE A W J , WARRISS P D , JOLLEY P D . The amount and composition of the proteins in drip from stored pig meat[J]. Meat Sci, 1990, 27 (4): 289- 303.
doi: 10.1016/0309-1740(90)90067-G |
24 |
任一帆, 赵雪艳, 王彦平, 等. 莱芜猪与杜长大肉质性状比较与分析[J]. 养猪, 2021 (5): 45- 48.
doi: 10.3969/j.issn.1002-1957.2021.05.017 |
REN Y F , ZHAO X Y , WANG Y P , et al. Comparison of carcass traits and meat quality between Laiwu pig and Duroc×Landrace×Yorkshire pigs[J]. Swine Production, 2021 (5): 45- 48.
doi: 10.3969/j.issn.1002-1957.2021.05.017 |
|
25 | 冯岗, 孙宝忠, 卢凌, 等. 肌内脂肪与背最长肌肉质、脂肪酸组成的关系[J]. 食品工业科技, 2013, 34 (10): 129- 132. |
FENG G , SUN B Z , LU L , et al. Relationships between intramuscular fat and pork quality, fatty acid composition of pig longissimus muscle[J]. Science and Technology of Food Industry, 2013, 34 (10): 129- 132. | |
26 |
WARITTHITHAM A , LAMBERTZ C , LANGHOLZ H J , et al. Muscle fiber characteristics and their relationship to water holding capacity of longissimus dorsi muscle in Brahman and charolais crossbred bulls[J]. Asian Austral J Anim Sci, 2010, 23 (5): 665- 671.
doi: 10.5713/ajas.2010.90482 |
27 |
YANG B R , CHEN T , LI H J , et al. Impact of postmortem degradation of cytoskeletal proteins on intracellular gap, drip channel and water-holding capacity[J]. Meat Sci, 2021, 176, 108472.
doi: 10.1016/j.meatsci.2021.108472 |
28 |
ZHANG M H , WANG D Y , XU X L , et al. Comparative proteomic analysis of proteins associated with water holding capacity in goose muscles[J]. Food Res Int, 2019, 116, 354- 361.
doi: 10.1016/j.foodres.2018.08.048 |
29 |
ZUO H X , HAN L , YU Q L , et al. Proteome changes on water-holding capacity of yak longissimus lumborum during postmortem aging[J]. Meat Sci, 2016, 121, 409- 419.
doi: 10.1016/j.meatsci.2016.07.010 |
30 |
YANG W , HOU L M , WANG B B , et al. Integration of transcriptome and machine learning to identify the potential key genes and regulatory networks affecting drip loss in pork[J]. J Anim Sci, 2024, 102, skae164.
doi: 10.1093/jas/skae164 |
31 | HEIDT H , CINAR M U , UDDIN M J , et al. A genetical genomics approach reveals new candidates and confirms known candidate genes for drip loss in a porcine resource population[J]. Mamm Genome, 2013, 24 (9-10): 416- 426. |
32 |
PONSUKSILI S , MURANI E , PHATSARA C , et al. Expression profiling of muscle reveals transcripts differentially expressed in muscle that affect water-holding capacity of pork[J]. J Agric Food Chem, 2008, 56 (21): 10311- 10317.
doi: 10.1021/jf800881y |
33 | SWAMYNATHAN S K . Krüppel-like factors: three fingers in control[J]. Hum Genomics, 2010, 4 (4): 263. |
34 | ZHANG P , LI Q G , WU Y J , et al. Identification of candidate genes that specifically regulate subcutaneous and intramuscular fat deposition using transcriptomic and proteomic profiles in Dingyuan pigs[J]. Sci Rep, 2022, 12 (1): 2844. |
35 | 高琴, 张皓, 王英军, 等. 过表达鸡Klf2促进klf7转录抑制脂肪细胞分化[J]. 生物工程学报, 2023, 39 (4): 1670- 1683. |
GAO Q , ZHANG H , WANG Y J , et al. Overexpression of chicken Klf2 promotes klf7 transcription and inhibits adipocyte differentiation[J]. Chinese Journal of Biotechnology, 2023, 39 (4): 1670- 1683. | |
36 | LING X Z , WANG Q F , ZHANG J , et al. Genome-Wide analysis of the KLF gene family in Chicken: characterization and expression profile[J]. Animals (Basel), 2023, 13 (9): 1429. |
37 | CUI T T , HUANG J X , SUN Y N , et al. KLF2 inhibits chicken preadipocyte differentiation at least in part via directly repressing PPARγ transcript variant 1 expression[J]. Front Cell Dev Biol, 2021, 9, 627102. |
38 | 杨波若, 李华健, 苏娅宁, 等. 基于微观结构和蛋白质组学分析影响猪肉持水性的差异蛋白[J]. 食品工业科技, 2021, 42 (7): 136- 144. |
YANG B R , LI H J , SU Y N , et al. Analysis of different proteins affecting water holding capacity of pork based on microstructure and proteomics[J]. Science and Technology of Food Industry, 2021, 42 (7): 136- 144. | |
39 | NILLEGODA N B , THEODORAKI M A , MANDAL A K , et al. Ubr1 and Ubr2 function in a quality control pathway for degradation of unfolded cytosolic proteins[J]. Mol Biol Cell, 2010, 21 (13): 2102- 2116. |
40 | ZHAO W N , ZHANG Y S , LIN S Y , et al. Identification of Ubr1 as an amino acid sensor of steatosis in liver and muscle[J]. J Cachexia Sarcopenia Muscle, 2023, 14 (3): 1454- 1467. |
41 | LAWSON M A . The role of integrin degradation in post-mortem drip loss in pork[J]. Meat Sci, 2004, 68 (4): 559- 566. |
42 | LIAO J C , YANG T T , WENG R R , et al. TTBK2: a tau protein kinase beyond tau phosphorylation[J]. Biomed Res Int, 2015, 2015, 575170. |
43 | ZHANG D Q, LI X, CHEN L, et al. Protein phosphorylation affects meat water holding capacity[M]//ZHANG D Q, LI X, CHEN L, et al. Protein Phosphorylation and Meat Quality. Singapore: Springer, 2020: 77-89. |
[1] | 黄雅妮, 唐熹, 李井泉, 魏嘉诚, 吴珍芳, 李新云, 肖石军, 张志燕. 大规模群体解析猪日增重及达百千克体重日龄的潜在因果基因[J]. 畜牧兽医学报, 2025, 56(3): 1100-1109. |
[2] | 鲁秀, 张名爱, 孔敏, 张晶, 王秉翰, 侯中一, 滕兴怡, 姜雅静, 凡文磊, 王宝维. 基于转录组和蛋白质组分析筛选五龙鹅产蛋相关候选基因[J]. 畜牧兽医学报, 2025, 56(1): 232-245. |
[3] | 安塔娜, 韩海格, 陶克涛, 宝音德力格尔, 李文博, 芒来. 家马不同毛色遗传特性研究综述[J]. 畜牧兽医学报, 2024, 55(8): 3297-3308. |
[4] | 崔晟頔, 王凯, 赵真坚, 陈栋, 申琦, 余杨, 王俊戈, 陈子旸, 禹世欣, 陈佳苗, 王翔枫, 唐国庆. 利用GWAS和DNA甲基化共定位鉴定猪肉质性状的候选基因[J]. 畜牧兽医学报, 2024, 55(5): 1945-1957. |
[5] | 雷艳茹, 胡晓玉, 许春红, 张晨曦, 杜文苹, 王阳光, 李东华, 孙桂荣, 李文婷, 康相涛. 5个贵妃鸡配套系生长发育规律、屠宰性能和肉品质比较分析[J]. 畜牧兽医学报, 2024, 55(4): 1521-1535. |
[6] | 林晓坤, 都萌萌, 周李生, 黄振刚, 王頔, 周东辉, 曹欣欣, 贺建宁, 赵金山, 李和刚. 敖汉细毛羊羊毛经济性状的全基因组关联分析[J]. 畜牧兽医学报, 2024, 55(10): 4346-4359. |
[7] | 唐鑫鑫, 郑炬梅, 骆娜, 营凡, 朱丹, 李森, 刘大伟, 安炳星, 文杰, 赵桂苹, 李和刚. 基于全基因组关联分析揭示肉鸡腿病发生的遗传机制[J]. 畜牧兽医学报, 2024, 55(1): 99-109. |
[8] | 王振宇, 张赛博, 刘文慧, 梁栋, 任小丽, 闫磊, 闫跃飞, 高腾云, 张震, 黄河天. 基于SNP芯片数据分析不同奶牛场基因组近交系数及筛选功能性基因[J]. 畜牧兽医学报, 2023, 54(7): 2848-2857. |
[9] | 张笑科, 廖伟莉, 陈信佑, 李婷婷, 袁晓龙, 李加琪, 黄翔, 张豪. 杜洛克猪生长性状全基因组关联分析及候选基因鉴定[J]. 畜牧兽医学报, 2023, 54(5): 1868-1876. |
[10] | 李超, 赵雪艳, 王永军, 王彦平, 任一帆, 李菁璇, 王怀中, 王继英, 宋勤叶. 莱芜猪和杜长大猪盲肠和结肠微生物菌群结构组成和功能分析[J]. 畜牧兽医学报, 2023, 54(12): 5033-5045. |
[11] | 张昌政, 李德森, 黄敏, 方晓敏, 赵为民, 任守文, 董焕声, 任军, 周李生. 基于全基因组填充重测序关联分析鉴别影响苏山猪初生体尺与乳头数性状的遗传位点[J]. 畜牧兽医学报, 2023, 54(1): 88-102. |
[12] | 陶伟, 侯黎明, 王彬彬, 刘航, 李开军, 尹彦镇, 郭皓, 牛培培, 张总平, 李强, 黄瑞华, 李平华. 利用全基因组选择信号方法鉴别影响猪肉滴水损失的候选基因[J]. 畜牧兽医学报, 2022, 53(5): 1373-1383. |
[13] | 路玉洁, 莫家远, 綦文晶, 朱思燃, 杨丽丽, 刘巧玲, 卜亚歌, 兰干球, 梁晶. 几个中国地方猪群体遗传结构和产仔数性状选择信号分析[J]. 畜牧兽医学报, 2022, 53(2): 360-369. |
[14] | 宋明坤, 薛明明, 张力戈, 颜铎, 夏宁, 商鹏, 李新建, 韩雪蕾, 乔瑞敏, 李秀领, 李明, 王克君. 影响藏猪与大约克夏猪肌肉品质的lncRNA的筛选及功能分析[J]. 畜牧兽医学报, 2022, 53(1): 53-65. |
[15] | 邹扬, 郑文斌, 张金鹏, 路义鑫, 朱兴全. 犬弓首蛔虫感染比格犬不同阶段肝circRNAs表达模式的分析[J]. 畜牧兽医学报, 2021, 52(12): 3524-3534. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||