[1] ZENG M, WANG B H, LIU L, et al. Genome-wide association study identifies 12 new genetic loci associated with growth traits in pigs[J]. J Integr Agric, 2024, 23(1):217-227. [2] GUO Y M, HUANG Y X, HOU L, et al. Genome-wide detection of genetic markers associated with growth and fatness in four pig populations using four approaches[J]. Genet Sel Evol, 2017, 49(1):21. [3] 窦腾飞,吴姿仪,白利瑶, 等. 全基因组关联分析鉴定大白猪生长性状遗传变异及候选基因[J]. 中国畜牧杂志, 2023, 59(8):264-272. DOU T F, WU Z Y, BAI L Y, et al. Genome-wide association analysis identifies genetic variants and candidate genes for growth traits in Large White pigs[J]. Chinese Journal of Animal Science, 2023, 59(8):264-272. (in Chinese) [4] TANG Z, XU J, YIN L, et al. Genome-wide association study reveals candidate genes for growth relevant traits in pigs[J]. Front Genet, 2019, 10:302. [5] RUAN D L, ZHUANG Z W, DING R R, et al. Weighted single-step gwas identified candidate genes associated with growth traits in a Duroc pig population[J]. Genes (Basel), 2021, 12(1):117. [6] WANG K J, LIU Y F, XU Q, et al. A post-GWAS confirming GPAT3 gene associated with pig growth and a significant SNP influencing its promoter activity[J]. Anim Genet, 2017, 48(4):478-482. [7] KORTE A, FARLOW A. The advantages and limitations of trait analysis with GWAS: a review[J]. Plant Methods, 2013, 9:29. [8] ZHOU P, YIN C, WANG Y W, et al. Genomic association analysis of growth and backfat traits in Large White Pigs[J]. Genes (Basel), 2023, 14(6):1258. [9] JUNG J H, LEE S M, OH S H. A genome-wide association study on growth traits of Korean commercial pig breeds using Bayesian methods[J]. Anim Biosci, 2024, 37(5):807-816. [10] XU P, LI D S, WU Z P, et al. An imputation-based genome-wide association study for growth and fatness traits in Sujiang pigs[J]. Animal, 2022, 16(8):100591. [11] QIAO J K, LI K B, MIAO N, et al. Additive and dominance genome-wide association studies reveal the genetic basis of heterosis related to growth traits of Duhua Hybrid Pigs[J]. Animals (Basel), 2024, 14(13):1944. [12] PURCELL S, NEALE B, TODD-BROWN K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses[J]. Am J Hum Genet, 2007, 81(3):559-575. [13] YANG J, LEE S H, GODDARD M E, et al. GCTA: a tool for genome-wide complex trait analysis[J]. Am J Hum Genet, 2011, 88(1):76-82. [14] ZHOU X, STEPHENS M. Genome-wide efficient mixed-model analysis for association studies[J]. Nat Genet, 2012, 44(7):821-824. [15] YU J M, PRESSOIR G, BRIGGS W H, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness[J]. Nat Genet, 2006, 38(2):203-208. [16] NICODEMUS K K, LIU W L, CHASE G A, et al. Comparison of type I error for multiple test corrections in large single-nucleotide polymorphism studies using principal components versus haplotype blocking algorithms[J]. BMC Genet, 2005, 6(S1):S78. [17] 尹 剑. 大白猪生长和繁殖性状的全基因组关联分析[D]. 广州:华南农业大学, 2020. YIN J. Genome-wide association analysis of growth and reproductive traits in Large White pigs[D]. Guangzhou: South China Agricultural University, 2020. (in Chinese) [18] CHO K H, KIM M J, JEON G J, et al. Association of genetic variants for FABP3 gene with back fat thickness and intramuscular fat content in pig[J]. Mol Biol Rep, 2011, 38(3):2161-2166. [19] 叶 健,胡晓湘,边 成, 等. 大白猪主要生长性状的遗传参数估计及育种中存在问题的探讨[J]. 华南农业大学学报, 2017, 38(1):1-4. YE J, HU X X, BIAN C, et al. Estimation of genetic parameters for major growth traits in Large White pigs and discussion of breeding issues[J]. Journal of South China Agricultural University, 2017, 38(1):1-4. (in Chinese) [20] 黄 叶. 大白猪胴体性状全基因组关联分析及遗传参数估计[D]. 广州:华南农业大学, 2020. HUANG Y. Genome-wide association analysis and estimation of genetic parameters for carcass traits in Large White pigs[D]. Guangzhou: South China Agricultural University, 2020. (in Chinese) [21] 张 蕾. 种猪繁殖与生长性状的遗传参数估计及影响因素分析[D].杨凌:西北农林科技大学,2021. ZHANG L. Estimation of genetic parameters and analysis of factors influencing reproduction and growth traits in breeding pigs[D]. Yangling: Northwest A&F University, 2021. (in Chinese) [22] DONG L S, TAN C, CAI G Y, et al. Estimates of variance components and heritability using different animal models for growth, backfat, litter size, and healthy birth ratio in Large White pigs[J]. Can J Anim Sci, 2019, 100(2):330-336. [23] 曹建新,齐莹莹,王钰龙, 等. 基于多性状动物模型估计大白猪、长白猪生长性状的遗传参数[J]. 畜牧与兽医, 2017, 49(11):154-156. CAO J X, QI Y Y, WANG Y L, et al. Estimation of genetic parameters for growth traits in large white and long white pigs based on a multi-trait animal model[J]. Journal of Animal Science and Veterinary Medicine, 2017, 49(11):154-156. (in Chinese) [24] 许 迪,颜 港,张 帅, 等. 大白猪生长性状影响因素分析及遗传参数估计[J]. 中国畜牧兽医, 2024, 51(1):193-202. XU D, YAN G, ZHANG S, et al. Analysis of factors influencing growth traits and estimation of genetic parameters in Large White pigs[J]. Chinese Journal of Animal Science and Veterinary Medicine, 2024, 51(1):193-202. (in Chinese) [25] ORENGE J S, ILATSIA E D, KOSGEY I S, et al. Genetic and phenotypic parameters and annual trends for growth and fertility traits of Charolais and Hereford beef cattle breeds in Kenya[J]. Trop Anim Health Prod, 2009, 41(5):767-774. [26] 李 聪,段栋栋,李梦雨, 等. 豫农黑猪体尺性状遗传参数估计的模型研究[J]. 河南农业大学学报, 2022, 56(1):88-95. LI C, DUAN D D, LI M Y, et al. A modeling study on the estimation of genetic parameters of body size traits in Yunong black pigs[J]. Journal of Henan Agricultural University, 2022, 56(1):88-95. (in Chinese) [27] XIE Y, SHI X, SHENG K, et al. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review)[J]. Mol Med Rep, 2019, 19(2):783-791. [28] 孙冠聪,焦 丹,谢忠奎, 等. PI3K/AKT通路在动物葡萄糖代谢中的研究进展[J]. 生命科学, 2021, 33(5):653-666. SUN G C, JIAO D, XIE Z K, et al. Research advances on the PI3K/AKT pathway in animal glucose metabolism[J]. Chinese Bulletin of Life Sciences, 2021, 33(5):653-666. (in Chinese) [29] KOREN S, DIPILATO L M, EMMETT M J, et al. The role of mouse Akt2 in insulin-dependent suppression of adipocyte lipolysis in vivo[J]. Diabetologia, 2015, 58(5):1063-1070. [30] HUANG X, LIU G, GUO J, et al. The PI3K/AKT pathway in obesity and type 2 diabetes[J]. Int J Biol Sci, 2018, 14(11):1483-1496. [31] KARADOǦAN A H, ARIKOGLU H, GÖKTüRK F, et al. PIK3R1 gene polymorphisms are associated with type 2 diabetes and related features in the Turkish population[J]. Adv Clin Exp Med, 2018, 27(7):921-927. [32] KIM J H, CHOI B H, LIM H T, et al. Characterization of phosphoinositide-3-kinase, class 3 (PIK3C3) gene and association tests with quantitative traits in pigs[J]. Asian-Australas J Anim Sci, 2005, 18(12):1701-1707. [33] 邢月腾. 绿原酸对宁乡猪肉质和脂肪代谢的影响[D]. 长沙:湖南农业大学, 2020. XING Y T. Effect of chlorogenic acid on meat quality and fat metabolism in Ningxiang pigs[D]. Changsha: Hunan Agricultural University, 2020. (in Chinese) [34] ZHANG J, ZHANG Y, GONG H, et al. Genetic mapping using 1.4M SNP array refined loci for fatty acid composition traits in Chinese Erhualian and Bamaxiang pigs[J]. J Anim Breed Genet, 2017, 134(6):472-483. [35] QIN Z, WANG P, CHEN W, et al. Hepatic ELOVL3 is dispensable for lipid metabolism in mice[J]. Biochem Biophys Res Commun, 2023, 658:128-135. [36] 徐钰芳,孙 洁,韩 琪, 等. 鸡Elovl2基因组织表达谱及脂代谢功能研究[J]. 中国家禽, 2022, 44(3):9-16. XU Y F, SUN J, HAN Q, et al. Tissue expression profile and lipid metabolism function of the Elovl2 gene in chickens[J]. Chinese Poultry Science, 2022, 44(3):9-16. (in Chinese) [37] WU L, LI Z, GAO N, et al. Interferon-α could induce liver steatosis to promote HBsAg loss by increasing triglyceride level[J]. Heliyon, 2024, 10(12):e32730. [38] 岑 路,岑伟建,刘键强, 等. 猪α-干扰素临床促仔猪生长及疾病预防试验[J]. 中国畜牧兽医, 2010, 37(2):141-143. CEN L, CEN W J, LIU J Q, et al. Clinical trial of porcine α-interferon in promoting piglet growth and disease prevention[J]. Chinese Journal of Animal Science and Veterinary Medicine, 2010, 37(2):141-143. (in Chinese) [39] 郭思武,刘玉芳,储明星. 绵羊HERC1和ALDH6A1多态性与胴体性状的关联分析[J]. 特产研究, 2022, 44(3):18-26. GUO S W, LIU Y F, CHU M X. Association analysis of polymorphisms in HERC1 and ALDH6A1 genes with carcass traits in sheep[J]. Special Product Research, 2022, 44(3):18-26. (in Chinese) [40] SU G, JU K, XU Y, et al. Structural and biochemical basis of methylmalonate semialdehyde dehydrogenase ALDH6A1[J]. Med Plus, 2024, 1(1):100008. |