畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (3): 1110-1119.doi: 10.11843/j.issn.0366-6964.2025.03.013
吴嘉浩1,2(), 吴姿仪1,2(
), 窦腾飞1,2, 白利瑶1, 张永前2,3, 董联合2,3, 李鹏飞2,3, 李新建1,4, 韩雪蕾1, 李秀领1,2,*(
)
收稿日期:
2024-08-26
出版日期:
2025-03-23
发布日期:
2025-04-02
通讯作者:
李秀领
E-mail:m17630413022@163.com;W17746978907@163.com;xiulingli@henau.edu.cn
作者简介:
吴嘉浩(2001-),男,河南驻马店人,硕士,主要从事动物遗传育种与繁殖研究,E-mail: m17630413022@163.com吴嘉浩和吴姿仪为同等贡献作者
基金资助:
WU Jiahao1,2(), WU Ziyi1,2(
), DOU Tengfei1,2, BAI Liyao1, ZHANG Yongqian2,3, DONG Lianhe2,3, LI Pengfei2,3, LI Xinjian1,4, HAN Xuelei1, LI Xiuling1,2,*(
)
Received:
2024-08-26
Online:
2025-03-23
Published:
2025-04-02
Contact:
LI Xiuling
E-mail:m17630413022@163.com;W17746978907@163.com;xiulingli@henau.edu.cn
摘要:
旨在检测豫农黑猪全基因组拷贝数变异(copy number variations,CNVs),鉴定豫农黑猪生长相关性状候选基因。本研究收集了豫农黑猪2~5世代种群的生长相关性状数据(包括体长、体高、胸围、管围、腿臀围、背膘厚和眼肌深度),共807头猪(母猪738头,公猪69头),体重范围为95~105 kg。随后采集该试验群体耳组织样本利用中芯一号50K SNP芯片进行基因分型,并使用PennCNV软件对基因型数据进行CNV检测,通过重叠CNV融合法构建拷贝数变异区域(copy number variable regions, CNVRs)图谱。而后使用Plink软件对生长相关性状进行CNV的全基因组关联分析(genome-wide association study, GWAS)。结果,在18条常染色体上共鉴定到1 432个CNVs,合并为232个CNVRs,其中CNV大小范围为2.7 kb至2.2 Mb,CNVR大小范围为4.5 kb至2.2 Mb,共覆盖56.4 Mb,占常染色体基因组的2.50%。通过GWAS分析,发现1个CNV在全基因组水平上与胸围性状显著相关,7个CNV在染色体水平上分别与胸围、管围和背膘厚性状显著相关,胸围性状中显著性最高的CNV也与管围性状显著相关。其中,位于17号染色体上的CLDN23基因与背膘厚显著相关,推测其可能在肌肉发育或脂肪沉积中起重要调控作用。本研究结果为豫农黑猪基因组CNV的功能提供新见解,并为进一步分子标记辅助选择在豫农黑猪新品种培育中提供了重要的理论支持。
中图分类号:
吴嘉浩, 吴姿仪, 窦腾飞, 白利瑶, 张永前, 董联合, 李鹏飞, 李新建, 韩雪蕾, 李秀领. 豫农黑猪生长相关性状的拷贝数变异全基因组关联分析研究[J]. 畜牧兽医学报, 2025, 56(3): 1110-1119.
WU Jiahao, WU Ziyi, DOU Tengfei, BAI Liyao, ZHANG Yongqian, DONG Lianhe, LI Pengfei, LI Xinjian, HAN Xuelei, LI Xiuling. Genome-wide Association Study of Copy Number Variation in Growth-Related Traits of Yunong-Black Pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1110-1119.
表 1
CNVR在常染色体上的分布"
染色体 Chromosome | CNVR数目 CNVR count | CNVR长度/kb Length of CNVR | 最小长度/kb Minimum size | 最大长度/kb Maximum size | 平均长度/kb Average size |
1 | 18 | 4 246.27 | 9.30 | 1 465.44 | 235.90 |
2 | 18 | 4 847.94 | 31.11 | 704.46 | 269.33 |
3 | 18 | 5 953.04 | 43.95 | 1 141.00 | 330.72 |
4 | 9 | 3 649.12 | 28.24 | 2 222.16 | 405.46 |
5 | 9 | 2 699.64 | 41.88 | 652.15 | 299.96 |
6 | 15 | 5 653.12 | 13.28 | 1 563.56 | 376.87 |
7 | 14 | 1 070.91 | 45.11 | 185.55 | 76.49 |
8 | 18 | 4 063.80 | 14.50 | 873.32 | 225.77 |
9 | 13 | 1 818.76 | 10.60 | 452.26 | 139.90 |
10 | 6 | 889.36 | 19.00 | 317.20 | 148.23 |
11 | 12 | 2 350.00 | 32.19 | 497.58 | 195.83 |
12 | 8 | 1 665.53 | 54.34 | 701.22 | 208.19 |
13 | 23 | 6 613.98 | 15.95 | 1 160.06 | 287.56 |
14 | 12 | 2 644.65 | 21.94 | 1 106.14 | 220.39 |
15 | 19 | 4 416.32 | 21.63 | 1 758.26 | 232.44 |
16 | 9 | 1 762.76 | 33.94 | 633.51 | 195.86 |
17 | 5 | 1 319.47 | 117.65 | 509.60 | 263.89 |
18 | 6 | 719.50 | 56.86 | 225.78 | 119.92 |
1 | 许迪, 颜港, 张帅, 等. 大白猪生长性状影响因素分析及遗传参数估计[J]. 中国畜牧兽医, 2024, 51 (1): 193- 202. |
XU D , YAN G , ZHANG S , et al. Influencing factors analysis and genetic parameters estimation of growth traits in yorkshire pigs[J]. China Animal Husbandry & Veterinary Medicine, 2024, 51 (1): 193- 202. | |
2 | 康佳威, 黄宣凯, 王志鹏, 等. 大白猪生长、繁殖和体尺性状遗传参数估计[J]. 畜牧兽医学报, 2024, 55 (5): 1936- 1944. |
KANG J W , HUANG X K , WANG Z P , et al. Estimation of genetic parameters for growth, reproduction, and body measurements traits in large white pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (5): 1936- 1944. | |
3 | 王克君. 基于多重关联分析鉴定猪生长性状相关基因及其功能验证[D]. 北京: 中国农业大学, 2017. |
WANG K J. Identification of growth-related genes based on multi-association analysis and their potential gene function verification in pig[D]. Beijing: China Agricultural University, 2017. (in Chinese) | |
4 |
阮栋林, 陈悦, 庄站伟, 等. 基于SNP芯片的杜洛克种猪生长和体尺性状遗传参数估计及相关分析[J]. 家畜生态学报, 2023, 44 (2): 19- 24.
doi: 10.3969/j.issn.1673-1182.2023.02.004 |
RUAN D L , CHEN Y , ZHUANG Z W , et al. Genetic parameter estimation and correlation analysis of growth traits and body traits in duroc pigs based on SNP chip[J]. Acta Ecologae Animalis Domastici, 2023, 44 (2): 19- 24.
doi: 10.3969/j.issn.1673-1182.2023.02.004 |
|
5 |
ZHOU J H , LIU L Y , REYNOLDS E , et al. Discovering copy number variation in dual-purpose XinJiang brown cattle[J]. Front Genet, 2022, 12, 747431.
doi: 10.3389/fgene.2021.747431 |
6 |
HUANG Y Z , LI Y J , WANG X H , et al. An atlas of CNV maps in cattle, goat and sheep[J]. Sci China Life Sci, 2021, 64 (10): 1747- 1764.
doi: 10.1007/s11427-020-1850-x |
7 |
ZHANG W , ZHOU M , LIU L Q , et al. Population structure and selection signatures underlying domestication inferred from genome-wide copy number variations in Chinese indigenous pigs[J]. Genes (Basel), 2022, 13 (11): 2026.
doi: 10.3390/genes13112026 |
8 |
CENDRON F , CASSANDRO M , PENASA M . Genome-wide investigation to assess copy number variants in the Italian local chicken population[J]. J Anim Sci Biotechnol, 2024, 15 (1): 2.
doi: 10.1186/s40104-023-00965-7 |
9 | DE OLIVEIRA H R , CHUD T C S , OLIVEIRA G A Jr , et al. Genome-wide association analyses reveal copy number variant regions associated with reproduction and disease traits in Canadian Holstein cattle[J]. J Dairy Sci, 2024, 107 (9): 7052- 7063. |
10 |
饶友生, 张细权. 拷贝数目变异: 基因组遗传变异的新诠释[J]. 生物多样性, 2008, 16 (4): 399- 406.
doi: 10.3321/j.issn:1005-0094.2008.04.011 |
RAO Y S , ZHANG X Q . Copy-number variant: new annotation for genetic variation across genomes[J]. Biodiversity Science, 2008, 16 (4): 399- 406.
doi: 10.3321/j.issn:1005-0094.2008.04.011 |
|
11 | BICKHART D M , LIU G E . The challenges and importance of structural variation detection in livestock[J]. Front Genet, 2014, 5, 37. |
12 |
GARRICK D J , TAYLOR J F , FERNANDO R L . Deregressing estimated breeding values and weighting information for genomic regression analyses[J]. Genet Sel Evol, 2009, 41 (1): 55.
doi: 10.1186/1297-9686-41-55 |
13 |
WONG K K , DELEEUW R J , DOSANJH N S , et al. A comprehensive analysis of common copy-number variations in the human genome[J]. Am J Hum Genet, 2007, 80 (1): 91- 104.
doi: 10.1086/510560 |
14 |
FADISTA J , NYGAARD M , HOLM L E , et al. A snapshot of CNVs in the pig genome[J]. PLoS One, 2008, 3 (12): e3916.
doi: 10.1371/journal.pone.0003916 |
15 |
RAMAYO-CALDAS Y , CASTELLÓ A , PENA R N , et al. Copy number variation in the porcine genome inferred from a 60 k SNP BeadChip[J]. BMC Genomics, 2010, 11, 593.
doi: 10.1186/1471-2164-11-593 |
16 |
CHEN C Y , QIAO R M , WEI R X , et al. A comprehensive survey of copy number variation in 18 diverse pig populations and identification of candidate copy number variable genes associated with complex traits[J]. BMC Genomics, 2012, 13, 733.
doi: 10.1186/1471-2164-13-733 |
17 |
WANG L G , XU L Y , LIU X , et al. Copy number variation-based genome wide association study reveals additional variants contributing to meat quality in swine[J]. Sci Rep, 2015, 5, 12535.
doi: 10.1038/srep12535 |
18 |
QIAN R , XIE F , ZHANG W , et al. Genome-wide detection of CNV regions between Anqing six-end-white and Duroc pigs[J]. Mol Cytogenet, 2023, 16 (1): 12.
doi: 10.1186/s13039-023-00646-0 |
19 |
REVILLA M , PUIG-OLIVERAS A , CASTELLÓ A , et al. A global analysis of CNVs in swine using whole genome sequence data and association analysis with fatty acid composition and growth traits[J]. PLoS One, 2017, 12 (5): e0177014.
doi: 10.1371/journal.pone.0177014 |
20 |
王明宇, 张晨, 叶建伟, 等. 雏鹰黑猪血液生理指标与肉质性状及屠宰性能间的相关性分析[J]. 家畜生态学报, 2018, 39 (12): 38- 43.
doi: 10.3969/j.issn.1673-1182.2018.12.007 |
WANG M Y , ZHANG C , YE J W , et al. Correlation analysis between blood physiological indexes and meat ouality traits and slaughter performance of chuying black pigs[J]. Acta Ecologiae Animalis Domastici, 2018, 39 (12): 38- 43.
doi: 10.3969/j.issn.1673-1182.2018.12.007 |
|
21 | 薛亚辉, 王明宇, 张晨, 等. 雏鹰黑猪与确山黑猪血液生理指标及其与生产性能的相关性分析[J]. 河南农业大学学报, 2019, 53 (6): 884- 890. |
XUE Y H , WANG M Y , ZHANG C , et al. Correlation between blood physiological indexes and production performance in Chuying Black Pig and Queshan Black Pig[J]. Journal of Henan Agricultural University, 2019, 53 (6): 884- 890. | |
22 | OGAWA S , YAZAKI N , OHNISHI C , et al. Maternal effect on body measurement and meat production traits in purebred Duroc pigs[J]. J Anim Breed Genet, 2021, 138 (2): 237- 245. |
23 |
XUE Y , LI C , DUAN D , et al. Genome-wide association studies for growth-related traits in a crossbreed pig population[J]. Anim Genet, 2021, 52 (2): 217- 222.
doi: 10.1111/age.13032 |
24 |
WU Z Y , DOU T F , BAI L Y , et al. Genomic prediction and genome-wide association studies for additive and dominance effects for body composition traits using 50 K and imputed high-density SNP genotypes in Yunong-black pigs[J]. J Anim Breed Genet, 2024, 141 (2): 124- 137.
doi: 10.1111/jbg.12830 |
25 |
WANG K , LI M Y , HADLEY D , et al. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data[J]. Genome Res, 2007, 17 (11): 1665- 1674.
doi: 10.1101/gr.6861907 |
26 |
ZHOU J H , LIU L Y , LOPDELL T J , et al. HandyCNV: standardized summary, annotation, comparison, and visualization of copy number variant, copy number variation region, and runs of homozygosity[J]. Front Genet, 2021, 12, 731355.
doi: 10.3389/fgene.2021.731355 |
27 |
YANG Q , CUI J , CHAZARO I , et al. Power and type Ⅰ error rate of false discovery rate approaches in genome-wide association studies[J]. BMC Genet, 2005, 6 (S1): S134.
doi: 10.1186/1471-2156-6-S1-S134 |
28 | HU Z L , PARK C A , REECY J M . Bringing the animal QTLdb and CorrDB into the future: meeting new challenges and providing updated services[J]. Nucleic Acids Res, 2022, 50 (D1): D956- D961. |
29 |
TENG J Y , GAO Y H , YIN H W , et al. A compendium of genetic regulatory effects across pig tissues[J]. Nat Genet, 2024, 56 (1): 112- 123.
doi: 10.1038/s41588-023-01585-7 |
30 | ABDELLAOUI A , YENGO L , VERWEIJ K J H , et al. 15 years of GWAS discovery: realizing the promise[J]. Am J Hum Genet, 2023, 110 (2): 179- 194. |
31 | MANOLIO T A , COLLINS F S , COX N J , et al. Finding the missing heritability of complex diseases[J]. Nature, 2009, 461 (7265): 747- 753. |
32 | MAHER B . Personal genomes: the case of the missing heritability[J]. Nature, 2008, 456 (7218): 18- 21. |
33 | SALEHIAN-DEHKORDI H , XU Y X , XU S S , et al. Genome-wide detection of copy number variations and their association with distinct phenotypes in the world 's sheep[J]. Front Genet, 2021, 12, 670582. |
34 | TAGHIZADEH S , GHOLIZADEH M , RAHIMI-MIANJI G , et al. Genome-wide identification of copy number variation and association with fat deposition in thin and fat-tailed sheep breeds[J]. Sci Rep, 2022, 12 (1): 8834. |
35 | XU L Y , YANG L , WANG L , et al. Probe-based association analysis identifies several deletions associated with average daily gain in beef cattle[J]. BMC Genomics, 2019, 20 (1): 31. |
36 | SHI H B , LI T T , SU M C , et al. Identification of copy number variation in Tibetan sheep using whole genome resequencing reveals evidence of genomic selection[J]. BMC Genomics, 2023, 24 (1): 555. |
37 | DING R R , ZHUANG Z W , QIU Y B , et al. Identify known and novel candidate genes associated with backfat thickness in Duroc pigs by large-scale genome-wide association analysis[J]. J Anim Sci, 2022, 100 (2): skac012. |
38 | LEE G J , ARCHIBALD A L , GARTH G B , et al. Detection of quantitative trait loci for locomotion and osteochondrosis-related traits in Large White×Meishan pigs[J]. Anim Sci, 2003, 76 (2): 155- 165. |
39 | CASSADY J P , JOHNSON R K , POMP D , et al. Identification of quantitative trait loci affecting reproduction in pigs[J]. J Anim Sci, 2001, 79 (3): 623- 633. |
40 | HOWARD J T , JIAO S H , TIEZZI F , et al. Genome-wide association study on legendre random regression coefficients for the growth and feed intake trajectory on Duroc Boars[J]. BMC Genet, 2015, 16, 59. |
41 | TRIBOUT T , IANNUCCELLI N , DRUET T , et al. Detection of quantitative trait loci for reproduction and production traits in Large White and French Landrace pig populations[J]. Genet Sel Evol, 2008, 40 (1): 61- 78. |
42 | CHEREL P , PIRES J , GLÉNISSON J , et al. Joint analysis of quantitative trait loci and major-effect causative mutations affecting meat quality and carcass composition traits in pigs[J]. BMC Genet, 2011, 12, 76. |
43 | LIU G S , KIM J J , JONAS E , et al. Combined line-cross and half-sib QTL analysis in Duroc-Pietrain population[J]. Mamm Genome, 2008, 19 (6): 429- 438. |
44 | WON S , JUNG J , PARK E , et al. Identification of genes related to intramuscular fat content of pigs using genome-wide association study[J]. Asian-Australas J Anim Sci, 2018, 31 (2): 157- 162. |
45 | KUO I H , CARPENTER-MENDINI A , YOSHIDA T , et al. Activation of epidermal toll-like receptor 2 enhances tight junction function: implications for atopic dermatitis and skin barrier repair[J]. J Invest Dermatol, 2013, 133 (4): 988- 998. |
46 | LIU X K , BING Z T , WU J R , et al. Integrative gene expression profiling analysis to investigate potential prognostic biomarkers for colorectal cancer[J]. Med Sci Monit, 2020, 26, e918906. |
47 | YANG H J , LIU H , LIN H C , et al. Association of a novel seven-gene expression signature with the disease prognosis in colon cancer patients[J]. Aging (Albany NY), 2019, 11 (19): 8710- 8727. |
[1] | 康佳威, 黄宣凯, 王志鹏, 张爱珍, 孟芳荣, 盖鹏, 包军付, 孙可心, 宋少康, 孙攀, 陈一川, 张蕾, 高圣玥, 常铭航. 大白猪生长、繁殖和体尺性状遗传参数估计[J]. 畜牧兽医学报, 2024, 55(5): 1936-1944. |
[2] | 彭佩雅, 陈钰焓, 杨龙, 王铭, 赵芮葶, 何俊, 印遇龙, 刘梅. 家畜基因组拷贝数变异研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1356-1369. |
[3] | 徐东辉, 徐宇辉, 李瑞哲, 成海建, 马志杰. 牦牛基因组拷贝数变异研究进展[J]. 畜牧兽医学报, 2024, 55(3): 933-943. |
[4] | 林燕, 黄敏, 李秀金, 张续勐, 黄运茂, 田允波, 伍仲平. 利用全基因组重测序数据检测8个鸭品种基因组拷贝数变异[J]. 畜牧兽医学报, 2023, 54(9): 3700-3709. |
[5] | 张笑科, 廖伟莉, 陈信佑, 李婷婷, 袁晓龙, 李加琪, 黄翔, 张豪. 杜洛克猪生长性状全基因组关联分析及候选基因鉴定[J]. 畜牧兽医学报, 2023, 54(5): 1868-1876. |
[6] | 毕亚珍, 尚明玉, 胡文萍, 张莉. 绵羊生长性状间的相关和回归分析及TRHDE基因多态性与生长性状的关联分析[J]. 畜牧兽医学报, 2023, 54(4): 1415-1428. |
[7] | 贺婕妤, 王斌虎, 廖柱, 谢红涛, 易国强, 刘毓文, 敖红, 唐中林. 长白和大白猪主要生长性状的遗传参数估计[J]. 畜牧兽医学报, 2021, 52(8): 2115-2123. |
[8] | 邱恒清, 肖石军, 郭源梅. 利用猪1.4M高密度SNP芯片检测巴马香猪全基因组拷贝数变异[J]. 畜牧兽医学报, 2020, 51(9): 2079-2088. |
[9] | 欧阳峰正, 王立刚, 岳静伟, 颜华, 张龙超, 侯欣华, 刘欣, 王立贤. 拷贝数变异全基因组关联分析及数量性状基因座定位联合鉴定猪体高性状候选基因[J]. 畜牧兽医学报, 2020, 51(7): 1515-1524. |
[10] | 吕世杰, 陈付英, 金磊, 张子敬, 朱肖亭, 施巧婷, 辛晓玲, 楚秋霞, 柏中林, 王二耀, 徐照学. 利用简化基因组测序筛选安格斯牛生长相关的受选择基因[J]. 畜牧兽医学报, 2020, 51(4): 713-721. |
[11] | 张易, 白皓, 毕瑜林, 路奥, 黄艳丽, 陈国宏, 常国斌. 拷贝数变异在家禽育种中的研究进展[J]. 畜牧兽医学报, 2020, 51(11): 2633-2640. |
[12] | 侯浩宾, 李海静, 杨莉, 张新浩, 石田培, 王欣悦, 赵志达, 张莉. 德州驴NCAPG-DCAF16基因区域多态性与生长性状的关联分析[J]. 畜牧兽医学报, 2019, 50(2): 302-313. |
[13] | 王立刚, 张跃博, 颜华, 张龙超, 侯欣华, 刘欣, 王立贤. 拷贝数变异全基因组关联鉴定猪骨率性状候选基因[J]. 畜牧兽医学报, 2019, 50(11): 2208-2214. |
[14] | 裴生伟, 王丽, 曹学涛, 李万宏, 李发弟, 乐祥鹏. 牛全基因组拷贝数变异研究进展[J]. 畜牧兽医学报, 2018, 49(5): 871-878. |
[15] | 安清明, 周辉通, 刘秀, 李少斌, 罗玉柱, Jon G Hickford. ADIPOQ基因单体型与不同性别绵羊生长性状的关联分析[J]. 畜牧兽医学报, 2018, 49(4): 825-832. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||