

畜牧兽医学报 ›› 2026, Vol. 57 ›› Issue (1): 181-193.doi: 10.11843/j.issn.0366-6964.2026.01.016
张刘1,2(
), 李倩2, 赵拴平2, 金海2, 李庆岗2, 章会斌2, 杜欣怡2, 金四华3, 朱勇4, 赵克勤5, 徐磊2(
), 王淑娟1(
)
收稿日期:2025-05-14
出版日期:2026-01-23
发布日期:2026-01-26
通讯作者:
徐磊,王淑娟
E-mail:zhangliu334455@163.com;xuleirock@163.com;wangshujuan2012@hotmail.com
作者简介:张刘,硕士生,主要从事动物遗传育种与繁殖研究,E-mail:zhangliu334455@163.com
基金资助:
ZHANG Liu1,2(
), LI Qian2, ZHAO Shuanping2, JIN Hai2, LI Qinggang2, ZHANG Huibin2, DU Xinyi2, JIN Sihua3, ZHU Yong4, ZHAO Keqin5, XU Lei2(
), WANG Shujuan1(
)
Received:2025-05-14
Online:2026-01-23
Published:2026-01-26
Contact:
XU Lei, WANG Shujuan
E-mail:zhangliu334455@163.com;xuleirock@163.com;wangshujuan2012@hotmail.com
摘要:
旨在鉴定与大别山牛体重和体尺性状相关的分子标记位点与候选基因,以深入探究其遗传机制。本研究选取30~36月龄的515头健康大别山牛开展体重、十字部高、体斜长、胸围、腹围、管围、坐骨端宽及腰角宽8个性状指标表型测定。基于纽勤100K芯片对515头大别山牛进行基因分型,利用混合线性模型(mixed linear model,MLM)开展全基因组关联分析(genome-wide association study,GWAS)。结果发现44个SNPs位点与体重和体尺性状显著相关,注释到426个候选基因。其中,重点关注了6个与肌肉发育、软骨生成及骨代谢过程相关的候选基因(WFIKKN2、MMP2、MATN1、PUM1、VKORC1和VKORC1L1)。GO和KEGG功能富集分析进一步表明,VKORC1和VKORC1L1基因参与维生素K代谢等关键生物学过程,有待进一步挖掘。综上,本研究结果可为大别山牛品种改良提供明确的分子靶点和重要参考。
中图分类号:
张刘, 李倩, 赵拴平, 金海, 李庆岗, 章会斌, 杜欣怡, 金四华, 朱勇, 赵克勤, 徐磊, 王淑娟. 全基因组关联分析筛选大别山牛体重体尺性状相关分子标记[J]. 畜牧兽医学报, 2026, 57(1): 181-193.
ZHANG Liu, LI Qian, ZHAO Shuanping, JIN Hai, LI Qinggang, ZHANG Huibin, DU Xinyi, JIN Sihua, ZHU Yong, ZHAO Keqin, XU Lei, WANG Shujuan. Identification of Molecular Markers Associated with Body Weight and Size Traits through Genome-Wide Association Study in Dabieshan Cattle[J]. Acta Veterinaria et Zootechnica Sinica, 2026, 57(1): 181-193.
表1
体重体尺性状统计"
表型 Phenotype | 样本量 Number | 平均值 Mean | 标准差 SD | 最大值 Max | 最小值 Min | 变异系数/% CV |
|---|---|---|---|---|---|---|
| 体重/kg Body weight | 341 | 290.31 | 53.95 | 445 | 168 | 18.58 |
| 十字部高/cm Withers height | 488 | 113.87 | 6.42 | 132.5 | 95 | 5.64 |
| 体斜长/cm Body slanting length | 493 | 128.59 | 10.00 | 158 | 100 | 7.78 |
| 胸围/cm Chest circumference | 487 | 159.36 | 12.85 | 197 | 122 | 8.07 |
| 腹围/cm Abdominal circumference | 488 | 188.67 | 16.61 | 236 | 147 | 8.80 |
| 管围/cm Cannon bone circumference | 321 | 16.12 | 1.15 | 20 | 13 | 7.15 |
| 坐骨宽/cm Hucklebone width | 488 | 17.48 | 3.73 | 29 | 10 | 21.31 |
| 腰角宽/cm Hip width | 491 | 37.96 | 4.36 | 49 | 26 | 11.49 |
表2
显著位点相关信息"
表型 Phenotype | 染色体Chromosome | SNP | 位置 Locus | 等位基因 Allele | P值 P-value | 基因 Gene |
|---|---|---|---|---|---|---|
体重 Bodyweight | 25 | 25_32065350 | 32065350 | C/A | 6.06E-06 | |
| 18 | 18_24729491 | 24729491 | G/A | 7.04E-06 | CES5A、BREH1、NUP93、SLC12A3、HERPUD1、NLRC5、PSME3IP1、RSPRY1、AMFR、GNAO1、CPNE2 | |
十字部高 Withersheight | 20 | 20_48820669 | 48820669 | A/G | 3.61E-06 | CDH10 |
| 20 | 20_48932728 | 48932728 | G/A | 3.92E-06 | CDH10 | |
体斜长 Bodyslantinglength | 10 | 10_36957819 | 36957819 | A/G | 3.39E-09 | ITPKA、U6、DLL4、CHAC1、CHP1、OIP5、NUSAP1、RTF1、RPAP1、MAPKBP1、PLA2G4B、SPTBN5、PLA2G4E、INO80、NDUFAF1、TYRO3、MGA、JMJD7、EHD4、EXD1 |
| 21 | 21_42348918 | 42348918 | A/G | 7.89E-07 | GPR33、U6、Vault、G2E3、COCH、HECTD1、HEATR5A、ARHGAP5、SCFD1、STRN3、AP4S1、NUBPL、AKAP6 | |
| 12 | 12_45904326 | 45904326 | T/A | 1.42E-06 | DACH1 | |
| 14 | 14_38755533 | 38755533 | G/A | 1.59E-06 | CRISPLD1、HNF4G | |
| 1 | 1_139763834 | 139763834 | A/C | 2.02E-06 | U6、B3GALT5、HMGN1、GET1、LCA5L、BRWD1、SH3BGR、IGSF5、PCP4、DSCAM | |
| 20 | 20_16951836 | 16951836 | T/A | 7.62E-06 | U6、DIMT1、IPO11、KIF2A | |
胸围 Chestcircum-ference | 22 | 22_19495134 | 19495134 | G/A | 8.79E-10 | GRM7 |
| 13 | 13_33911044 | 33911044 | A/G | 4.62E-09 | ARHGAP12、ZEB1、ZNF438 | |
| 14 | 14_14274197 | 14274197 | A/G | 1.62E-08 | LRATD2、U6 | |
| 16 | 16_51927028 | 51927028 | C/A | 1.93E-08 | RNF223、ISG15、HES4、NOC2L、TMEM82、U6、TTLL10、AGRN、PERM1、SAMD11、ZBTB17、FBLIM1、SLC25A34、PLEKHM2、AGMAT、DNAJC16、CASP9、CTRC、EFHD2、KAZN、KLHL17、SPEN、CELA2A、FHAD1、TMEM51、C16H1orf159 | |
| 16 | 16_51949929 | 51949929 | G/A | 3.73E-08 | RNF223、ISG15、HES4、NOC2L、TMEM82、U6、TTLL10、AGRN、PERM1、SAMD11、ZBTB17、FBLIM1、SLC25A34、PLEKHM2、AGMAT、DNAJC16、CASP9、CTRC、EFHD2、KAZN、KLHL17、SPEN、CELA2A、FHAD1、TMEM51、C16H1orf159 | |
| 6 | 6_58539931 | 58539931 | C/A | 1.59E-07 | RPL9、TLR10、FAM114A1、WDR19、KLB、LIAS、SMIM14、UBE2K、TLR6、TMEM156、KLHL5、RFC1、UGDH、PDS5A | |
| 14 | 14_13955770 | 13955770 | A/G | 2.69E-07 | LRATD2、U6 | |
| 10 | 10_94086276 | 94086276 | A/G | 2.83E-07 | WDR36 | |
| 2 | 2_37903309 | 37903309 | G/A | 6.46E-07 | U12、U6、DAPL1、UPP2、CCDC148、PKP4 | |
| 6 | 6_86551834 | 86551834 | A/G | 1.62E-06 | UTP3、GRSF1、MOB1B、DCK、GC、RUFY3、SLC4A4 | |
| 13 | 13_34005489 | 34005489 | C/A | 1.67E-06 | ARHGAP12、ZEB1、ZNF438 | |
| 19 | 19_16265564 | 16265564 | G/A | 1.81E-06 | CCL1、CCL8、CCL11、CCL2、U6、U4、ASIC2 | |
| 16 | 16_41118210 | 41118210 | A/G | 2.53E-06 | TNFSF18、SNORA59A、TNFSF4、AADACL4、TNFRSF1B、TNFRSF8、DHRS3、VPS13D | |
| 16 | 16_51796918 | 51796918 | G/A | 3.59E-06 | RNF223、ISG15、HES4、NOC2L、TMEM82、UTTLL10、AGRN、PERM1、SAMD11、ZBTB17、FBLIM1、SLC25A34、PLEKHM2、AGMAT、DNAJC16、CASP9、CTRC、EFHD2、KAZN、KLHL17、SPEN、CELA2A、FHAD1、TMEM51、C16H1orf159 | |
| 29 | 29_1207110 | 1207110 | A/G | 3.99E-06 | SNORD5、SNORA8、SNORD6、SNORA25、HEPHL1、VSTM5、MED17、C29H11orf54、TAF1D、CEP295、SMCO4、DEUP1、SLC36A4 | |
| 25 | 25_33092922 | 33092922 | G/A | 4.03E-06 | RFC2、TMEM270、CLDN、CLDN3、ABHD11、DNAJC30、VPS37D、TBL2、7SK、TRIM50、NSUN5、U6、CCL26、CCL24、TMEM120A、HSPB1、RCC1L、GTF2IRD2、GTF2I、GTF2IRD1、CLIP2、LAT2、EIF4H、LIMK1、METTL27、BUD23、MLXIPL、BCL7B、FZD9、FKBP6、RHBDD2、STYXL1、MDH2、SRRM3、YWHAG、SSC4D、NCF1、ELN、BAZ1B、HIP1、POR、STX1A | |
| 10 | 10_95545955 | 95545955 | G/A | 4.07E-06 | ||
| 11 | 11_12841755 | 12841755 | A/C | 4.95E-06 | U6、CYP26B1、EXOC6B、DYSF、ZNF638、PAIP2B | |
| 15 | 15_50327842 | 50327842 | G/A | 5.02E-06 | OR52E1、OR52J3D、OR51P1、OR51L1C、OR51P1B、OR51L1B、U6、OR51H9B、OR51H5、OR51S1B、OR51A8、OR52R1E、OR51F1B、OR51F5C、OR51F5B、OR51F23D、OR51E2、OR51A25、OR51A57、OR51E1、OR51D1、OR52I1B、OR52I1、OR52I11、OR52M2、OR52K1、OR52M1、OR52P2、OR51R1、OR52B3、OR52B4C、OR52B4K、OR51G2、TRIM68、TRIM68、OR51A49 | |
| 21 | 21_41411828 | 41411828 | G/A | 6.78E-06 | SNORA62、GPR33、U6、Vault、G2E3、COCH、HECTD1、HEATR5A、ARHGAP5、ARHGAP5、STRN3、AP4S1、NUBPL、AKAP6 | |
| 10 | 10_102180727 | 102180727 | A/G | 7.45E-06 | PSMC1、TDP1、KCNK13、NRDE2、CALM1、TTC7B、RPS6KA5 | |
| 22 | 22_33101195 | 33101195 | A/G | 7.92E-06 | TAFA4、TAFA1 | |
| 28 | 28_26472060 | 26472060 | A/G | 8.71E-06 | AIFM2、SAR1A、PPA1、LRRC20、NODAL、PRF1、TBATA、MACROH2A2、EIF4EBP2、PALD1、ADAMTS14、SGPL1、COL13A1 | |
| 11 | 11_12860734 | 12860734 | A/G | 9.50E-06 | U6、CYP26B1、EXOC6B、DYSF、ZNF638、PAIP2B | |
腹围 Abdominalcircum-ference | 18 | 18_23256421 | 23256421 | A/G | 1.43E-11 | IRX5,IRX6,MMP2 |
| 19 | 19_35683912 | 35683912 | A/T | 5.67E-06 | TOB1、WFIKKN2、ANKRD40CL、DHRS7B、TMEM11,KCNJ12、UTP18、NME2、NME1、LUC7L3、ABCC3,CACNA1G,EPN3、MAP2K3、MBTD1、ANKRD40、SPATA20、SPAG9 | |
| 坐骨端宽Hucklebonewidth | 21 | 21_42348918 | 42348918 | A/G | 1.18E-08 | GPR33、U6、G2E3、COCH、HECTD1、HEATR5A、ARHGAP5、SCFD1、STRN3、AP4S1、NUBPL、AKAP6 |
| 1 | 1_139763834 | 139763834 | A/C | 3.57E-07 | U6、B3GALT5、HMGN1、GET1、LCA5L、BRWD1、SH3BGR、IGSF5、PCP4、DSCAM | |
| 5 | 5_28112145 | 28112145 | C/A | 2.16E-06 | SMIM41、ATG101、ANKRD33、FIGNL2、U6、CELA1、DAZAP2、KRT7、KRT80、NR4A1、TAMALIN、ACVR1B、ACVRL1、SCN8A、BIN2、SMAGP、TFCP2、GALNT6、POU6F1、SLC4A8 | |
| 20 | 20_12736223 | 12736223 | T/A | 2.36E-06 | ||
| 25 | 25_33933997 | 33933997 | A/G | 6.93E-06 | RFC2、TMEM270、CLDN4、CLDN3、ABHD11、DNAJC30、VPS37D、TBL2、7SK、TRIM50、NSUN5、U6、CCL2、CCL24、TMEM120、HSPB1、RCC1、GTF2IRD2、GTF2I、GTF2IRD1、CLIP2、LAT2、EIF4H、LIMK1、METTL27、BUD23、MLXIPL、BCL7B、FZD9、FKBP6、RHBDD2、STYXL1、MDH2、SRRM3、YWHAG、SSC4D、NCF1、ELN、BAZ1B、HIP1、POR、STX1A | |
腰角宽 Hip width | 10 | 10_12252829 | 12252829 | A/G | 4.06E-09 | KBTBD13、U5、PTGER2、SPG21、MTFMT、SLC51B、RASL12、PDCD7、CLPX、IGDCC3、DPP8、INTS14、SLC24A1、RAB11A、UBAP1L、PARP16、IGDCC、HACD3、DENND4A |
| 2 | 2_122442807 | 122442807 | G/A | 4.80E-07 | SNORA70、HCRTR1 | |
| 8 | 8_5938128 | 5938128 | G/A | 8.18E-07 | HMGB2、SAP30、HAND2、U6、SCRG1、GALNT7 | |
| 8 | 8_5955286 | 5955286 | G/A | 1.13E-06 | HMGB2、SAP30、HAND2、U6、SCRG1、GALNT7 | |
| 25 | 25_27502658 | 27502658 | A/G | 1.42E-06 | CTF2、ORAI3、HSD3B7、STX4、ZNF646、VKORC1、KAT8、PRSS36、FUS、PYCARD、TRIM72、COX6A2、ARMC5、SLC5A2、AHSP、OR7A53、OR7A153、ZNF713、CCT6A、SUMF2、CHCHD2、NUPR2、ASL、FBXL19、SETD1A、ZNF668、PRSS53、BCKDK、PRSS8、ITGAM、ITGAD、TGFB1I1、SEPTIN14、NIPSNAP2、PSPH、PHKG1、VKORC1L1、PHKG1、STX1B、RUSF1、MRPS17、GUSB | |
| 12 | 12_9967477 | 9967477 | A/G | 1.99E-06 | ||
| 1 | 1_152507074 | 152507074 | G/A | 4.40E-06 | EAF1、COLQ、HACL1、BTD、SH3BP5、METTL6、ANKRD28 | |
| 19 | 19_11684567 | 11684567 | A/G | 8.87E-06 | TBX2、INTS2、TBX4、BRIP1、BCAS3、CCL1 |
| [1] | 赵拴平,金 海,金 磊,等.浅析安徽地区大别山牛饲养管理技术[J].中国牛业科学,2023,49(5):90-92. |
| ZHAO S P,JIN H,JIN L,et al.Analysis of breeding and management techniques for dabie mountain cattle in Anhui Province[J].China Cattle Science,2023,49(5):90-92.(in Chinese) | |
| [2] | 常振华,黄洁萍,徐 苹,等.中国黄牛Y-STRs遗传多样性与起源研究[J].中国牛业科学,2012,38(3):9-13. |
| CHANG Z H,HANG J P,XU P,et al.Genetic diversity and origin of Chinese yellow cattle based on Y-STRs[J].China Cattle Science,2012,38(3):9-13.(in Chinese) | |
| [3] | JIN H,ZHAO S,JIA Y,et al.Estimation of linkage disequilibrium,effective population size,and genetic parameters of phenotypic traits in Dabieshan cattle[J].GENES-BASEL,2022,14(1):107. |
| [4] | 赵拴平,金 海,徐 磊,等.大别山牛PAX3基因多态性及其与生长性状的关联分析[J].西北农林科技大学学报:自然科学版,2021,49(6):8. |
| ZHAO S P,JIN H,XU L,et al.Polymorphism of PAX3 gene and its association withgrowth traits of Dabieshan cattle[J].Journal of Northwest A&F University (Natural Science Edition),2021,49(6):8.(in Chinese) | |
| [5] | 彭 朋,王思伟,李树静,等.河北省西门塔尔牛体重体尺性状遗传参数分析[J].中国牛业科学,2022,48(6):1-4. |
| PENG P,WANG S W,LI S J,et al.Genetic parameters analysis for body weight and body size of Simmental beef cattle in Hebei Province[J].China Cattle Science,2022,48(6):1-4.(in Chinese) | |
| [6] | 佟丽佳,冯小芳,王苏皖,等.安格斯牛18月龄体尺体重性状遗传参数分析[J].中国农业大学学报,2024,29(5):65-73. |
| TONG L J,FENG X F,WANG S W,et al.Analysis of genetic parameters for body size and weight traits in Angus cattle at 18 months of age [J].Journal of China Agricultural University,2024,29(5):65-73.(in Chinese) | |
| [7] | 呙明鹏,孟 源,王宏浩,等.晋南牛不同生长阶段体重和体尺性状遗传参数估计[J].畜牧兽医学报,2023,54(4):1452-1464. |
| GUO M P,MENG Y,WANG H H,et al.Estimation of genetic parameters of body weight and body size traits in Jinnan cattle at different growth stages [J].Acta Veterinaria et Zootechnica Sinica,2023,54(4):1452-1464.(in Chinese) | |
| [8] | ZHANG L,ZHANG S,YUAN M,et al.Genome-wide association studies and runs of homozygosity to identify reproduction-related genes in Yorkshire pig population[J].GENES-BASEL,2023,14(12):2133. |
| [9] | WANG J,LIU J,LEI Q,et al.Elucidation of the genetic determination of body weight and size in Chinese local chicken breeds by large-scale genomic analyses[J].BMC GENET,2024,25(1):296. |
| [10] | AN B,XU L,XIA J,et al.Multiple association analysis of loci and candidate genes that regulate body size at three growth stages in Simmental beef cattle[J].BMC GENET,2020,21(1):32. |
| [11] | 李柯安宁,杜丽丽,安炳星,等.华西牛胴体及原始分割肉块重量性状遗传参数估计与全基因组关联分析[J].畜牧兽医学报,2023,54(9):3664-3676. |
| LI K A N,DU L L,AN B X,et al.Genetic parameter estimation and genome-wide association study for carcass traits and primal cuts weight traits in Huaxi cattle[J].Acta Veterinaria et Zootechnica Sinica,2023,54(9):3664-3676.(in Chinese) | |
| [12] | 李 聪,苏江天,李一丹,等.德州驴体尺性状的全基因组关联分析[J].畜牧兽医学报,2025,56(4):1744-1754. |
| LI C,SU J T,LI Y D,et al.Genome-wide association study of body traits in Dezhou donkey [J].Acta Veterinaria et Zootechnica Sinica,2025,56(4):1744-1754.(in Chinese) | |
| [13] | 李德生,蒋秋斐,封 元,等.安格斯牛十字部高性状全基因组关联分析及PSEN1基因对成肌细胞增殖分化的影响[J].华北农学报,2023,38(5):206-217. |
| LI D S,JIANG Q F,FENG Y,et al.Genome-wide association analysis of Angus cross section height traits and the effect of PSEN1 gene on proliferation and differentiation of myogenic cells[J].Acta Agriculturae Boreali-Sinica,2023,38(5):206-217.(in Chinese) | |
| [14] | ABDALLA I M,HUI J,NAZAR M,et al.Identification of candidate genes and functional pathways associated with body size traits in Chinese Holstein cattle based on GWAS analysis[J].Animals,2023,13(6):992. |
| [15] | PURCELL S,NEALE B,TODD-BROWN K,et al.PLINK:a tool set for whole-genome association and population-based linkage analyses[J].Am J Hum Genet,2007,81(3):559-575. |
| [16] | YANG J,LEE S H,GODDARD M E,et al.GCTA:a tool for genome-wide complex trait analysis[J].Am J Hum Genet,2011,88(1):76-82. |
| [17] | LI C,DUAN D,XUE Y,et al.An association study on imputed whole-genome resequencing from high-throughput sequencing data for body traits in crossbred pigs[J].Anim Genet,2022,53(2):212-219. |
| [18] | REN H,HE X,LU Y,et al.Unveiling the common loci for six body measurement traits in Chinese Wenshan cattle[J].Front Genet,2023,14:1318679. |
| [19] | YU H,YU S,GUO J,et al.Genome-wide association study reveals novel loci associated with body conformation traits in Qinchuan cattle[J].Animals,2023,13(23):3628. |
| [20] | MA Z,CHANG Y,BRITO L F,et al.Multitrait meta-analyses identify potential candidate genes for growth-related traits in Holstein heifers[J].J Dairy Sci,2023,106(12):9055-9070. |
| [21] | WANG J,ZHOU H,FANG Q,et al.Effect of variation in ovine WFIKKN2 on growth traits appears to be gender-dependent[J].Sci Rep,2015,5:12347. |
| [22] | KONG L,YUE Y,LI J,et al.Transcriptomics and metabolomics reveal improved performance of Hu sheep on hybridization with Southdown sheep[J].Food Res Int,2023,173(Pt 1):113240. |
| [23] | MONESTIER O,BLANQUET V.WFIKKN1 and WFIKKN2:"Companion" proteins regulating TGFB activity[J].Cytokine Growth F R,2016,32:75-84. |
| [24] | LEE Y S,LEE S J.Regulation of GDF-11 and myostatin activity by GASP-1 and GASP-2[J].Proc Natl Acad Sci U S A,2013,110(39):E3713-E3722. |
| [25] | BANG L,LING S,BIN F,et al.Pig WFIKKN2 gene used as molecular marking related to carcass trait and use thereof[Z].Huazhong Agricultural University,2009.https://eureka.patsnap.com/patent-CN101586164A. |
| [26] | MIYAZAKI D,NAKAMURA A,FUKUSHIMA K,et al.Matrix metalloproteinase-2 ablation in dystrophin-deficient mdx muscles reduces angiogenesis resulting in impaired growth of regenerated muscle fibers[J].Hum Mol Genet,2011,20(9):1787-1799. |
| [27] | KHERIF S,LAFUMA C,DEHAUPAS M,et al.Expression of matrix metalloproteinases 2 and 9 in regenerating skeletal muscle:a study in experimentally injured and mdx muscles[J].Dev Biol,1999,205(1):158-170. |
| [28] | ZHONG S Z,NUO Y,XIAO Y H,et al.MMP2 promotes osteoblast differentiation and calcification of muscle-derived mesenchymal stem cells by interaction with miR-29b-3p[J].Tissue Cell,2022,76:101807. |
| [29] | WAGENER R,EHLEN H W,KO Y P,et al.The matrilins-adaptor proteins in the extracellular matrix[J].FEBS Lett,2005,579(15):3323-3329. |
| [30] | LI P,FLEISCHHAUER L,NICOLAE C,et al.Mice lacking the matrilin family of extracellular matrix proteins develop mild skeletal abnormalities and are susceptible to age-associated osteoarthritis[J].Int J Mol Sci,2020,21(2):666. |
| [31] | PEI M,LUO J,CHEN Q.Enhancing and maintaining chondrogenesis of synovial fibroblasts by cartilage extracellular matrix protein matrilins[J].Cytokine Growth F R,2008,16(9):1110-1117. |
| [32] | CHIMUSA E R,BEIGHTON P,KUMUTHINI J,et al.Detecting genetic modifiers of spondyloepimetaphyseal dysplasia with joint laxity in the Caucasian Afrikaner community[J].Hum Mol Genet,2019,28(7):1053-1063. |
| [33] | YOON D S,LEE K M,CHOI Y,et al.TLR4 downregulation by the RNA-binding protein PUM1 alleviates cellular aging and osteoarthritis[J].Cell Death Differ,2022,29(7):1364-1378. |
| [34] | TSUGAWA N,SHIRAKI M.Vitamin K nutrition and bone health[J].Nutrients,2020,12(7):1909. |
| [35] | STOCK M,SCHETT G.Vitamin K-dependent proteins in skeletal development and disease[J].Int J Mol Sci,2021,22(17):9328. |
| [36] | ALONSO N,MEINITZER A,FRITZ-PETRIN E,et al.Role of vitamin K in bone and muscle metabolism[J].Calcified Tissue Int,2023,112(2):178-196. |
| [37] | OLDENBURG J,WATZKA M,BEVANS C G.VKORC1 and VKORC1L1:Why do vertebrates have two vitamin K 2,3-epoxide reductases?[J].Nutrients,2015,7(8):6250-6280. |
| [38] | CASPERS M,CZOGALLA K J,LIPHARDT K,et al.Two enzymes catalyze vitamin K 2,3-epoxide reductase activity in mouse:VKORC1 is highly expressed in exocrine tissues while VKORC1L1 is highly expressed in brain[J].Thromb Res,2015,135(5):977-983. |
| [39] | WANG H,ZHANG N,LI L,et al.Menaquinone 4 reduces bone loss in ovariectomized mice through dual regulation of bone remodeling[J].Nutrients,2021,13(8):2570. |
| [40] | VAN SUMMEREN M J,VAN COEVERDEN S C,SCHURGERS L J,et al.Vitamin K status is associated with childhood bone mineral content[J].Br J Nutr,2008,100(4):852-858. |
| [41] | THEUWISSEN E,SMIT E,VERMEER C.The role of vitamin K in soft-tissue calcification[J].Adv Nutr,2012,3(2):166-173. |
| [42] | 赵东祥,王 楷,和晓明,等.文山高峰牛母牛体重与体尺的相关性分析[J].中国牛业科学,2023,49(1):46-51. |
| ZHAO D X,WANG K,HE X M,et al.Correlation analysis between body weight and body size of Wenshan cattle[J].China Cattle Science,2023,49(1):46-51.(in Chinese) | |
| [43] | 李 涛,张 梅,刘建明,等.新疆褐牛体重与体尺指标的相关及回归分析[J].浙江农业学报,2021,33(7):7. |
| LI T,ZHANG M,LIU J M,et al.Correlation and regression analysis on body mass and body size index of Xinjiang brown cattle [J].Journal of Zhejiang Agricultural Sciences,2021,33(7):7.(in Chinese) | |
| [44] | 姚 治,黄永震,张子敬,等.皮南牛体尺体重相关性及主成分分析[J].中国牛业科学,2022,48(5):4. |
| YAO Z,HUANG Y Z,ZHANG Z J,et al.Correlation and principal component analysis of body size and weight of Pinan cattle[J].China Cattle Science,2022,48(5):4.(in Chinese) | |
| [45] | ABDUCH N G,PIRES B V,SOUZA L L,et al.Effect of thermal stress on thermoregulation,hematological and hormonal characteristics of caracu beef cattle[J].Animals-Basel,2022,12(24):3473. |
| [46] | BULCHA G G,DEWO O G,DESTA M A,et al.Indigenous knowledge of farmers in breeding practice and selection criteria of dairy cows at chora and gechi districts of ethiopia:an implication for genetic improvements[J].Vet Med Int,2022,2022:3763724. |
| [47] | NOGALSKI Z,BARANSKI W.Pelvic dimensions and occurrence of dystocia in Black-and-White and Holstein-Friesian heifers[J].Pol J Vet Sci,2023,26(4):687-693. |
| [1] | 李聪, 李娜, 秦旭勇, 高峰, 韩家乐, 赵舒悦, 格明古丽·木哈台null, 党瑞华. 基因组分析揭示现代家马环境适应的遗传基础[J]. 畜牧兽医学报, 2026, 57(1): 194-205. |
| [2] | 王有栋, 曹志平, 李玉茂, 栾鹏, 李辉, 白雪. SNP芯片技术原理及其在鸡遗传育种中的应用[J]. 畜牧兽医学报, 2025, 56(9): 4165-4175. |
| [3] | 白锋, 玛尔孜娅·亚森, 阿米妮古丽·阿不来孜, 滕文, 罗春彦, 纳扎开提·艾尼万尔, 张耘韬, 纪新民, 张艳花. 吐鲁番黑羊体重和体尺性状全基因组关联分析[J]. 畜牧兽医学报, 2025, 56(9): 4315-4327. |
| [4] | 刘莎, 杨彩春, 张晓雨, 陈琼, 刘雄, 陈洪波, 周焕焕, 史良玉. 基于80K SNP芯片的梅花星猪群体遗传结构解析及全基因组连续纯合片段特征研究[J]. 畜牧兽医学报, 2025, 56(8): 3749-3760. |
| [5] | 张嘉良, 黄畅, 杨永林, 杨华, 白文林, 马月辉, 赵倩君. 基于50K液相芯片的中国绵羊群体遗传结构与羊毛性状选择信号分析[J]. 畜牧兽医学报, 2025, 56(7): 3164-3176. |
| [6] | 缪俊杰, 张日泉, 吴厚义, 游新明, 黄奕雯, 黄小英, 郭震洋, 刘建林, 肖卫华, 郭田华, 陈浩, 康冬柳. 全基因组SNPs揭示井冈黑掌鹅种质资源特性与遗传多样性特征[J]. 畜牧兽医学报, 2025, 56(7): 3199-3209. |
| [7] | 武建亮, 苏洋, 毛瑞涵, 周磊, 闫田田, 李智, 刘剑锋. 猪全基因组低密度SNP芯片的设计与效果评价[J]. 畜牧兽医学报, 2025, 56(6): 2733-2740. |
| [8] | 姚博元, 杨志文, 孙亚朋, 杨雅楠, 张雅茹, 王欣荣. 基于RNA-Seq对猪心组织新转录本解析及可变剪接和SNP分析[J]. 畜牧兽医学报, 2025, 56(4): 1664-1675. |
| [9] | 李聪, 苏江天, 李一丹, 王朝飞, 于杰, 雷初朝, 党瑞华. 德州驴体尺性状的全基因组关联分析[J]. 畜牧兽医学报, 2025, 56(4): 1744-1754. |
| [10] | 黄雅妮, 唐熹, 李井泉, 魏嘉诚, 吴珍芳, 李新云, 肖石军, 张志燕. 大规模群体解析猪日增重及达百千克体重日龄的潜在因果基因[J]. 畜牧兽医学报, 2025, 56(3): 1100-1109. |
| [11] | 周泰增, 杨祎挺, 朱悦华, 钱洪喜, 刘一辉, 甘麦邻, 朱砺, 沈林園. 母猪死胎和木乃伊全基因组关联分析[J]. 畜牧兽医学报, 2025, 56(3): 1231-1241. |
| [12] | 杨晓雯, 宁文晴, 周师众, 袁雅琴, 侯雪新, 丁家波. 一种羊种布鲁氏菌复方新诺明耐药株荧光定量PCR检测方法的建立[J]. 畜牧兽医学报, 2025, 56(3): 1465-1472. |
| [13] | 石焱煌, 赵真坚, 陈栋, 崔晟頔, 王俊戈, 陈子旸, 禹世欣, 陈佳苗, 周垚茜, 黄润杰, 唐国庆. 大白猪生长性状的全基因组关联分析[J]. 畜牧兽医学报, 2025, 56(12): 6094-6103. |
| [14] | 宋建, 贺巾锋, 郑伟杰, 刘林, 麻柱, 钱长嵩, 周靖航, 韩博, 张琪, 孙东晓. 自主研发奶牛13K和40K液相SNP芯片的性能验证及在基因组选择中的应用[J]. 畜牧兽医学报, 2025, 56(11): 5502-5511. |
| [15] | 张怡然, 毛楠楠, 王韵龙, 周荣艳, 臧素敏, 谢辉, 王文君, 张维娅. 基于全基因组选择信号和转录组鉴定28日龄乳鸽胸肌率相关关键基因[J]. 畜牧兽医学报, 2025, 56(11): 5531-5544. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||