1 |
ALONSO C , BORCA M , DIXON L , et al. ICTV virus taxonomy profile: Asfarviridae[J]. J Gen Virol, 2018, 99 (5): 613- 614.
doi: 10.1099/jgv.0.001049
|
2 |
ZHANG H L , ZHAO S S , ZHANG H J , et al. Vaccines for African swine fever: an update[J]. Front Microbiol, 2023, 14, 1139494.
doi: 10.3389/fmicb.2023.1139494
|
3 |
World Organisation for Animal Health. African swine fever (ASF)-Situation report 48[DB]. https://www.woah.org/app/uploads/2024/03/asf-report48.pdf[2025-03-05]
|
4 |
CHAPMAN D A G , DARBY A C , DA SILVA M , et al. Genomic analysis of highly virulent Georgia 2007/1 isolate of African swine fever virus[J]. Emerg Infect Dis, 2011, 17 (4): 599- 605.
doi: 10.3201/eid1704.101283
|
5 |
ALEJO A , MATAMOROS T , GUERRA M , et al. A proteomic atlas of the African swine fever virus particle[J]. J Virol, 2018, 92 (23): e01293- 18.
|
6 |
QU H L , GE S Q , ZHANG Y Q , et al. A systematic review of genotypes and serogroups of African swine fever virus[J]. Virus Genes, 2022, 58 (2): 77- 87.
doi: 10.1007/s11262-021-01879-0
|
7 |
戈胜强, 左媛媛, 韩乃君, 等. 非洲猪瘟病毒基因分型与血清分群研究进展[J]. 中国动物检疫, 2022, 39 (9): 97- 104.
|
|
GE S Q , ZUO Y Y , HAN N J , et al. Advances in researches on African swine fever virus genotyping and Serogrouping[J]. China Animal Health Inspection, 2022, 39 (9): 97- 104.
|
8 |
SUN E C , ZHANG Z J , WANG Z L , et al. Emergence and prevalence of naturally occurring lower virulent African swine fever viruses in domestic pigs in China in 2020[J]. Sci China Life Sci, 2021, 64 (5): 752- 765.
|
9 |
SUN E C , HUANG L Y , ZHANG X F , et al. Genotype I African swine fever viruses emerged in domestic pigs in China and caused chronic infection[J]. Emerg Microbes Infect, 2021, 10 (1): 2183- 2193.
doi: 10.1080/22221751.2021.1999779
|
10 |
ZHAO D M , SUN E C , HUANG L Y , et al. Highly lethal genotype Ⅰ and Ⅱ recombinant African swine fever viruses detected in pigs[J]. Nat Commun, 2023, 14 (1): 3096.
doi: 10.1038/s41467-023-38868-w
|
11 |
WANG N , ZHAO D M , WANG J L , et al. Architecture of African swine fever virus and implications for viral assembly[J]. Science, 2019, 366 (6465): 640- 644.
doi: 10.1126/science.aaz1439
|
12 |
王晓丽, 孙蕾, 刘文军, 等. 非洲猪瘟病毒编码蛋白功能研究进展[J]. 微生物学通报, 2019, 46 (7): 1827- 1836.
|
|
WANG X L , SUN L , LIU W J , et al. Advances in the functions of African swine fever virus-encoded proteins[J]. Microbiology China, 2019, 46 (7): 1827- 1836.
|
13 |
VUONO E , RAMIREZ-MEDINA E , SILVA E , et al. Deletion of the H108R gene reduces virulence of the pandemic Eurasia strain of African swine fever virus with surviving animals being protected against virulent challenge[J]. J Virol, 2022, 96 (14): e0054522.
doi: 10.1128/jvi.00545-22
|
14 |
WILKINS M R , GASTEIGER E , BAIROCH A , et al. Protein identification and analysis tools in the ExPASy server[J]. Methods Mol Biol, 1999, 112, 531- 552.
|
15 |
KROGH A , LARSSON B , VON HEIJNE G , et al. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes[J]. J Mol Biol, 2001, 305 (3): 567- 580.
doi: 10.1006/jmbi.2000.4315
|
16 |
ALMAGRO ARMENTEROS J J , TSIRIGOS K D , SØNDERBY C K , et al. SignalP 5.0 improves signal peptide predictions using deep neural networks[J]. Nat Biotechnol, 2019, 37 (4): 420- 423.
doi: 10.1038/s41587-019-0036-z
|
17 |
GEOURJON C , DELÉAGE G . SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments[J]. Comput Appl Biosci, 1995, 11 (6): 681- 684.
|
18 |
YANG J , YAN R , ROY A , et al. The I-TASSER Suite: protein structure and function prediction[J]. Nat Methods, 2015, 12 (1): 7- 8.
doi: 10.1038/nmeth.3213
|
19 |
闫文倩, 侯景, 杨金柯, 等. 非洲猪瘟病毒D1133L蛋白单克隆抗体抑制其复制[J]. 畜牧兽医学报, 2024, 55 (2): 854- 859.
doi: 10.11843/j.issn.0366-6964.2024.02.041
|
|
YAN W Q , HOU J , YANG J K , et al. Monoclonal antibody against D1133L protein of African swine fever virus inhibits its replication[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (2): 854- 859.
doi: 10.11843/j.issn.0366-6964.2024.02.041
|
20 |
陈燎原, 王巧娜, 汪丰平, 等. 非洲猪瘟研究进展及防控策略[J]. 畜牧兽医杂志, 2024, 43 (06): 78- 82.
|
|
CHEN L Y , WANG Q N , WANG F P , et al. Research progress and prevention and control strategies of African swine fever[J]. Journal of Animal Science and Veterinary Medicine, 2024, 43 (6): 78- 82.
|
21 |
WANG Z L , ZHANG J W , LI F , et al. The attenuated African swine fever vaccine HLJ/18-7GD provides protection against emerging prevalent genotype Ⅱ variants in China[J]. Emerg Microbes Infect, 2024, 13 (1): 2300464.
|
22 |
DIEP N V , DUC N V , NGOC N T , et al. Genotype Ⅱ live-attenuated ASFV vaccine strains unable to completely protect pigs against the emerging recombinant ASFV genotype Ⅰ/Ⅱ strain in Vietnam[J]. Vaccines (Basel), 2024, 12 (10): 1114.
|
23 |
马俊, 王志远, 梁杏玲, 等. 基于非洲猪瘟病毒p30与p54蛋白表位串联多肽的间接ELISA抗体检测方法的建立[J]. 畜牧兽医学报, 2022, 53 (12): 4325- 4336.
doi: 10.11843/j.issn.0366-6964.2022.12.018
|
|
MA J , WANG Z Y , LIANG X L , et al. Development of an indirect ELISA antibodies detection method on tandem-epitope peptide of African swine fever virus p30 and p54 proteins[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (12): 4325- 4336.
doi: 10.11843/j.issn.0366-6964.2022.12.018
|
24 |
姜文萍. 非洲猪瘟的诊断技术[J]. 畜牧兽医科技信息, 2023 (5): 163- 165.
|
|
JIANG W P . Diagnostic techniques for African swine fever[J]. Chinese Journal of Animal Husbandry and Veterinary Medicine, 2023 (5): 163- 165.
|
25 |
GAUDREAULT N N , RICHT J A . Subunit vaccine approaches for African swine fever virus[J]. Vaccines (Basel), 2019, 7 (2): 56.
|
26 |
BROOKES S M , SUN H , DIXON L K , et al. Characterization of African swine fever virion proteins j5R and j13L: immuno-localization in virus particles and assembly sites[J]. J Gen Virol, 1998, 79, 1179- 1188.
|
27 |
XU Q R , MA F S , YANG D C , et al. Rice-produced classical swine fever virus glycoprotein E2 with herringbone-dimer design to enhance immune responses[J]. Plant Biotechnol J, 2023, 21 (12): 2546- 2559.
|