

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (10): 5018-5029.doi: 10.11843/j.issn.0366-6964.2025.10.022
胡秀贞(
), 周梦婷, 张帆, 刘子豪, 唐湘方, 熊本海*(
)
收稿日期:2024-11-01
出版日期:2025-10-23
发布日期:2025-11-01
通讯作者:
熊本海
E-mail:277613733@qq.com;xiongbenhai@caas.cn
作者简介:胡秀贞(2000-),女,山东滕州人,硕士生,主要从事反刍动物营养研究,E-mail:277613733@qq.com
基金资助:
HU Xiuzhen(
), ZHOU Mengting, ZHANG Fan, LIU Zihao, TANG Xiangfang, XIONG Benhai*(
)
Received:2024-11-01
Online:2025-10-23
Published:2025-11-01
Contact:
XIONG Benhai
E-mail:277613733@qq.com;xiongbenhai@caas.cn
摘要:
旨在探究菊粉(inulin)对热应激状态下泌乳奶牛生产性能、免疫应答、抗氧化状态及激素水平的影响。选取体况相近的健康高产荷斯坦奶牛24头,采用完全随机分组设计随机分为4组(每组n=6),分别在基础日粮中按照每头牛0、200、300、400 g·d-1(CON组,Inulin-2组,Inulin-3组和Inulin-4组)的剂量添喂菊粉,每组奶牛具有相近的泌乳日龄(days in milk,DIM)、产奶量和胎次。试验期10周,包括2周预试验阶段和8周正式试验阶段。本研究在炎热的夏季进行,整个试验周期内平均温湿度指数(temperature-humidity index,THI)均大于68,表明奶牛全期处于热应激状态。结果表明,饲喂菊粉对热应激奶牛直肠温度(rectal temperature,RT)和呼吸频率(respiratory rate,RR)无显著影响(P>0.05);随着菊粉添加量的增加,奶牛产奶量呈二次增加趋势(0.05≤P<0.1),其中Inulin-3和Inulin-4组产奶量显著高于CON组(P<0.05);随着菊粉饲喂量的增加,血清肌酐浓度呈显著二次下降(P<0.05),在Inulin-3组达到最低值,并显著低于CON组(P<0.05);血清白细胞介素(interleukin,IL)-1β浓度呈显著二次下降(P<0.05),在Inulin-3组中观察到最低值,并显著低于CON组(P<0.05),血清肿瘤坏死因子(tumor necrosis factor,TNF)-α浓度呈二次下降趋势(0.05≤P<0.1),在Inulin-3组达到最低值,且显著低于CON组(P<0.05);血清总抗氧化能力(total antioxidant capacity,T-AOC)呈二次上升趋势(0.05≤P<0.1),在Inulin-3组达到最高值,且显著高于CON组(P<0.05)。综上所述,日粮中添加菊粉可以通过改善免疫性能、抗氧化状态和激素分泌来缓解高产奶牛的热应激,同时还可提高产奶量和改善乳成分。对于热应激状态下的泌乳奶牛,推荐菊粉添加剂量为300 g·d-1。
中图分类号:
胡秀贞, 周梦婷, 张帆, 刘子豪, 唐湘方, 熊本海. 菊粉对热应激奶牛生产、免疫、抗氧化性能及激素水平的影响[J]. 畜牧兽医学报, 2025, 56(10): 5018-5029.
HU Xiuzhen, ZHOU Mengting, ZHANG Fan, LIU Zihao, TANG Xiangfang, XIONG Benhai. Effects of Inulin on Production, Immunity, Antioxidant Performance and Hormone Levels in Heat-stressed Dairy Cows[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(10): 5018-5029.
表 2
基础日粮组成及营养水平(干物质基础)"
| 项目Item | 含量Content |
| 原料Ingredient | |
| 豆粕Soy bean meal | 1.85 |
| 甜菜粕Sugar beet pulp | 1.96 |
| 麸皮Wheat bran | 0.98 |
| 豆皮Soy bean skin | 0.67 |
| 燕麦草Oatgrass | 3.30 |
| 玉米青贮Corn silage | 50.70 |
| 压片玉米Flaked corn | 8.81 |
| 玉米Corn | 8.49 |
| 棉籽Cotton seed | 4.40 |
| 脂肪粉Fat powder | 0.46 |
| 苜蓿干草Alfalfa hay | 3.30 |
| 湿酒糟Distiller’s grains | 9.91 |
| 糖浆Syrup | 1.01 |
| 干酒糟及其可溶物DDGS1 | 1.18 |
| 食盐NaCl | 0.70 |
| 碳酸氢钠NaHCO3 | 0.70 |
| 预混料Premix2 | 1.37 |
| 营养水平Nutrient level3 | |
| 粗蛋白CP | 16.03 |
| 粗脂肪Ether extract | 4.99 |
| 中性洗涤纤维NDF | 30.50 |
| 酸性洗涤纤维ADF | 16.90 |
| 钙Ca | 0.72 |
| 磷P | 0.38 |
| 泌乳净能/(MJ·kg-1) NEL | 7.11 |
表 4
菊粉对热应激荷斯坦奶牛生产性能的影响"
| 项目Item | 处理Treatment | 标准误 SEM | P值P-value | |||||
| CON | Inulin-2 | Inulin-3 | Inulin-4 | 处理 Treatment | 线性 Linear | 二次 Quadratic | ||
| 反刍时间/(min·d-1) Rumination time | 531.20 | 551.68 | 537.27 | 531.73 | 35.529 | 0.732 | 0.355 | 0.654 |
| 产奶量/(kg·d-1) Milk yield | 32.37b | 35.08ab | 36.23a | 35.95a | 2.491 | 0.055 | 0.321 | 0.081 |
| 乳糖/% Lactose | 4.89b | 5.08ab | 5.11ab | 5.19a | 0.043 | 0.140 | 0.309 | 0.066 |
| 乳蛋白/% Protein | 3.07 | 3.25 | 3.33 | 3.25 | 0.369 | 0.663 | 0.806 | 0.548 |
| 乳脂肪/% Fat | 4.42 | 4.23 | 4.18 | 4.22 | 0.676 | 0.926 | 0.904 | 0.694 |
| 总固形物/% TS | 13.09 | 13.26 | 13.32 | 13.37 | 0.804 | 0.936 | 0.779 | 0.646 |
| 非脂乳固体/% SNF | 8.66 | 9.03 | 9.14 | 9.14 | 0.446 | 0.235 | 0.493 | 0.164 |
表 5
菊粉对热应激荷斯坦奶牛血清生化指标的影响"
| 项目Item | 处理Treatment | SEM | P值P-value | |||||
| CON | Inulin-2 | Inulin-3 | Inulin-4 | Treatment | Linear | Quadratic | ||
| 肌酐/(μmol·L-1) Creatinine | 127.62a | 93.85b | 87.85b | 90.52b | 15.804 | 0.001 | 0.275 | 0.001 |
| 总胆固醇/(mmol·L-1) Total cholesterol | 5.03 | 4.99 | 4.40 | 5.14 | 0.763 | 0.356 | 0.841 | 0.436 |
| 尿酸/(μmol·L-1) Uric acid | 325.00 | 241.17 | 243.17 | 269.83 | 0.351 | 0.450 | 0.672 | 0.537 |
| 葡萄糖/(mmol·L-1) Glucose | 7.32 | 7.61 | 7.42 | 7.11 | 1.811 | 0.971 | 0.669 | 0.963 |
表 6
菊粉对热应激荷斯坦奶牛血清免疫指标的影响"
| 项目Item | 处理Treatment | 标准误 SEM | P值P-value | |||||
| CON | Inulin-2 | Inulin-3 | Inulin-4 | 处理 Treatment | 线性 Linear | 二次 Quadratic | ||
| 白介素-1β/(pg·mL-1)IL-1β | 89.00a | 68.12ab | 53.32ab | 89.00b | 23.534 | 0.098 | 0.253 | 0.043 |
| 肿瘤坏死因子-α/(pg·mL-1) TNF-α | 208.57a | 133.23b | 131.00b | 140.35b | 55.046 | 0.072 | 0.905 | 0.065 |
| 白介素-2/(ng·mL-1)IL-2 | 0.97 | 1.30 | 1.31 | 1.46 | 0.443 | 0.295 | 0.504 | 0.109 |
| 白介素-4/(pg·mL-1)IL-4 | 115.83 | 137.34 | 121.46 | 109.86 | 30.270 | 0.453 | 0.151 | 0.781 |
| 白介素-8/(pg·mL-1)IL-8 | 217.76 | 234.91 | 224.04 | 179.62 | 77.050 | 0.852 | 0.456 | 0.827 |
| 白介素-10/(pg·mL-1)IL-10 | 45.74 | 60.13 | 48.69 | 47.03 | 15.909 | 0.403 | 0.164 | 0.403 |
表 7
菊粉对热应激荷斯坦奶牛血清抗氧化指标的影响"
| 项目Item | 处理Treatment | 标准误 SEM | P值P-value | |||||
| CON | Inulin-2 | Inulin-3 | Inulin-4 | 处理 Treatment | 线性 Linear | 二次 Quadratic | ||
| 总抗氧化能力/(U·mL-1) T-AOC | 14.46b | 19.22a | 20.46a | 20.41ab | 4.215 | 0.071 | 0.915 | 0.082 |
| 超氧化物歧化酶/(U·mL-1) SOD | 221.20 | 248.65 | 286.76 | 286.33 | 1.701 | 0.104 | 0.116 | 0.203 |
| 丙二醛/(nmol·mL-1) Malondialdehyde | 5.44 | 4.72 | 5.58 | 5.45 | 1.551 | 0.771 | 0.365 | 0.610 |
| 谷胱甘肽过氧化物酶/(U·mL-1) GSH-Px | 377.74 | 337.52 | 333.65 | 365.62 | 67.454 | 0.617 | 0.661 | 0.752 |
表 8
菊粉对热应激荷斯坦奶牛血清激素水平的影响"
| 项目Item | 处理Treatment | 标准误 SEM | P值P-value | |||||
| CON | Inulin-2 | Inulin-3 | Inulin-4 | 处理 Treatment | 线性 Linear | 二次 Quadratic | ||
| 皮质醇/(ng·L-1) Cortisol | 95.91 | 83.08 | 70.69 | 87.35 | 14.835 | 0.055 | 0.782 | 0.761 |
| 四碘甲状腺素/(ng·mL-1) T4 | 153.39 | 167.09 | 167.54 | 198.73 | 0.333 | 0.468 | 0.312 | 0.225 |
| 三碘甲状腺素/(ng·mL-1) T3 | 6.10 | 5.88 | 5.55 | 6.71 | 1.682 | 0.680 | 0.579 | 0.532 |
| 催乳素/(ng·mL-1) Prolactin | 55.74 | 62.49 | 63.30 | 68.39 | 11.391 | 0.319 | 0.370 | 0.126 |
| 前列腺素E2/(pg·mL-1) PGE2 | 292.88 | 302.86 | 319.26 | 294.64 | 85.648 | 0.948 | 0.997 | 0.921 |
| 胰岛素/(mU·L-1) Insulin | 34.99 | 31.66 | 32.94 | 37.48 | 7.593 | 0.579 | 0.274 | 0.816 |
| 1 |
BECKER C A , COLLIER R J , STONE A E . Invited review: Physiological and behavioral effects of heat stress in dairy cows[J]. J Dairy Sci, 2020, 103 (8): 6751- 6770.
doi: 10.3168/jds.2019-17929 |
| 2 |
SAMMAD A , UMER S , SHI R , et al. Dairy cow reproduction under the influence of heat stress[J]. J Anim Physiol Anim Nutr (Berl), 2020, 104 (4): 978- 986.
doi: 10.1111/jpn.13257 |
| 3 |
BAGATH M , KRISHNAN G , DEVARAJ C , et al. The impact of heat stress on the immune system in dairy cattle: A review[J]. Res Vet Sci, 2019, 126, 94- 102.
doi: 10.1016/j.rvsc.2019.08.011 |
| 4 |
KEY N , SNEERINGER S . Potential effects of climate change on the productivity of U.S. dairies[J]. Am J Agric Econ, 2014, 96 (4): 1136- 1156.
doi: 10.1093/ajae/aau002 |
| 5 |
DE RENSIS F , GARCIA-ISPIERTO I , LÓPEZ-GATIUS F . Seasonal heat stress: Clinical implications and hormone treatments for the fertility of dairy cows[J]. Theriogenology, 2015, 84 (5): 659- 666.
doi: 10.1016/j.theriogenology.2015.04.021 |
| 6 | JOHNSON H D. Bioclimates and livestock: Chap. 1[M]//Johnson H D. Bioclimatology and the adaptation of livestock. Amsterdam: Elsevier Science Publishers, 1987: 3-16. |
| 7 | YOUSEF M K . Stress physiology in livestock[M]. Florida: CRC Press, 1985. |
| 8 |
HOFFMANN G , HERBUT P , PINTO S , et al. Animal-related, non-invasive indicators for determining heat stress in dairy cows[J]. Biosyst Eng, 2020, 199, 83- 96.
doi: 10.1016/j.biosystemseng.2019.10.017 |
| 9 |
BEEDE D K , COLLIER R J . Potential nutritional strategies for intensively managed cattle during thermal stress[J]. J Anim Sci, 1986, 62 (2): 543- 554.
doi: 10.2527/jas1986.622543x |
| 10 |
SHOKRYAZDAN P , JAHROMI M F , NAVIDSHAD B , et al. Effects of prebiotics on immune system and cytokine expression[J]. Med Microbiol Immunol, 2017, 206 (1): 1- 9.
doi: 10.1007/s00430-016-0481-y |
| 11 |
SLAVIN J . Fiber and prebiotics: mechanisms and health benefits[J]. Nutrients, 2013, 5 (4): 1417- 1435.
doi: 10.3390/nu5041417 |
| 12 |
VARASTEH S , BRABER S , AKBARI P , et al. Differences in susceptibility to heat stress along the chicken intestine and the protective effects of Galacto-oligosaccharides[J]. PLoS One, 2015, 10 (9): e0138975.
doi: 10.1371/journal.pone.0138975 |
| 13 |
WAN X H , GUO H , LIANG Y Y , et al. The physiological functions and pharmaceutical applications of inulin: A review[J]. Carbohydr Polym, 2020, 246, 116589.
doi: 10.1016/j.carbpol.2020.116589 |
| 14 |
MENSINK M A , FRIJLINK H W , VAN DER VOORT MAARSCHALK K , et al. Inulin, a flexible oligosaccharide. Ⅱ: Review of its pharmaceutical applications[J]. Carbohydr Polym, 2015, 134, 418- 428.
doi: 10.1016/j.carbpol.2015.08.022 |
| 15 |
KIRTEL O , LESCRINIER E , VAN DEN ENDE W , et al. Discovery of fructans in Archaea[J]. Carbohydr Polym, 2019, 220, 149- 156.
doi: 10.1016/j.carbpol.2019.05.064 |
| 16 |
WANG Y , NAN X , ZHAO Y , et al. Consumption of supplementary inulin modulates milk microbiota and metabolites in dairy cows with subclinical mastitis[J]. Appl Environ Microbiol, 2022, 88 (4): e0205921.
doi: 10.1128/aem.02059-21 |
| 17 |
WANG Y , ZHAO Y G , XUE F G , et al. Nutritional value, bioactivity, and application potential of Jerusalem artichoke (Helianthus tuberosusL.) as a neotype feed resource[J]. Anim Nutr, 2020, 6 (4): 429- 437.
doi: 10.1016/j.aninu.2020.09.001 |
| 18 |
WEI W , WONG C C , JIA Z , et al. Parabacteroides distasonis uses dietary inulin to suppress NASH via its metabolite pentadecanoic acid[J]. Nat Microbiol, 2023, 8 (8): 1534- 1548.
doi: 10.1038/s41564-023-01418-7 |
| 19 |
STOYANOVA S , GEUNS J , HIDEG É , et al. The food additives inulin and stevioside counteract oxidative stress[J]. Int J Food Sci Nutr, 2011, 62 (3): 207- 214.
doi: 10.3109/09637486.2010.523416 |
| 20 | 王维康, 陈代文, 余冰, 等. 菊粉对断奶仔猪生长性能、养分表观消化率及抗氧化能力的影响[J]. 动物营养学报, 2021, 33 (2): 760- 768. |
| WANG W K , CHEN D W , YU B , et al. Effects of inulin on growth performance, nutrient apparent digestibilities and antioxidant capacity of weaned piglets[J]. Chinese Journal of Animal Nutrition, 2021, 33 (2): 760- 768. | |
| 21 |
ABDEL-WAHAB A A , ELNESR S S , ABDEL-KADER I A . Effect of dietary supplementation of Jerusalem Artichoke extract on performance, blood biochemistry, antioxidant parameters, and immune response of growing Japanese quail[J]. J Anim Physiol Anim Nutr (Berl), 2023, 107 (3): 920- 927.
doi: 10.1111/jpn.13783 |
| 22 |
CARLSON J L , ERICKSON J M , HESS J M , et al. Prebiotic dietary fiber and gut health: Comparing the in vitro fermentations of beta-glucan, inulin and xylooligosaccharide[J]. Nutrients, 2017, 9 (12): 1361.
doi: 10.3390/nu9121361 |
| 23 | NRC . Nutrient Requirements of Dairy Cattle. 7th rev. ed.[M]. Washington, DC: Natl. Acad. Press, 2001. |
| 24 |
DIKMEN S , HANSEN P J . Is the temperature-humidity index the best indicator of heat stress in lactating dairy cows in a subtropical environment?[J]. J Dairy Sci, 2009, 92 (1): 109- 116.
doi: 10.3168/jds.2008-1370 |
| 25 | AOAC. Official Methods of Analysis. 18th ed. [M]. Washington D C: AOAC International, 2005. |
| 26 | COLLIER R J, HALL L W, RUNGRUANG S, et al. Quantifying heat stress and its impact on metabolism and performance[Z]. Florida Ruminant Nutrition Symposium. 2012. |
| 27 | VERMA D N , LAL S N , SINGH S P , et al. Effect of season on biological responses and productivity of buffaloes[J]. Internat J Ani Sci, 2000, 15 (2): 237- 244. |
| 28 |
MCGUIRE M A , BEEDE D K , DELORENZO M A , et al. Effects of thermal stress and level of feed intake on portal plasma flow and net fluxes of metabolites in lactating Holstein cows[J]. J Anim Sci, 1989, 67 (4): 1050- 1060.
doi: 10.2527/jas1989.6741050x |
| 29 |
MCGUIRE M A , BEEDE D K , COLLIER R J , et al. Effects of acute thermal stress and amount of feed intake on concentrations of somatotropin, insulin-like growth factor (IGF)-Ⅰ and IGF-Ⅱ, and thyroid hormones in plasma of lactating Holstein cows[J]. J Anim Sci, 1991, 69 (5): 2050- 2056.
doi: 10.2527/1991.6952050x |
| 30 |
MARAI I F M , EL-DARAWANY A A , FADIEL A , et al. Physiological traits as affected by heat stress in sheep—A review[J]. Small Rum Res, 2007, 71 (1-3): 1- 12.
doi: 10.1016/j.smallrumres.2006.10.003 |
| 31 |
COLLIER R J , RENQUIST B J , XIAO Y . A 100-Year Review: Stress physiology including heat stress[J]. J Dairy Sci, 2017, 100 (12): 10367- 10380.
doi: 10.3168/jds.2017-13676 |
| 32 |
SHULTZ T A . Weather and shade effects on cow corral activities[J]. J Dairy Sci, 1984, 67 (4): 868- 873.
doi: 10.3168/jds.S0022-0302(84)81379-X |
| 33 |
BERMAN A , FOLMAN Y , KAIM M , et al. Upper critical temperatures and forced ventilation effects for high-yielding dairy cows in a subtropical climate[J]. J Dairy Sci, 1985, 68 (6): 1488- 1495.
doi: 10.3168/jds.S0022-0302(85)80987-5 |
| 34 | HAHN G L . Dynamic responses of cattle to thermal heat loads[J]. J Anim Sci, 1999, 77 (suppl_2): 10- 20. |
| 35 |
ZHOU M , AARNINK A J A , HUYNH T T T , et al. Effects of increasing air temperature on physiological and productive responses of dairy cows at different relative humidity and air velocity levels[J]. J Dairy Sci, 2022, 105 (2): 1701- 1716.
doi: 10.3168/jds.2021-21164 |
| 36 |
UMPHREY J E , MOSS B R , WILCOX C J , et al. Interrelationships in lactating Holsteins of rectal and skin temperatures, milk yield and composition, dry matter intake, body weight, and feed efficiency in summer in Alabama[J]. J Dairy Sci, 2001, 84 (12): 2680- 2685.
doi: 10.3168/jds.S0022-0302(01)74722-4 |
| 37 | ZIMBELMAN R B, RHOADS R P, RHOADS M L, et al. A re-evaluation of the impact of temperature humidity index (THI) and black globe humidity index (BGHI) on milk production in high producing dairy cows[C]. Proc 24th Annual Southwest Nutrition and Management Conference, 2009, 1. |
| 38 |
MORETTI R , BIFFANI S , CHESSA S , et al. Heat stress effects on Holstein dairy cows' rumination[J]. Animal, 2017, 11 (12): 2320- 2325.
doi: 10.1017/S1751731117001173 |
| 39 |
COSTA A , LOPEZ-VILLALOBOS N , SNEDDON N W , et al. Invited review: Milk lactose-current status and future challenges in dairy cattle[J]. J Dairy Sci, 2019, 102 (7): 5883- 5898.
doi: 10.3168/jds.2018-15955 |
| 40 |
ITOH F , OBARA Y , ROSE M T , et al. Insulin and glucagon secretion in lactating cows during heat exposure[J]. J Anim Sci, 1998, 76 (8): 2182- 2189.
doi: 10.2527/1998.7682182x |
| 41 |
DANFAER A , TETENS V , AGERGAARD N . Review and an experimental study on the physiological and quantitative aspects of gluconeogenesis in lactating ruminants[J]. Comp Biochem Physiol B Biochem Mol Biol, 1995, 111 (2): 201- 210.
doi: 10.1016/0305-0491(94)00242-M |
| 42 |
WANG Y , NAN X , ZHAO Y , et al. Dietary supplementation of inulin ameliorates subclinical mastitis via regulation of rumen microbial community and metabolites in dairy cows[J]. Microbiol Spectr, 2021, 9 (2): e0010521.
doi: 10.1128/Spectrum.00105-21 |
| 43 |
LEMOSQUET S , RIGOUT S , BACH A , et al. Glucose metabolism in lactating cows in response to isoenergetic infusions of propionic acid or duodenal glucose[J]. J Dairy Sci, 2004, 87 (6): 1767- 1777.
doi: 10.3168/jds.S0022-0302(04)73332-9 |
| 44 |
RÍUS A G . Invited Review: Adaptations of protein and amino acid metabolism to heat stress in dairy cows and other livestock specie[J]. Appl Anim Sci, 2019, 35 (1): 39- 48.
doi: 10.15232/aas.2018-01805 |
| 45 |
COWLEY F C , BARBER D G , HOULIHAN A V , et al. Immediate and residual effects of heat stress and restricted intake on milk protein and casein composition and energy metabolism[J]. J Dairy Sci, 2015, 98 (4): 2356- 2368.
doi: 10.3168/jds.2014-8442 |
| 46 |
VAN LAER E , TUYTTENS F A , AMPE B , et al. Effect of summer conditions and shade on the production and metabolism of Holstein dairy cows on pasture in temperate climate[J]. Animal, 2015, 9 (9): 1547- 1558.
doi: 10.1017/S1751731115000816 |
| 47 |
ABENI F , CALAMARI L , STEFANINI L . Metabolic conditions of lactating Friesian cows during the hot season in the Po valley. 1. Blood indicators of heat stress[J]. Int J Biometeorol, 2007, 52 (2): 87- 96.
doi: 10.1007/s00484-007-0098-3 |
| 48 | AYMAN E M , SANIA A H , AHMED M K . Studies on production of soda crackers biscuits for diabetics[J]. Ann Agr Sci-Cairo, 2004, 49 (2): 585- 595. |
| 49 |
VERBEKE K A , BOOBIS A R , CHIODINI A , et al. Towards microbial fermentation metabolites as markers for health benefits of prebiotics[J]. Nutr Res Rev, 2015, 28 (1): 42- 66.
doi: 10.1017/S0954422415000037 |
| 50 |
THOMPSON I M T , TAO S , MONTEIRO A P A , et al. Effect of cooling during the dry period on immune response after Streptococcus uberis intramammary infection challenge of dairy cows[J]. J Dairy Sci, 2014, 97 (12): 7426- 7436.
doi: 10.3168/jds.2013-7621 |
| 51 |
CHEN S , WANG J , PENG D , et al. Exposure to heat-stress environment affects the physiology, circulation levels of cytokines, and microbiome in dairy cows[J]. Sci Rep, 2018, 8 (1): 14606.
doi: 10.1038/s41598-018-32886-1 |
| 52 |
MIN L , CHENG J B , SHI B L , et al. Effects of heat stress on serum insulin, adipokines, AMP-activated protein kinase, and heat shock signal molecules in dairy cows[J]. J Zhejiang Univ Sci B, 2015, 16 (6): 541- 548.
doi: 10.1631/jzus.B1400341 |
| 53 |
LENDEZ P A , MARTINEZ CUESTA L , NIETO FARIAS M V , et al. Alterations in TNF-α and its receptors expression in cows undergoing heat stress[J]. Vet Immunol Immunopathol, 2021, 235, 110232.
doi: 10.1016/j.vetimm.2021.110232 |
| 54 |
PARK D S , GU B H , PARK Y J , et al. Dynamic changes in blood immune cell composition and function in Holstein and Jersey steers in response to heat stress[J]. Cell Stress Chaperones, 2021, 26 (4): 705- 720.
doi: 10.1007/s12192-021-01216-2 |
| 55 |
ABDELNOUR S A , ABD EL-HACK M E , KHAFAGA A F , et al. Stress biomarkers and proteomics alteration to thermal stress in ruminants: A review[J]. J Therm Biol, 2019, 79, 120- 134.
doi: 10.1016/j.jtherbio.2018.12.013 |
| 56 |
AL-SADI R M , MA T Y . IL-1β causes an increase in intestinal epithelial tight junction permeability[J]. J Immunol, 2007, 178 (7): 4641- 4649.
doi: 10.4049/jimmunol.178.7.4641 |
| 57 |
LI X W , QIU F , LIU Y , et al. Inulin alleviates neuroinflammation and oxidative stress induced by perinatal 2-ethylhexyl diphenyl phosphate (EHDPHP) exposure in female mice and offspring[J]. Ecotoxicol Environ Saf, 2023, 264, 115396.
doi: 10.1016/j.ecoenv.2023.115396 |
| 58 |
LI K , ZHANG L , XUE J , et al. Dietary inulin alleviates diverse stages of type 2 diabetes mellitus via anti-inflammation and modulating gut microbiota in db/db mice[J]. Food Funct, 2019, 10 (4): 1915- 1927.
doi: 10.1039/C8FO02265H |
| 59 |
ORTIZ L T , RODRÍGUEZ M L , ALZUETA C , et al. Effect of inulin on growth performance, intestinal tract sizes, mineral retention and tibial bone mineralisation in broiler chickens[J]. Br Poult Sci, 2009, 50 (3): 325- 332.
doi: 10.1080/00071660902806962 |
| 60 |
NABIZADEH A . The effect of inulin on broiler chicken intestinal microflora, gut morphology, and performance[J]. J Anim Feed Sci, 2012, 21 (4): 725- 734.
doi: 10.22358/jafs/66144/2012 |
| 61 |
ZHANG Y Y , ZHU X , YU X Y , et al. Enhancing intestinal barrier efficiency: A novel metabolic diseases therapy[J]. Front Nutr, 2023, 10, 1120168.
doi: 10.3389/fnut.2023.1120168 |
| 62 |
KOCH F , THOM U , ALBRECHT E , et al. Heat stress directly impairs gut integrity and recruits distinct immune cell populations into the bovine intestine[J]. Proc Natl Acad Sci U S A, 2019, 116 (21): 10333- 10338.
doi: 10.1073/pnas.1820130116 |
| 63 |
SURESH D R , ANNAM V , PRATIBHA K , et al. Total antioxidant capacity - a novel early bio-chemical marker of oxidative stress in HIV infected individuals[J]. J Biomed Sci, 2009, 16 (1): 61.
doi: 10.1186/1423-0127-16-61 |
| 64 |
ZHANG F J , WENG X G , WANG J F , et al. Effects of temperature-humidity index and chromium supplementation on antioxidant capacity, heat shock protein 72, and cytokine responses of lactating cows[J]. J Anim Sci, 2014, 92 (7): 3026- 3034.
doi: 10.2527/jas.2013-6932 |
| 65 |
RICHARD M J , PORTAL B , MEO J , et al. Malondialdehyde kit evaluated for determining plasma and lipoprotein fractions that react with thiobarbituric acid[J]. Clin Chem, 1992, 38 (5): 704- 709.
doi: 10.1093/clinchem/38.5.704 |
| 66 |
CASTILLO C , HERNÁNDEZ J , VALVERDE I , et al. Plasma malonaldehyde (MDA) and total antioxidant status (TAS) during lactation in dairy cows[J]. Res Vet Sci, 2006, 80 (2): 133- 139.
doi: 10.1016/j.rvsc.2005.06.003 |
| 67 |
GUO J , GAO S , QUAN S , et al. Blood amino acids profile responding to heat stress in dairy cows[J]. Asian-Australas J Anim Sci, 2018, 31 (1): 47- 53.
doi: 10.5713/ajas.16.0428 |
| 68 |
KONVICNÁ J , VARGOVÁ M , PAULÍKOVÁ I , et al. Oxidative stress and antioxidant status in dairy cows during prepartal and postpartal periods[J]. Acta Vet Brno, 2015, 84 (2): 133- 140.
doi: 10.2754/avb201584020133 |
| 69 | 孙秀双, 李冰, 朱宇旌. 菊粉对单胃动物的生理调控及其在生产中的应用研究进展[J]. 中国畜牧杂志, 2024, 60 (4): 87- 93. |
| SUN X S , LI B , ZHU Y J . Research progress on physiological regulation of inulin on monogastric animals and its application in animal production[J]. Chinese Journal of Animal Science, 2024, 60 (4): 87- 93. | |
| 70 |
DING M , TANG Z , LIU W , et al. Burdock fructooligosaccharide attenuates high glucose-induced apoptosis and oxidative stress injury in renal tubular epithelial cells[J]. Front Pharmacol, 2021, 12, 784187.
doi: 10.3389/fphar.2021.784187 |
| 71 |
SCHWINN A C , SAUER F J , GERBER V , et al. Free and bound cortisol in plasma and saliva during ACTH challenge in dairy cows and horses[J]. J Anim Sci, 2018, 96 (1): 76- 84.
doi: 10.1093/jas/skx008 |
| 72 |
MISHRA S , KASS D A . Cellular and molecular pathobiology of heart failure with preserved ejection fraction[J]. Nat Rev Cardiol, 2021, 18 (6): 400- 423.
doi: 10.1038/s41569-020-00480-6 |
| 73 |
LEMAL P , MAY K , KÖNIG S , et al. Invited review: From heat stress to disease—Immune response and candidate genes involved in cattle thermotolerance[J]. J Dairy Sci, 2023, 106 (7): 4471- 4488.
doi: 10.3168/jds.2022-22727 |
| 74 | AJDARI A , GHAFARIFARSANI H , HOSEINIFAR S H , et al. Effects of dietary supplementation of PrimaLac, inulin, and Biomin Imbo on growth performance, antioxidant, and innate immune responses of common carp (Cyprinus carpio)[J]. Aquacult Nutr, 2022, 1, 8297479. |
| [1] | 易唤明, 鲍国升, 万辉, 欧靖渝, 何小龙, 任春环, 陈家宏, 张子军, 王强军. 热应激通过干扰生物钟系统影响反刍动物消化道屏障功能的研究进展[J]. 畜牧兽医学报, 2025, 56(9): 4204-4214. |
| [2] | 邢洲, 宋承磊, 曹凤凤, 李卓颖, 李庆云, 陶金忠. 滩羊超数排卵处理后血浆类固醇激素对超排效果的影响[J]. 畜牧兽医学报, 2025, 56(9): 4422-4431. |
| [3] | 郑永杰, 孙同玉, 胡凤明, 魏曼琳, 马涛. 白藜芦醇调控反刍动物生产性能、产品品质与健康状态的研究进展[J]. 畜牧兽医学报, 2025, 56(8): 3631-3639. |
| [4] | 袁越, 周建旭, 罗晓林, 官久强, 安添午, 赵洪文, 柏琴, 任子利, 张翔飞, 赵彦玲. 过瘤胃脂肪对育肥牦牛生产性能、血清生化及屠宰性能的影响[J]. 畜牧兽医学报, 2025, 56(8): 3849-3860. |
| [5] | 郑浩, 罗芳, 宋承磊, 陶金忠. 基于代谢组学技术筛选人工授精后未妊娠奶牛血浆潜在生物标志物的研究[J]. 畜牧兽医学报, 2025, 56(7): 3252-3264. |
| [6] | 霍振, 庄蕾, 周伟, 王帅钦, 谢明, 侯水生, 唐静. 叶酸对1~21日龄北京鸭生产性能、血浆生化指标和抗氧化能力的影响[J]. 畜牧兽医学报, 2025, 56(7): 3327-3334. |
| [7] | 陈志华, 王琪, 张进, 杨连弟, 杨天庆, 王敬, 龙定彪, 黄金秀, 黄文明. 饲粮净能和赖氨酸水平对荣昌母猪妊娠后期繁殖性能、血清激素、泌乳性能及粪便菌群多样性的影响[J]. 畜牧兽医学报, 2025, 56(6): 2801-2815. |
| [8] | 罗嘉, 蒲强, 柴捷, 陈力, 王金勇. 母猪子宫内热应激的生物学效应及遗传机制分析[J]. 畜牧兽医学报, 2025, 56(5): 2004-2014. |
| [9] | 朱海燕, 张菁怡, 晏雪勇, 梁海平, 魏庆, 曹际, 黄建珍. 基于转录组探究光周期对泰和乌鸡产蛋性能影响的分子机制[J]. 畜牧兽医学报, 2025, 56(5): 2123-2135. |
| [10] | 高正婕, 罗萍, 李博成, 王水莲. GnIH对小鼠卵巢颗粒细胞增殖、凋亡和雌激素分泌的影响[J]. 畜牧兽医学报, 2025, 56(5): 2230-2242. |
| [11] | 王昕昕, 刘小英, 王宜, 王芳, 赵晗, 杜志强, 杨彩侠. 急性热应激通过降低牛磺酸水平影响猪睾丸支持细胞的功能[J]. 畜牧兽医学报, 2025, 56(4): 1779-1790. |
| [12] | 梁恩堂, 李化轩, 陈帅成, 李果, 孙格格, 昝林森. 染料木素对牛精液冷冻保存效果的影响[J]. 畜牧兽医学报, 2025, 56(2): 700-710. |
| [13] | 梁慧, 赵静, 王妍雅, 龙润泽, 刘旭阳, 吴英杰, 刘宁, 秦应和. 饲粮中添加绿原酸对热应激母兔繁殖性能及其仔兔生长的影响[J]. 畜牧兽医学报, 2025, 56(2): 755-764. |
| [14] | 黄岩, 杨宇航, 刘天伟, 朱露, 张思欢, 凌英会. 转录组分析揭示山羊角基皮肤的代谢适应性变化[J]. 畜牧兽医学报, 2025, 56(10): 4938-4946. |
| [15] | 曲庆, 孙义虹, 赵星晨, 高铭, 周烁, 王玮. 黄芪、淫羊藿、女贞子提取物和植物乳杆菌对高密度饲养条件下仔鹅生长的影响[J]. 畜牧兽医学报, 2025, 56(10): 5222-5231. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||