

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (10): 4914-4924.doi: 10.11843/j.issn.0366-6964.2025.10.013
宋湘怡1(
), 曹行1, 刘武军1,*(
), 蒋琳2,*(
)
收稿日期:2025-03-04
出版日期:2025-10-23
发布日期:2025-11-01
通讯作者:
刘武军,蒋琳
E-mail:1799322141@qq.com;lwj_ws@163.com;jianglin@caas.cn
作者简介:宋湘怡(2000-),女,安徽合肥人,硕士,主要从事动物遗传育种研究,E-mail: 1799322141@qq.com
基金资助:
SONG Xiangyi1(
), CAO Hang1, LIU Wujun1,*(
), JIANG Lin2,*(
)
Received:2025-03-04
Online:2025-10-23
Published:2025-11-01
Contact:
LIU Wujun, JIANG Lin
E-mail:1799322141@qq.com;lwj_ws@163.com;jianglin@caas.cn
摘要:
旨在通过探究miR-376c-5p与PIK3CA的靶向关系,揭示miR-376c-5p对3T3-L1前体脂肪细胞分化的影响, 探索与脂肪分化相关的miR-376c-5p在脂肪生长分化过程中的作用及可能的调控机制。本课题组前期挑选了相同饲养条件下健康的6只3岁巴什拜羊(大尾型)和6只野生盘羊×巴什拜羊F2代绵羊(小尾型)收集其尾部脂肪组织,通过对尾部脂肪的测序数据分析结果,筛选出差异表达的miR-376c-5p。并构建miR-376c-5p mimic过表达载体进行转染,通过qPCR检测PIK3CA、成脂分化标志基因的表达情况;结合油红O染色和bodipy染色检测成脂能力。分析miR-376c-5p在不同物种中的保守性,利用生物信息学软件预测miR-376c-5p的靶基因PIK3CA及其之间的结合位点和双荧光素酶报告试验验证miR-376c-5p与PIK3CA之间的靶向关系。与mimic NC组相比,过表达miR-376c-5p后,qPCR结果显示分化成脂标志基因(PPARγ、ADIPOQ、ACACA、FASN)的mRNA表达水平均极显著下调(P<0.001),油红O和Bodipy结果均显示,过表达miR-376c-5p后,脂滴生成减少,说明过表达miR-376c-5p抑制了3T3-L1前体脂肪细胞的成脂分化。通过预测发现miR-376c-5p与PIK3CA 3′UTR区存在结合位点,双荧光素酶报告基因分析显示,过表达miR-376c-5p显著抑制了含有PIK3CA 3′UTR片段载体的荧光活性(P<0.05);过表达miR376c-5p也会显著抑制候选靶基因PIK3CA mRNA的表达量(P<0.05)。以上结果说明miR-376c-5p可能通过靶向PIK3CA抑制脂肪生成,研究结果为miRNA在分子水平上的研究提供了一定的理论依据。
中图分类号:
宋湘怡, 曹行, 刘武军, 蒋琳. miR-376c-5p靶向PIK3CA对前体脂肪细胞脂肪沉积的影响[J]. 畜牧兽医学报, 2025, 56(10): 4914-4924.
SONG Xiangyi, CAO Hang, LIU Wujun, JIANG Lin. miR-376c-5p Regulates Lipid Accumulation in Preadipocytes by Targeting PIK3CA[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(10): 4914-4924.
表 1
qPCR引物信息"
| 基因Gene | 序列(5′→3′)Sequence |
| miR-376c-5p | RT:GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAAACAT |
| F:CGCGGTGGATATTCCGTCT | |
| R:AGTGCAGGGTCCGAGGTATT | |
| PIK3CA | F:CACCTGAACAGACAAGTAGAGGC |
| R:GCAAAGCATCCATGAAGTCTGGC | |
| PPARγ | F:CGGAAGCCCTTTGGTGACTT |
| R:CCTCGATGGGCTTCACGTTC | |
| ACACA | F:CCGCCAGCCTGAGTTCTTTT |
| R:ATCGGGAGTGCTGGTTTAGC | |
| FASN | F:GGGTCTATGCCACGATTC |
| R:GTGTCCCATGTTGGATTTG | |
| ADIPOQ | F:GGCAGGAAAGGAGAACCTGG |
| R:AGCCTTGTCCTTCTTGAAGAG | |
| U6 | F:TCGCTTCGGCAGCACATA |
| R:TTTGCGTGTCATCCTTGC | |
| 18S | F:GTAACCCGTTGAACCCCATT |
| R:CCATCCAATCGGTAGTAGCG |
表 2
miRNA序列的保守性分析"
| 物种 Species | 名称 Name | 登录号 Accession number | 引物长度/nt Length | 序列(5′→3′) Sequence |
| 绵羊Sheep | oar-miR-376c-5p | MIMAT0019279 | 21 | GUGGAUAUUCCGUCUAUGUUU |
| 小鼠Mouse | mmu-miR-376c-5p | MIMAT0005295 | 22 | GUGGAUAUUCCUUCUAUGUUUA |
| 大鼠Rat | rno-miR-376c-5p | MIMAT0017219 | 21 | GUGGAUAUUCCUUCUAUGUUU |
| 人Human | hsa-miR-376c-5p | MIMAT0022861 | 21 | GGUGGAUAUUCCUUCUAUGUU |
| 猕猴Macaca mulatta | mml-miR-376c-5p | MIMAT0026863 | 22 | GUGGAUAUUCCUUCUAUGUUUA |
| 1 | 黄红涛, 冯若楠, 夏天宇, 等. 脂肪对肉品质的影响[J]. 畜牧兽医杂志, 2018, 37 (1): 59- 60. |
| HUANG H T , FENG R N , XIA T Y , et al. Influence of fat on meat quality[J]. Journal of Animal Science and Veterinary Medicine, 2018, 37 (1): 59- 60. | |
| 2 | 李银, 韦洋洋, 蒋钦杨, 等. 动物肌内脂肪沉积的影响因素及其分子机制[J]. 动物营养学报, 2024, 36 (3): 1502- 1514. |
| LI Y , WEI Y Y , JIANG Q Y , et al. Influencing factors and molecular mechanisms of intramuscular fat deposition in animals[J]. Chinese Journal of Animal Nutrition, 2024, 36 (3): 1502- 1514. | |
| 3 |
KNAPIK J , ROPKA-MOLIK K , PIESZKA M . Genetic and nutritional factors determining the production and quality of sheep meat—a review[J]. Ann Anim Sci, 2017, 17 (1): 23- 36.
doi: 10.1515/aoas-2016-0036 |
| 4 |
WANG J , ZHANG X , WANG X , et al. Polymorphism and expression of the HMGA1 gene and association with tail fat deposition in Hu sheep[J]. Anim Biotechnol, 2023, 34 (4): 1626- 1634.
doi: 10.1080/10495398.2021.1998093 |
| 5 | 张越, 曹贵方. 绵羊尾脂沉积的研究进展[J]. 当代畜禽养殖业, 2022 (4): 16- 18. |
| ZHANG Y , CAO G F . Research progress of tail fat deposition in sheep[J]. Modern Animal Husbandry, 2022 (4): 16- 18. | |
| 6 |
SU X H , HE H Y , FANG C , et al. Transcriptome profiling of LncRNAs in sheep tail fat deposition[J]. Anim Biotechnol, 2023, 34 (4): 900- 910.
doi: 10.1080/10495398.2021.2002882 |
| 7 |
YUAN Z , LIU E , LIU Z , et al. Selection signature analysis reveals genes associated withtail type in Chinese indigenous sheep[J]. Anim Genet, 2017, 48 (1): 55- 66.
doi: 10.1111/age.12477 |
| 8 |
ZHANG W , XU M , WANG J , et al. Comparative transcriptome analysis of key genes and pathways activated in response to fat deposition in two sheep breeds with distinct tail phenotype[J]. Front Genet, 2021, 12, 639030.
doi: 10.3389/fgene.2021.639030 |
| 9 | 赵奎, 庞全海. MicroRNA研究进展[J]. 生物技术通报, 2010 (12): 7- 11. |
| ZHAO K , PANG Q H . Research progress of MicroRNA[J]. Biotechnology Bulletin, 2010 (12): 7- 11. | |
| 10 |
MA Y S , YU F , ZHONG X M , et al. miR-30 family reduction maintains self-renewal andpromotes tumorigenesis in NSCLC-initiating cells by targeting oncogene TM4SF1[J]. Mol Ther, 2018, 26 (12): 2751- 2765.
doi: 10.1016/j.ymthe.2018.09.006 |
| 11 |
ZHANG B . MicroRNA: a new target for improving plant tolerance to abiotic stress[J]. J Exp Bot, 2015, 66 (7): 1749- 1761.
doi: 10.1093/jxb/erv013 |
| 12 |
冉宏标, 王会, 柴志欣, 等. miR-138靶向PGC-1α调控牦牛肌内前体脂肪细胞增殖及分化[J]. 畜牧兽医学报, 2022, 53 (10): 3434- 3447.
doi: 10.11843/j.issn.0366-6964.2022.10.016 |
|
RAN H B , WANG H , CHAI Z X , et al. miR-138 regulates proliferation and differentiation of intramuscular preadipocyte by targeting PGC-1α in yak[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (10): 3434- 3447.
doi: 10.11843/j.issn.0366-6964.2022.10.016 |
|
| 13 |
张寒月, 赵丹, 梁煜, 等. miR-150靶向AOC3调控绵羊前体脂肪细胞分化的研究[J]. 畜牧兽医学报, 2023, 54 (8): 3262- 3274.
doi: 10.11843/j.issn.0366-6964.2023.08.013 |
|
ZHANG H Y , ZHAO D , LIANG Y , et al. miR-150 Regulates Ovine Preadipocyte Differentiation by Targeting AOC3[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (8): 3262- 3274.
doi: 10.11843/j.issn.0366-6964.2023.08.013 |
|
| 14 | 徐小春. 绵羊尾部脂肪代谢相关调控基因的作用研究[D]. 杨凌: 西北农林科技大学, 2015. |
| XU X C. Study on the role of regulatory genes related to tail fat metabolism in sheep[D]. Yangling: Northwest A&F University, 2015. (in Chinese) | |
| 15 |
FERNYHOUGH M E , VIERCK J L , HAUSMAN G J , et al. Primary adipocyte culture: adipocyte purification methods may lead to a new understanding of adipose tissue growth and development[J]. Cytotechnology, 2004, 46, 163- 172.
doi: 10.1007/s10616-005-2602-0 |
| 16 |
DANI C , SMITH A G , DESSOLIN S , et al. Differentiation of embryonic stem cells into adipocytes in vitro[J]. J Cell Sci, 1997, 110 (11): 1279- 1285.
doi: 10.1242/jcs.110.11.1279 |
| 17 |
PITTENGER M F , MACKAY A M , BECK S C , et al. Multilineage potential of adult human-mesenchymal stem cells[J]. Science, 1999, 284 (5411): 143- 147.
doi: 10.1126/science.284.5411.143 |
| 18 |
LI H , CHEN X , GUAN L , et al. MiRNA-181a regulates adipogenesis by targeting tumornecrosis factor-α (TNF-α) in the porcine model[J]. PloS One, 2013, 8 (10): e71568.
doi: 10.1371/journal.pone.0071568 |
| 19 | 费晓娟, 金美林, 李桃桃, 等. miR-61与PIK3R5在绵羊尾部脂肪中的表达及其靶向关系验证[J]. 中国畜牧杂志, 2022, 58 (7): 148- 155. |
| FEI X J , JIN M L , LI T T , et al. Expression of miR-61 and PIK3R5 in sheep tail fat and verification of their targeting relationship[J]. Chinese Journal of Animal Science, 2022, 58 (7): 148- 155. | |
| 20 | ZHOU G , JIANG H , MA L . MicroRNA-376a inhibits cell proliferation and invasion in osteosarcoma via directly targeting SATB1[J]. Mol Med Rep, 2018, 18 (3): 3521- 3528. |
| 21 | YAO S , LIU Y , YAO Z , et al. MicroRNA-376a regulates cell proliferation and apoptosis by targeting forkhead box protein P2 in lymphoma[J]. Oncol Lett, 2018, 16 (3): 3169- 3176. |
| 22 |
MO Z H , WU X D , LI S , et al. Expression and clinical significance of microRNA-376a in colorectal cancer[J]. Asian Pac J Cancer Prev, 2014, 15 (21): 9523- 9527.
doi: 10.7314/APJCP.2014.15.21.9523 |
| 23 | LI Y , WU Y , SUN Z , et al. MicroRNA-376a inhibits cell proliferation and invasion in glioblastoma multiforme by directly targeting specificity protein 1[J]. Mol Med Rep, 2018, 17 (1): 1583- 1590. |
| 24 |
CARRER M , LIU N , GRUETER C E , et al. Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378[J]. PANS, 2012, 109 (38): 15330- 15335.
doi: 10.1073/pnas.1207605109 |
| 25 |
XU S , CHEN P , SUN L . Regulatory networks of non-coding RNAs in brown/beige adipogenesis[J]. Biosci Rep, 2015, 35 (5): e00262.
doi: 10.1042/BSR20150155 |
| 26 |
KANG Z , ZHANG S , JIANG E , et al. circFLT1 and lncCCPG1 sponges miR-93 to regulate the proliferation and differentiation of adipocytes by promoting lncSLC30A9 expression[J]. Mol Ther-nucl Acids, 2020, 22, 484- 499.
doi: 10.1016/j.omtn.2020.09.011 |
| 27 |
CORREIA DE SOUSA M , GJORGJIEVA M , DOLICKA D , et al. Deciphering miRNAs' action through miRNA editing[J]. IJMS, 2019, 20 (24): 6249.
doi: 10.3390/ijms20246249 |
| 28 |
SU J L , CHEN P S , JOHANSSON G , et al. Function and regulation of let-7 family microRNAs[J]. Microrna, 2012, 1 (1): 34- 39.
doi: 10.2174/2211536611201010034 |
| 29 |
FABIAN M R , SONENBERG N , FILIPOWICZ W . Regulation of mRNA translation and stability by microRNAs[J]. Annu Rev Biochem, 2010, 79 (1): 351- 379.
doi: 10.1146/annurev-biochem-060308-103103 |
| 30 |
FEI X , JIN M , WANG Y , et al. Transcriptome reveals key microRNAs involved in fat deposition between different tail sheep breeds[J]. PloS One, 2022, 17 (3): e0264804.
doi: 10.1371/journal.pone.0264804 |
| 31 |
JIANG Y , QIAN H Y . Transcription factors: Key regulatory targets of vascular smooth muscle cell in atherosclerosis[J]. Mol Med, 2023, 29 (1): 2.
doi: 10.1186/s10020-022-00586-2 |
| 32 | ZAMMIT P S. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis[C]. Semin Cell Dev Biol, Academic Press, 2017, 72: 19-32. |
| 33 |
CROCE C M . Causes and consequences of microRNA dysregulation in cancer[J]. Nat Rev Genet, 2009, 10 (10): 704- 714.
doi: 10.1038/nrg2634 |
| 34 |
MENS M M J , GHANBARI M . Cell cycle regulation of stem cells by microRNAs[J]. Stem Cell Rev Rep, 2018, 14, 309- 322.
doi: 10.1007/s12015-018-9808-y |
| 35 |
虎巧燕, 翟相钦, 李一丹, 等. Bta-miR-101对牛睾丸支持细胞增殖、凋亡及分泌的影响[J]. 畜牧兽医学报, 2024, 55 (3): 1040- 1051.
doi: 10.11843/j.issn.0366-6964.2024.03.017 |
|
HU Q Y , ZHAI X Q , LI Y D , et al. Effects of bta-miR-101 on proliferation, apoptosis and secretion of bovine testicular sertoli cells[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (3): 1040- 1051.
doi: 10.11843/j.issn.0366-6964.2024.03.017 |
|
| 36 |
贾宇航, 郭良富, 张茹楠, 等. miR-127调控绵羊骨骼肌细胞增殖分化及其转录因子PAX3筛选[J]. 畜牧兽医学报, 2024, 55 (9): 3864- 3875.
doi: 10.11843/j.issn.0366-6964.2024.09.012 |
|
JIA Y H , GUO L F , ZHANG R N , et al. Regulation of proliferation and differentiation of ovine skeletal muscle cells by miR-127 and screening of its transcription factor PAX3[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (9): 3864- 3875.
doi: 10.11843/j.issn.0366-6964.2024.09.012 |
|
| 37 | PICARD B , LEFAUCHEUR L , BERRI C , et al. Muscle fibre ontogenesis in farm animal species[J]. RND, 2002, 42 (5): 415- 431. |
| 38 |
OSAKI M , OSHIMURA M , ITO H . PI3K-Akt pathway: its functions and alterations in human cancer[J]. Apoptosis, 2004, 9, 667- 676.
doi: 10.1023/B:APPT.0000045801.15585.dd |
| 39 | 李蕾, 沈铿. PIK3CA基因在浆液性卵巢癌中的拷贝数扩增分析及其机制探讨[J]. 现代妇产科进展, 2017, 26 (7): 481- 484. |
| LI L , SHEN K . Analysis of copy-number amplification of PIK3CA gene in serous ovarian cancer and exploration of its mechanism[J]. Progress in Obstetrics and Gynecology, 2017, 26 (7): 481- 484. | |
| 40 | 潘蕾蕾, 江卫兵, 方芳, 等. MiR-152-3p靶向PIK3CA基因对乳腺癌细胞生物学特性的调控及其机制[J]. 新乡医学院学报, 2019, 36 (12): 1130- 1136. |
| PAN L L , JIANG W B , FANG F , et al. Regulation of biological characteristics of breast cancer cells by miR-152-3p targeting pik3ca gene and its mechanism[J]. Journal of Xinxiang Medical University, 2019, 36 (12): 1130- 1136. |
| [1] | 郑梦馨, 陈晓东, 张腱皓, 张桂杰. 哺乳期滩羔羊添加维生素A对生长性能及肉品质的影响[J]. 畜牧兽医学报, 2025, 56(10): 5039-5049. |
| [2] | 陈倩玲, 沙玉柱, 刘秀, 邵鹏阳, 王翻兄, 陈小伟, 杨文鑫, 谢转回, 高敏, 黄薇. 肠道微生物与线粒体互作调控动物脂肪沉积的研究进展[J]. 畜牧兽医学报, 2024, 55(6): 2293-2303. |
| [3] | 梁淑怡, 李凡, 江青艳, 王松波. 脯氨酸羟化酶(PHDs)对动物骨骼肌发育和脂肪沉积的调控作用及其机制[J]. 畜牧兽医学报, 2024, 55(3): 867-873. |
| [4] | 韩皓哲, 帖子航, 庞卫军, 蔡瑞. IGF2BP2介导的m6A修饰调控动物脂肪沉积的研究进展[J]. 畜牧兽医学报, 2023, 54(9): 3605-3612. |
| [5] | 金美林, 李桃桃, 孙东晓, 魏彩虹. 表观遗传调控在畜禽脂肪沉积机制中的研究进展[J]. 畜牧兽医学报, 2023, 54(3): 855-867. |
| [6] | 宋淑珍, 刘俊斌, 朱才业, 徐红伟, 刘立山, 孔艳龙. 断尾对兰州大尾羊生长性能、脂肪沉积分布和屠宰性能的影响[J]. 畜牧兽医学报, 2023, 54(2): 642-655. |
| [7] | 翟丽维, 赵延辉, 李文军, 邢凯, 王楚端. 系统分析多组织转录组鉴定影响猪脂肪沉积的关键基因[J]. 畜牧兽医学报, 2022, 53(6): 1702-1711. |
| [8] | 王远霞, 刘秀婷, 章啸君, 项云, 徐娥, 吕文涛, 杨华, 肖英平. 金华猪回肠菌群结构和脂肪酸结合蛋白发育性变化与脂肪沉积的相关性研究[J]. 畜牧兽医学报, 2021, 52(3): 723-732. |
| [9] | 李武峰, 孙瑜彤, 关家伟, 赵婧微, 杜敏. 驴肌内脂肪沉积关键调控因子研究[J]. 畜牧兽医学报, 2021, 52(2): 364-375. |
| [10] | 刘天义, 冯卉, Salsabeel Yousuf, 解领丽, 苗向阳. 多浪羊与小尾寒羊皮下脂肪组织转录组分析[J]. 畜牧兽医学报, 2021, 52(12): 3403-3412. |
| [11] | 岳永起, 华永琳, 熊燕, 林亚秋, 熊显荣, 李键. microRNA调控动物皮下脂肪组织和肌内脂肪沉积的研究进展[J]. 畜牧兽医学报, 2021, 52(10): 2698-2709. |
| [12] | 王璟, 滑留帅, 陈俊峰, 张家庆, 任巧玲, 白红杰, 郭红霞, 徐照学, 邢宝松, 白献晓, 曹海. 去势对淮南公猪背最长肌转录组的影响[J]. 畜牧兽医学报, 2019, 50(9): 1746-1758. |
| [13] | 苑洪霞, 骆金红, 冯文武, 陈祥. 猪LYRM1基因对脂肪沉积的影响研究[J]. 畜牧兽医学报, 2019, 50(4): 677-687. |
| [14] | 张统雨, 樊红樱, 朱才业, 刘家鑫, 邓天宇, 杜立新, 王立贤, 赵福平. 利用可变窗口FST方法检测不同尾型呼伦贝尔羊尾部脂肪沉积相关基因[J]. 畜牧兽医学报, 2018, 49(7): 1354-1365. |
| [15] | 李嫒, 张秀秀, 黄万龙, 解领丽, 苗向阳. 大白猪和莱芜猪肌内脂肪组织circRNAs的鉴定与分析[J]. 畜牧兽医学报, 2018, 49(7): 1343-1353. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||