

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (12): 6104-6115.doi: 10.11843/j.issn.0366-6964.2025.12.015
苏大崴(
), 陈秋崇, 苗洱钰, 张骐镜, 陈哲, 王小龙*(
), 徐坤*(
)
收稿日期:2025-04-29
出版日期:2025-12-23
发布日期:2025-12-24
通讯作者:
王小龙,徐坤
E-mail:2986564988@qq.com;xiaolongwang@nwafu.edu.cn;xukunas@nwafu.edu.cn
作者简介:苏大崴(2001-),男,陕西榆林人,硕士生,主要从事羊分子遗传育种的研究,E-mail: 2986564988@qq.com
基金资助:
SU Dawei(
), CHEN Qiuchong, MIAO Eryu, ZHANG Qijing, CHEN Zhe, WANG Xiaolong*(
), XU Kun*(
)
Received:2025-04-29
Online:2025-12-23
Published:2025-12-24
Contact:
WANG Xiaolong, XU Kun
E-mail:2986564988@qq.com;xiaolongwang@nwafu.edu.cn;xukunas@nwafu.edu.cn
摘要:
旨在以绵羊原代细胞为材料,验证CRISPR/Cas12i系统介导的以ssODN为供体进行HDR精准修复的基因编辑效率,以及5种小分子药物对Indels效率和敲入效率的影响。本研究以两种绵羊原代细胞为试验对象,验证CRISPR/Cas12i系统在25个靶基因位点的基因编辑效率;然后选取绵羊胎儿成纤维细胞的3个靶点(SOCS2-gRNA1、SOCS2-gRNA3和TBXT-gRNA5),绵羊后腿肌细胞的5个靶点(MSTN-gRNA2、MSTN-gRNA5、Myf6-gRNA4、Myf6-gRNA5和MyoG-gRNA4)检测5种小分子药物(SCR7、Nocodazole、RS-1、Vorinostat及Entinostat)对各靶点Indels效率的影响,最后在MSTN-gRNA2靶点检测5种小分子药物对CRISPR/Cas12i系统介导的以ssODN为供体进行HDR精准修复的基因敲入效率的影响。本研究验证了CRISPR/Cas12i系统在两种绵羊原代细胞的25个不同靶点均具有高基因编辑活性,添加小分子药物处理后,SCR7会降低绵羊原代细胞各靶点Indels效率,而RS-1、Entinostat和Vorinostat处理后对各位点Indels效率均有提升效果,Nocodazole对两种细胞作用效果不一致。在添加5种小分子药物处理后,MSTN-gRNA2位点敲入效率均有不同程度提高,其中2 μmol·L-1 Vorinostat和4 μmol·L-1 Entinostat处理组提升效果最高,敲入效率分别为7.67%和7.73%。该试验为CRISPR/Cas12i基因编辑系统的应用与推广提供了借鉴,为创制具有优良性状的基因编辑绵羊提供了新思路,为加速精准分子育种工作提供了技术支撑。
中图分类号:
苏大崴, 陈秋崇, 苗洱钰, 张骐镜, 陈哲, 王小龙, 徐坤. 小分子药物对CRISPR/Cas12i介导的两种绵羊原代细胞基因敲入效率的影响[J]. 畜牧兽医学报, 2025, 56(12): 6104-6115.
SU Dawei, CHEN Qiuchong, MIAO Eryu, ZHANG Qijing, CHEN Zhe, WANG Xiaolong, XU Kun. The Effect of Small Molecule Drugs on Gene Knock-in Efficiency Mediated by the CRISPR/Cas12i System in Primary Ovine Cells[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(12): 6104-6115.
表 1
绵羊原代细胞gRNA靶序列信息"
| 细胞类型Cell type | 靶位点Target site | 靶序列(5′→3′)Target sequence | 方向Strand |
| 绵羊胎儿成纤维细胞 Sheep fetal fibroblasts | SOCS2-gRNA1 | CCATCTTGGTATTCGATGCG | - |
| SOCS2-gRNA2 | GATGCGAAGATTAGTTGGTC | - | |
| SOCS2-gRNA3 | TGGGCCTGTCCGCTTATCCT | - | |
| SOCS2-gRNA4 | GCATCGAATACCAAGATGGG | + | |
| SOCS2-gRNA5 | AGATGTGCAAGGATAAGCGG | + | |
| TBXT-gRNA1 | ACGTACTTCCAGCGGTGGTT | - | |
| TBXT-gRNA2 | CGTCGAGGAAAGCTTTTGCA | - | |
| TBXT-gRNA3 | CCTCGACGCAAAGGAAAGGT | + | |
| TBXT-gRNA4 | GAGAGCTGTTGCGATGCGCG | - | |
| TBXT-gRNA5 | GGGTCCAGGCCGGATACGTT | - | |
| 绵羊后腿肌细胞 Sheep hind leg myoblasts | MSTN-gRNA1 | GAAGACGATGACTACCACGT | + |
| MSTN-gRNA2 | CGTCGTAACGTGGTAGTCAT | - | |
| MSTN-gRNA3 | CGACGGAAACGGTCATTACC | + | |
| MSTN-gRNA4 | GAGGGTAACGACAGCATCGA | - | |
| MSTN-gRNA5 | CCATGCCCACGGAGTGTGAG | + | |
| Myf6-gRNA1 | CGCCGGTCGGTGGGGGCAGA | - | |
| Myf6-gRNA2 | TTGAGCCGCCGCCTCTCGCG | - | |
| Myf6-gRNA3 | ATGGCGCTCCGCAGAATCTC | - | |
| Myf6-gRNA4 | ATTCATCGGCCTCGAGTAGC | + | |
| Myf6-gRNA5 | TGCGGAGCGCCATTAACTAC | + | |
| MyoG-gRNA1 | CGCAGCGCCATCCAGTACAT | + | |
| MyoG-gRNA2 | GAGGCCCTCAAGAGGAGCAC | + | |
| MyoG-gRNA3 | AAGGGGCACGCGAGCCTCAG | - | |
| MyoG-gRNA4 | GGGTTGAGCAGGGTGCTCCT | - | |
| MyoG-gRNA5 | TCTTCAAGGGGCACGCGAGC | - |
表 2
gRNA上下游退火引物序列"
| 靶位点 Target site | 打靶载体上游退火引物(5′→3′) hfCas12Max F-oligo | 打靶载体下游退火引物(5′→3′) hfCas12Max R-oligo |
| SOCS2-gRNA1 | ACACccatcttggtattcgatgcg | AAAAcgcatcgaataccaagatgg |
| SOCS2-gRNA2 | ACACgatgcgaagattagttggtc | AAAAgaccaactaatcttcgcatc |
| SOCS2-gRNA3 | ACACtgggcctgtccgcttatcct | AAAAaggataagcggacaggccca |
| SOCS2-gRNA4 | ACACgcatcgaataccaagatggg | AAAAcccatcttggtattcgatgc |
| SOCS2-gRNA5 | ACACagatgtgcaaggataagcgg | AAAAccgcttatccttgcacatct |
| TBXT-gRNA1 | ACACacgtacttccagcggtggtt | AAAAaaccaccgctggaagtacgt |
| TBXT-gRNA2 | ACACcgtcgaggaaagcttttgca | AAAAtgcaaaagctttcctcgacg |
| TBXT-gRNA3 | ACACcctcgacgcaaaggaaaggt | AAAAacctttcctttgcgtcgagg |
| TBXT-gRNA4 | ACACgagagctgttgcgatgcgcg | AAAAcgcgcatcgcaacagctctc |
| TBXT-gRNA5 | ACACgggtccaggccggatacgtt | AAAAaacgtatccggcctggaccc |
| MSTN-gRNA1 | ACACgaagacgatgactaccacgt | AAAAacgtggtagtcatcgtcttc |
| MSTN-gRNA2 | ACACcgtcgtaacgtggtagtcat | AAAAatgactaccacgttacgacg |
| MSTN-gRNA3 | ACACcgacggaaacggtcattacc | AAAAggtaatgaccgtttccgtcg |
| MSTN-gRNA4 | ACACgagggtaacgacagcatcga | AAAAtcgatgctgtcgttaccctc |
| MSTN-gRNA5 | ACACccatgcccacggagtgtgag | AAAActcacactccgtgggcatgg |
| Myf6-gRNA1 | ACACcgccggtcggtgggggcaga | AAAAtctgcccccaccgaccggcg |
| Myf6-gRNA2 | ACACttgagccgccgcctctcgcg | AAAAcgcgagaggcggcggctcaa |
| Myf6-gRNA3 | ACACatggcgctccgcagaatctc | AAAAgagattctgcggagcgccat |
| Myf6-gRNA4 | ACACattcatcggcctcgagtagc | AAAAgctactcgaggccgatgaat |
| Myf6-gRNA5 | ACACtgcggagcgccattaactac | AAAAgtagttaatggcgctccgca |
| MyoG-gRNA1 | ACACcgcagcgccatccagtacat | AAAAatgtactggatggcgctgcg |
| MyoG-gRNA2 | ACACgaggccctcaagaggagcac | AAAAgtgctcctcttgagggcctc |
| MyoG-gRNA3 | ACACaaggggcacgcgagcctcag | AAAActgaggctcgcgtgcccctt |
| MyoG-gRNA4 | ACACgggttgagcagggtgctcct | AAAAaggagcaccctgctcaaccc |
| MyoG-gRNA5 | ACACtcttcaaggggcacgcgagc | AAAAgctcgcgtgccccttgaaga |
表 3
基因组目标序列扩增引物"
| 靶位点 Target site | 引物F(5′→3′) Primer-F | 引物R(5′→3′) Primer-R | 产物大小/bp Products size |
| SOCS2-gRNA1 | attaaacggacccacattttca | tttacatagctgcattcggaga | 712 |
| SOCS2-gRNA2 | attaaacggacccacattttca | gtcttgttggtaaaggcagtcc | 614 |
| SOCS2-gRNA3 | ggttggtactggggaaatatga | tttacatagctgcattcggaga | 531 |
| SOCS2-gRNA4 | attaaacggacccacattttca | tttacatagctgcattcggaga | 712 |
| SOCS2-gRNA5 | ggttggtactggggaaatatga | tttacatagctgcattcggaga | 531 |
| TBXT-gRNA1 | gatctaggtgagtcctgggaag | acactgagggcttaattgagga | 550 |
| TBXT-gRNA2 | agcccttgtcagcagtaggtta | agacaggctagtccctgagaca | 562 |
| TBXT-gRNA3 | agcccttgtcagcagtaggtta | agacaggctagtccctgagaca | 562 |
| TBXT-gRNA4 | gtggctcgtgggattttagtt | ggcctcatacttggagaaacac | 643 |
| TBXT-gRNA5 | gatctaggtgagtcctgggaaggagcaccg | tgctgaaggagacaggtgccttcatccag | 377 |
| MSTN-gRNA1 | ctgtgtaatgcatgcttgtggagac | gaaacagataatgtagcagctttcagtctc | 465 |
| MSTN-gRNA2 | ctgtgtaatgcatgcttgtggagac | gaaacagataatgtagcagctttcagtctc | 465 |
| MSTN-gRNA3 | ctgtgtaatgcatgcttgtggagac | gaaacagataatgtagcagctttcagtctc | 465 |
| MSTN-gRNA4 | aaaggcagaatcaagcctagtg | acagcgatctactaccatgcct | 534 |
| MSTN-gRNA5 | ctgtgtaatgcatgcttgtggagac | gaaacagataatgtagcagctttcagtctc | 465 |
| Myf6-gRNA1 | tcctctgtatccagggagtgat | cacctaatcagcctatccgttc | 485 |
| Myf6-gRNA2 | tcctctgtatccagggagtgat | cacctaatcagcctatccgttc | 485 |
| Myf6-gRNA3 | tcctctgtatccagggagtgat | cacctaatcagcctatccgttc | 485 |
| Myf6-gRNA4 | agaaagcaatgctcggagccg | aaggattaggcgaagcagggagg | 338 |
| Myf6-gRNA5 | tcctctgtatccagggagtgat | cacctaatcagcctatccgttc | 485 |
| MyoG-gRNA1 | gagacctctccctacttctatcaggaacc | cctttgtcttgtctggaaaggacacgg | 672 |
| MyoG-gRNA2 | gagacctctccctacttctatcaggaacc | cctttgtcttgtctggaaaggacacgg | 672 |
| MyoG-gRNA3 | gagacctctccctacttctatcaggaacc | atcgcgctcctcctggttga | 429 |
| MyoG-gRNA4 | gagacctctccctacttctatcaggaacc | cctttgtcttgtctggaaaggacacgg | 672 |
| MyoG-gRNA5 | gagacctctccctacttctatcaggaacc | atcgcgctcctcctggttga | 429 |
| 1 |
LIEBER M R . The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway[J]. Annu Rev Biochem, 2010, 79, 181- 211.
doi: 10.1146/annurev.biochem.052308.093131 |
| 2 |
CHANG H H Y , PANNUNZIO N R , ADACHI N , et al. Non-homologous DNA end joining and alternative pathways to double-strand break repair[J]. Nat Rev Mol Cell Biol, 2017, 18 (8): 495- 506.
doi: 10.1038/nrm.2017.48 |
| 3 |
SUNG P , KLEIN H . Mechanism of homologous recombination: mediators and helicases take on regulatory functions[J]. Nat Rev Mol Cell Biol, 2006, 7 (10): 739- 750.
doi: 10.1038/nrm2008 |
| 4 |
YAN W X , HUNNEWELL P , ALFONSE L E , et al. Functionally diverse type Ⅴ CRISPR-Cas systems[J]. Science, 2019, 363 (6422): 88- 91.
doi: 10.1126/science.aav7271 |
| 5 |
HARRINGTON L B , MA E , CHEN J S , et al. A scoutRNA is required for some type Ⅴ CRISPR-Cas systems[J]. Mol Cell, 2020, 79 (3): 416- 424.e415.
doi: 10.1016/j.molcel.2020.06.022 |
| 6 |
RAN F A , HSU P D , LIN C Y , et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity[J]. Cell, 2013, 154 (6): 1380- 1389.
doi: 10.1016/j.cell.2013.08.021 |
| 7 |
MAKAROVA K S , WOLF Y I , IRANZO J , et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants[J]. Nat Rev Microbiol, 2020, 18 (2): 67- 83.
doi: 10.1038/s41579-019-0299-x |
| 8 |
ZETSCHE B , GOOTENBERG J S , ABUDAYYEH O O , et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163 (3): 759- 771.
doi: 10.1016/j.cell.2015.09.038 |
| 9 |
GILLMORE J D , GANE E , TAUBEL J , et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis[J]. N Engl J Med, 2021, 385 (6): 493- 502.
doi: 10.1056/NEJMoa2107454 |
| 10 | 陈秋崇, 李尚朴, 苗洱钰, 等. HDACi和RS-1提高CRISPR/Cas12i介导的HDR编辑效率[J]. 农业生物技术学报, 2024, 32 (10): 2306- 2323. |
| CHEN Q C , LI S P , MIAO E Y , et al. HDACi and RS-1 enhance CRISPR/Cas12i-mediated HDR editing efficiency[J]. Journal of Agricultural Biotechnology, 2024, 32 (10): 2306- 2323. | |
| 11 |
RUPP R , SENIN P , SARRY J , et al. A point mutation in suppressor of cytokine signalling 2 (Socs2) increases the susceptibility to inflammation of the mammary gland while associated with higher body weight and size and higher milk production in a sheep model[J]. PLOS Genetics, 2015, 11 (12): e1005629.
doi: 10.1371/journal.pgen.1005629 |
| 12 |
INAGAKI-OHARA K , MAYUZUMI H , KATO S , et al. Enhancement of leptin receptor signaling by SOCS3 deficiency induces development of gastric tumors in mice[J]. Oncogene, 2014, 33 (1): 74- 84.
doi: 10.1038/onc.2012.540 |
| 13 |
LETELLIER E , HAAN S . SOCS2: physiological and pathological functions[J]. Front Biosci (Elite Ed), 2016, 8 (1): 189- 204.
doi: 10.2741/e760 |
| 14 |
DOBIE R , MACRAE V E , PASS C , et al. Suppressor of cytokine signaling 2 (Socs2) deletion protects bone health of mice with DSS-induced inflammatory bowel disease[J]. Dis Model Mech, 2018, 11 (1): dmm028456.
doi: 10.1242/dmm.028456 |
| 15 | BUCKINGHAM K J , MCMILLIN M J , BRASSIL M M , et al. Multiple mutant T alleles cause haploinsufficiency of Brachyury and short tails in Manx cats[J]. Mammalian Genome, 2013, 24 (9): 400- 408. |
| 16 |
KROMIK A , ULRICH R , KUSENDA M , et al. The mammalian cervical vertebrae blueprint depends on the T (brachyury) gene[J]. Genetics, 2015, 199 (3): 873- 883.
doi: 10.1534/genetics.114.169680 |
| 17 |
JOULIA-EKAZA D , CABELLO G . The myostatin gene: physiology and pharmacological relevance[J]. Curr Opin Pharmacol, 2007, 7 (3): 310- 315.
doi: 10.1016/j.coph.2006.11.011 |
| 18 |
MCPHERRON A C , LAWLER A M , LEE S J . Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member[J]. Nature, 1997, 387 (6628): 83- 90.
doi: 10.1038/387083a0 |
| 19 |
WELLE S , BHATT K , PINKERT C A , et al. Muscle growth after postdevelopmental myostatin gene knockout[J]. Am J Physiol Endocrinol Metab, 2007, 292 (4): E985- 991.
doi: 10.1152/ajpendo.00531.2006 |
| 20 |
MEGENEY L A , RUDNICKI M A . Determination versus differentiation and the MyoD family of transcription factors[J]. Biochem Cell Biol, 1995, 73 (9-10): 723- 732.
doi: 10.1139/o95-080 |
| 21 |
ZHANG Z , XU F , ZHANG Y , et al. Cloning and expression of MyoG gene from Hu sheep and identification of its myogenic specificity[J]. Mol Biol Rep, 2014, 41 (2): 1003- 1013.
doi: 10.1007/s11033-013-2945-0 |
| 22 | 刘宏祥, 徐文娟, 朱春红, 等. 鸭胚胎发育中后期胸肌发育阻滞的RNA-seq分析[J]. 中国农业科学, 2018, 51 (22): 4373- 4386. |
| LIU H X , XU W J , ZHU C H , et al. RNA-seq analysis on development arrest of duck pectoralis muscle during semi-late embryonic period[J]. Scientia Agricultura Sinica, 2018, 51 (22): 4373- 4386. | |
| 23 |
AASE-REMEDIOS M E , COLL-LLADÓ C , FERRIER D E K . More than one-to-four via 2R: evidence of an independent amphioxus expansion and two-gene ancestral vertebrate state for MyoD-related myogenic regulatory factors (MRFs)[J]. Mol Biol Evol, 2020, 37 (10): 2966- 2982.
doi: 10.1093/molbev/msaa147 |
| 24 | 汤展毅, 严云勤, 高学军, 等. 牛myf6基因克隆及在成纤维细胞中的表达[J]. 东北农业大学学报, 2010, 41 (11): 77- 82. |
| TANG Z Y , YAN Y Q , GAO X J , et al. Cloning of bovine myf6 gene and expression gene in fibroblasts[J]. Journal of Northeast Agricultural University, 2010, 41 (11): 77- 82. | |
| 25 |
AIELLO D , PATEL K , LASAGNA E . The myostatin gene: an overview of mechanisms of action and its relevance to livestock animals[J]. Anim Genet, 2018, 49 (6): 505- 519.
doi: 10.1111/age.12696 |
| 26 |
MARUYAMA T , DOUGAN S K , TRUTTMANN M C , et al. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining[J]. Nat Biotechnol, 2015, 33 (5): 538- 542.
doi: 10.1038/nbt.3190 |
| 27 | JANG D E , LEE J Y , LEE J H , et al. Multiple sgRNAs with overlapping sequences enhance CRISPR/Cas9-mediated knock-in efficiency[J]. Exp Mol Med, 2018, 50 (4): 1- 9. |
| 28 |
RAHMANI B , KHEIRANDISH M H , GHANBARI S , et al. Targeting DNA repair pathways with B02 and Nocodazole small molecules to improve CRIS-PITCh mediated cassette integration in CHO-K1 cells[J]. Sci Rep, 2023, 13 (1): 3116.
doi: 10.1038/s41598-023-29863-8 |
| 29 |
SETO E , YOSHIDA M . Erasers of histone acetylation: the histone deacetylase enzymes[J]. Cold Spring Harb Perspect Biol, 2014, 6 (4): a018713.
doi: 10.1101/cshperspect.a018713 |
| 30 |
ZHANG J P , YANG Z X , ZHANG F , et al. HDAC inhibitors improve CRISPR-mediated HDR editing efficiency in iPSCs[J]. Sci China Life Sci, 2021, 64 (9): 1449- 1462.
doi: 10.1007/s11427-020-1855-4 |
| 31 | 黄兰兰, 石国庆, 白洁. 绵羊胚胎成纤维细胞的体外培养[J]. 黑龙江动物繁殖, 2006 (2): 4- 5. |
| HUANG L L , SHI G Q , BAI J . In vitro culture of sheep embryonic fibroblasts[J]. Heilongjiang Journal of Animal Reproduction, 2006 (2): 4- 5. | |
| 32 |
MCGAW C , GARRITY A J , MUNOZ G Z , et al. Engineered Cas12i2 is a versatile high-efficiency platform for therapeutic genome editing[J]. Nat Commun, 2022, 13 (1): 2833.
doi: 10.1038/s41467-022-30465-7 |
| 33 | 谢洪涛, 段志强. 利用Cas12i在大豆中进行基因编辑的方法, |
| CN116218896A[P/OL]. XIE H T, DUAN Z Q. Method for gene editing in soybeans using Cas12i, CN116218896A[P/OL]. (in Chinese) | |
| 34 | 姚方瑶. 绵羊CRISPR/Cas12i基因编辑技术体系的优化与应用[D]. 杨凌: 西北农林科技大学, 2024. |
| YAO F Y. Optimisation and Application of the CRISPR/Cas12i Gene Editing Technology System for Sheep[D]. Yangling: Northwest A&F University, 2024. (in Chinese) | |
| 35 | MANJUNATH M , CHOUDHARY B , RAGHAVAN S C . SCR7, a potent cancer therapeutic agent and a biochemical inhibitor of nonhomologous DNA end-joining[J]. Cancer Rep (Hoboken), 2021, 4 (3): e1341. |
| 36 |
VARTAK S V , RAGHAVAN S C . Inhibition of nonhomologous end joining to increase the specificity of CRISPR/Cas9 genome editing[J]. Febs J, 2015, 282 (22): 4289- 4294.
doi: 10.1111/febs.13416 |
| 37 |
LIU B , CHEN S , ROSE A , et al. Inhibition of histone deacetylase 1 (HDAC1) and HDAC2 enhances CRISPR/Cas9 genome editing[J]. Nucleic Acids Res, 2020, 48 (2): 517- 532.
doi: 10.1093/nar/gkz1136 |
| 38 |
JOGLEKAR A V , STEIN L , HO M , et al. Dissecting the mechanism of histone deacetylase inhibitors to enhance the activity of zinc finger nucleases delivered by integrase-defective lentiviral vectors[J]. Hum Gene Ther, 2014, 25 (7): 599- 608.
doi: 10.1089/hum.2013.211 |
| 39 |
YOON S , EOM G H . HDAC and HDAC inhibitor: From cancer to cardiovascular diseases[J]. Chonnam Med J, 2016, 52 (1): 1- 11.
doi: 10.4068/cmj.2016.52.1.1 |
| 40 |
KUSCU C , ARSLAN S , SINGH R , et al. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease[J]. Nat Biotechnol, 2014, 32 (7): 677- 683.
doi: 10.1038/nbt.2916 |
| 41 |
CHARI R , MALI P , MOOSBURNER M , et al. Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach[J]. Nat Methods, 2015, 12 (9): 823- 826.
doi: 10.1038/nmeth.3473 |
| 42 |
MORENO-MATEOS M A , VEJNAR C E , BEAUDOIN J D , et al. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo[J]. Nat Methods, 2015, 12 (10): 982- 988.
doi: 10.1038/nmeth.3543 |
| 43 |
ORTHWEIN A , NOORDERMEER S M , WILSON M D , et al. RETRACTED ARTICLE: A mechanism for the suppression of homologous recombination in G1 cells[J]. Nature, 2015, 528 (7582): 422- 426.
doi: 10.1038/nature16142 |
| 44 |
CHAPMAN J R , TAYLOR MARTIN R G , BOULTON SIMON J . Playing the end game: DNA double-strand break repair pathway choice[J]. Molecular Cell, 2012, 47 (4): 497- 510.
doi: 10.1016/j.molcel.2012.07.029 |
| 45 |
RICHARDSON C D , RAY G J , DEWITT M A , et al. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA[J]. Nat Biotechnol, 2016, 34 (3): 339- 344.
doi: 10.1038/nbt.3481 |
| 46 |
YANG L , GUELL M , BYRNE S , et al. Optimization of scarless human stem cell genome editing[J]. Nucleic Acids Res, 2013, 41 (19): 9049- 9061.
doi: 10.1093/nar/gkt555 |
| [1] | 陆灵光, 刘家齐, 卢佩琪, 吴瑞彬, 黄丹妮, 刘佳悦, 梁婉琪, 琚春梅. gD基因插入增强gI/gE/gM缺失重组伪狂犬病病毒对小鼠的免疫效果[J]. 畜牧兽医学报, 2026, 57(1): 327-336. |
| [2] | 刘丹妮, 种丽伟, 宫平, 魏佩玲, 柴婷, 耿天颖, 吴伟伟, 郑文新. 山羊感染绵羊肺炎支原体的病理学分析[J]. 畜牧兽医学报, 2026, 57(1): 423-431. |
| [3] | 魏康康, 马贵, 李文迪, 田雨, 张令锴, 朱继红, 胡亚美. 单细胞测序技术在绵羊卵巢生长发育过程中的研究进展[J]. 畜牧兽医学报, 2025, 56(7): 3080-3087. |
| [4] | 张嘉良, 黄畅, 杨永林, 杨华, 白文林, 马月辉, 赵倩君. 基于50K液相芯片的中国绵羊群体遗传结构与羊毛性状选择信号分析[J]. 畜牧兽医学报, 2025, 56(7): 3164-3176. |
| [5] | 乔利英, 王万年, 张莉, 庞志旭, 张思颖, 李一凡, 刘文忠. 基于基因组标记对绵羊品种分类的机器学习方法研究[J]. 畜牧兽医学报, 2025, 56(5): 2157-2167. |
| [6] | 马应天, 姜璐瑶, 李增开, 秦剑平, 赵建华, 贺玉芳, 宋宇轩, 张磊. 矢车菊素-3-芸香糖苷对奶绵羊精液冷冻保存效果的影响[J]. 畜牧兽医学报, 2025, 56(4): 1768-1778. |
| [7] | 李艳娥, 梁友萍, 樊洁, 吴芳燕, 尧香悦, 李毛却乎, 次仁仓决, 郝桂英, 古小彬. 绵羊痒螨钙网蛋白对兔外周血单个核细胞Th1/Th2和Th17/Treg免疫平衡的影响[J]. 畜牧兽医学报, 2025, 56(4): 1910-1918. |
| [8] | 杨杨, 李良远, 万鹏程, 卢守亮, 刘长彬, 杨华, 王立民, 代蓉, 周平. 绵羊季节性发情性状核心基因和关键lncRNA的筛选与分析[J]. 畜牧兽医学报, 2025, 56(3): 1264-1277. |
| [9] | 何雨, 王翔宇, 狄冉, 储明星, 梁琛. BMP4/SMAD4通过下调GJA1基因表达影响绵羊卵巢颗粒间隙连接活性[J]. 畜牧兽医学报, 2025, 56(2): 679-688. |
| [10] | 楚翼健, 崔久增, 李增开, 张磊, 褚婷婷, 黄艳平, 宋宇轩. 绵羊子宫内膜容受前期与容受期的阴道微生物比较研究[J]. 畜牧兽医学报, 2025, 56(2): 689-699. |
| [11] | 王晓飞, 王勃森, 卫梦瑶, 姜璐瑶, 徐刚刚, 刘佳欣, 马应天, 王丽, 宋宇轩, 张磊. 羊奶改善糖尿病模型小鼠肝、肾病理变化的作用研究[J]. 畜牧兽医学报, 2025, 56(2): 870-882. |
| [12] | 孔令锋, 朱丽君, 厉彦浩, 彭玉薇, 寇富民, 李亮, 刘书东. 南疆地方绵羊品种群体遗传结构解析与选择信号挖掘[J]. 畜牧兽医学报, 2025, 56(12): 6116-6129. |
| [13] | 乔利英, 徐常松, 张莉, 丁毅, 潘洋洋, 杨凯捷, 刘建华, 刘文忠. CTCF调控绵羊前体脂肪细胞分化的功能研究[J]. 畜牧兽医学报, 2025, 56(12): 6130-6144. |
| [14] | 胡伯欣, 高程远, 刘从, 陈茹曼, 朱捷, 田树军. 绵羊卵母细胞小群培养条件优化[J]. 畜牧兽医学报, 2025, 56(12): 6204-6218. |
| [15] | 何思琦, 陈倩, 蒋琳, 马月辉, 周胜花, 赵倩君. 基于转录组测序分析METTL14对绵羊骨骼肌卫星细胞成肌分化的影响[J]. 畜牧兽医学报, 2025, 56(10): 4925-4937. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||