

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (10): 4925-4937.doi: 10.11843/j.issn.0366-6964.2025.10.014
何思琦1,2(
), 陈倩2, 蒋琳2, 马月辉2, 周胜花1,*(
), 赵倩君2,*(
)
收稿日期:2025-03-13
出版日期:2025-10-23
发布日期:2025-11-01
通讯作者:
周胜花,赵倩君
E-mail:hesiqiovo@163.com;ZSH991109@163.com;zhaoqianjun@caas.cn
作者简介:何思琦(2000-),女,山西临汾人,硕士生,主要从事动物遗传育种研究,E-mail: hesiqiovo@163.com
基金资助:
HE Siqi1,2(
), CHEN Qian2, JIANG Lin2, MA Yuehui2, ZHOU Shenghua1,*(
), ZHAO Qianjun2,*(
)
Received:2025-03-13
Online:2025-10-23
Published:2025-11-01
Contact:
ZHOU Shenghua, ZHAO Qianjun
E-mail:hesiqiovo@163.com;ZSH991109@163.com;zhaoqianjun@caas.cn
摘要:
旨在探究甲基转移酶样14(methyltransferase-like 14,METTL14)影响绵羊骨骼肌卫星细胞(skeletal muscle satellite cells,SMSCs)成肌分化的分子机制,为解析METTL14调控绵羊骨骼肌卫星细胞分化的分子机制提供理论基础。本研究对SMSCs进行分离并鉴定,将METTL14过表达质粒及对照质粒分别转染进入SMSCs,通过RT-qPCR和Western blot检测其过表达效率及METTL14影响SMSCs分化的功能。对SMSCs过表达METTL14组(OE-14)和对照组(OE-NC)进行转录组测序,以P<0.05且log2|Fold Change|>1为阈值鉴定差异表达基因,进行GO和KEGG富集分析及PPI蛋白质网络互作分析。METTL14过表达能够显著增加SMSCs中METTL14的表达及成肌分化相关基因(MyHC、MyoG)的mRNA和蛋白水平,表明METTL14过表达成功,且METTL14能够促进SMSCs的分化。两组中共鉴定到259个差异表达基因,与OE-NC相比,OE-14共有45个基因表达上调,214个基因表达下调。差异基因主要富集到细胞核通路、Rap1信号通路等。PPI蛋白质网络互作分析筛选出8个枢纽基因(Degree≥15), 包括MX1、RSAD2、IFIH1、DDX58、HERC5、ISG15、MX2以及IRF7。本研究表明METTL14通过影响细胞进程和肌肉发育相关的基因和信号通路促进绵羊骨骼肌卫星细胞的分化。
中图分类号:
何思琦, 陈倩, 蒋琳, 马月辉, 周胜花, 赵倩君. 基于转录组测序分析METTL14对绵羊骨骼肌卫星细胞成肌分化的影响[J]. 畜牧兽医学报, 2025, 56(10): 4925-4937.
HE Siqi, CHEN Qian, JIANG Lin, MA Yuehui, ZHOU Shenghua, ZHAO Qianjun. The Effect of METTL14 on Myogenic Differentiation of Ovine Skeletal Muscle Satellite Cells Based on Transcriptome Sequencing Analysis[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(10): 4925-4937.
表 1
用于RT-qPCR的引物"
| 基因 Gene | 引物序列(5′→3′) Primer sequence | 登录号 Accession number | 退火温度/℃ Annealing temperature | 产物大小/bp Product size |
| METTL14 | F:AGATTGCAGCACCTCGATCA | XM_004009592.6 | 60 | 87 |
| R:CCCACTTGCGTAAACACACT | ||||
| MyHC | F:CTGTCCAAGTTCCGCAAGGT | XM_004010325.4 | 60 | 182 |
| R:GAGCTTCGTTGCACCCTCAA | ||||
| MyoG | F:GAGAACTACCTGCCTGTCCAC | NM_001174109.1 | 60 | 251 |
| R:GCCTCGAAGGCTTCATTCAC | ||||
| MX2 | F:ACTGGGGCAGACAATGAGTC | NM_001078652.1 | 60 | 149 |
| R:GGTTGTTTTCGGACCCCTTT | ||||
| RSAD2 | F:TGGTTCCAGAAGTACGGTGA | XM_004005669.5 | 60 | 79 |
| R:TAAGGACGTTGACCTGCTCG | ||||
| IFI35 | F:GCGGGGACTTCAACGAAAGG | XM_004012955.6 | 60 | 182 |
| R:GCCTGGAGAGCCGACACAG | ||||
| PGAM2 | F:GTCCATCAGCAAGGAGCGT | XM_004018189.5 | 60 | 186 |
| R:TGCTTGACGATTCCCCGTAG | ||||
| RERG | F:CAACCTACCGACACCAAGCA | XM_012175305.4 | 60 | 86 |
| R:CTGAATGGTGTCTTCCTGCCC | ||||
| GAPDH | F:GGGTCATCATCTCTGCACCT | NM_001190390.1 | 60 | 176 |
| R:GGTCATAAGTCCCTCCACGA |
表 2
OE-NC组与OE-14组的转录组测序数据分析"
| 样本 Sample | 原始碱基数/bp Raw datas | 过滤后碱基数/bp Clean datas | 过滤后读数 Clean reads | 比对率/% Ratio | Q20/% | Q30/% | GC含量/% GC content |
| OE-NC-1 | 11 617 995 000 | 11 478 734 663 | 77 185 284 | 95.59 | 98.02 | 94.12 | 48.98 |
| OE-NC-2 | 11 786 511 900 | 11 660 724 465 | 78 254 396 | 95.51 | 97.97 | 94.01 | 48.81 |
| OE-NC-3 | 11 790 966 300 | 11 668 905 187 | 78 291 154 | 95.73 | 97.97 | 94.02 | 49.21 |
| OE-14-1 | 12 070 909 800 | 11 943 452 847 | 80 182 260 | 95.55 | 98.03 | 94.14 | 49.85 |
| OE-14-2 | 11 967 072 600 | 11 842 913 088 | 79 510 606 | 95.52 | 98.03 | 94.12 | 49.12 |
| OE-14-3 | 12 023 415 300 | 11 914 845 248 | 79 901 354 | 95.59 | 97.99 | 93.94 | 49.61 |
| 1 | 李雪娇, 刘晨曦, 孙亚伟, 等. 德国美利奴羊胎儿期骨骼肌组织学结构发育特征研究[J]. 西北农林科技大学学报(自然科学版), 2018, 46 (5): 1- 7. |
| LI X J , LIU C X , SUN Y W , et al. Study on structure development characteristics of German Merino sheep fetal skeletal muscle tissue[J]. Journal of Northwest A & F University(Natural Science Edition), 2018, 46 (5): 1- 7. | |
| 2 | 李伯江, 李平华, 吴望军, 等. 骨骼肌肌纤维形成机制的研究进展[J]. 中国农业科学, 2014, 47 (6): 1200- 1207. |
| LI B J , LI P H , WU W J , et al. Progresses in research of the mechanisms of skeletal muscle fiber Formation[J]. Scientia Agricultura Sinica, 2014, 47 (6): 1200- 1207. | |
| 3 |
BISCHOFF R . Enzymatic liberation of myogenic cells from adult rat muscle[J]. Anat Rec, 1974, 180 (4): 645- 661.
doi: 10.1002/ar.1091800410 |
| 4 |
DODSON M V , MARTIN E L , BRANNON M A , et al. Optimization of bovine satellite cell-derived myotube formation in vitro[J]. Tissue Cell, 1987, 19 (2): 159- 166.
doi: 10.1016/0040-8166(87)90001-2 |
| 5 |
WU H , REN Y , LI S , et al. In vitro culture and induced differentiation of sheep skeletal muscle satellite cells[J]. Cell Biol Int, 2012, 36 (6): 579- 587.
doi: 10.1042/CBI20110487 |
| 6 |
LIU H H , LI L , CHEN X , et al. Characterization of in vitro cultured myoblasts isolated from duck (Anas platyrhynchos) embryo[J]. Cytotechnology, 2011, 63 (4): 399- 406.
doi: 10.1007/s10616-011-9356-7 |
| 7 |
SEALE P , SABOURIN L A , GIRGIS-GABARDO A , et al. Pax7 is required for the specification of myogenic satellite cells[J]. Cell, 2000, 102 (6): 777- 786.
doi: 10.1016/S0092-8674(00)00066-0 |
| 8 | SCHULTZ E . Satellite cell behavior during skeletal muscle growth and regeneration[J]. Med Sci Sports Exerc, 1989, 21 (5 Suppl): S181- 186. |
| 9 | WHITE T P , ESSER K A . Satellite cell and growth factor involvement in skeletal muscle growth[J]. Med Sci Sports Exerc, 1989, 21 (5 Suppl): S158- 163. |
| 10 |
WAGERS A J , CONBOY I M . Cellular and molecular signatures of muscle regeneration: current concepts and controversies in adult myogenesis[J]. Cell, 2005, 122 (5): 659- 667.
doi: 10.1016/j.cell.2005.08.021 |
| 11 |
VON MALTZAHN J , JONES A E , PARKS R J , et al. Pax7 is critical for the normal function of satellite cells in adult skeletal muscle[J]. Proc Natl Acad Sci U S A, 2013, 110 (41): 16474- 16479.
doi: 10.1073/pnas.1307680110 |
| 12 | FENG X , NAZ F , JUAN A H , et al. Identification of skeletal muscle satellite cells by immuno-fluorescence with Pax7 and laminin antibodies[J]. J Vis Exp, 2018 (134): 57212. |
| 13 | 李欣, 于永生, 张立春, 等. 绵羊骨骼肌卫星细胞分离培养、鉴定与成肌诱导分化[J]. 中国畜牧兽医, 2021, 48 (4): 1204- 1210. |
| LI X , YU Y S , ZHANG L C , et al. Isolation, culture, identification and myognic differentiation of sheep skeletal muscle satellite cells[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48 (4): 1204- 1210. | |
| 14 |
DHAWAN J , RANDO T A . Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment[J]. Trends Cell Biol, 2005, 15 (12): 666- 673.
doi: 10.1016/j.tcb.2005.10.007 |
| 15 |
CORNELISON D D , WOLD B J . Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells[J]. Dev Biol, 1997, 191 (2): 270- 283.
doi: 10.1006/dbio.1997.8721 |
| 16 | 张笑, 贾桂芳. RNA表观遗传修饰: N6-甲基腺嘌呤[J]. 遗传, 2016, 38 (4): 275- 288. |
| ZHANG X , JIA G F . RNA epigenetic modification: N6-methyladenosine[J]. Hereditas, 2016, 38 (4): 275- 288. | |
| 17 |
LIU J , YUE Y , HAN D , et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation[J]. Nat Chem Biol, 2014, 10 (2): 93- 95.
doi: 10.1038/nchembio.1432 |
| 18 |
WANG P , DOXTADER K A , NAM Y . Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases[J]. Mol Cell, 2016, 63 (2): 306- 317.
doi: 10.1016/j.molcel.2016.05.041 |
| 19 | YANG X , MEI C , MA X , et al. m(6)A methylases regulate myoblast proliferation, apoptosis and differentiation[J]. Animals (Basel), 2022, 12 (6): 773. |
| 20 | CHEN B , LIU S , ZHANG W , et al. Profiling analysis of N6-methyladenosine mRNA methylation reveals differential m6A patterns during the embryonic skeletal muscle development of ducks[J]. Animals (Basel), 2022, 12 (19): 2593. |
| 21 |
JIANG Q , XU T , ZHOU H , et al. METTL14 regulates proliferation and differentiation of duck myoblasts through targeting MiR-133b[J]. PLoS One, 2025, 20 (3): e0320659.
doi: 10.1371/journal.pone.0320659 |
| 22 |
PETROSINO J M , HINGER S A , GOLUBEVA V A , et al. The m(6)A methyltransferase METTL3 regulates muscle maintenance and growth in mice[J]. Nat Commun, 2022, 13 (1): 168.
doi: 10.1038/s41467-021-27848-7 |
| 23 |
TAN B , ZENG J , MENG F , et al. Comprehensive analysis of pre-mRNA alternative splicing regulated by m6A methylation in pig oxidative and glycolytic skeletal muscles[J]. BMC Genomics, 2022, 23 (1): 804.
doi: 10.1186/s12864-022-09043-0 |
| 24 | 束婧婷, 单艳菊, 姬改革, 等. 广西麻鸡m6A甲基转移酶基因表达与肌纤维类型及成肌分化的关系[J]. 中国农业科学, 2022, 55 (3): 589- 601. |
| SHU J T , SHAN Y J , JI G G , et al. Relationship between expression levels of guangxi partridge chicken m6A methyltransferase genes, myofiber types and myogenic differentiation[J]. Scientia Agricultura Sinica, 2022, 55 (3): 589- 601. | |
| 25 | 马兰花. METTL14基因在牦牛前体脂肪细胞增殖分化和脂质沉积中的作用[D]. 兰州: 西北民族大学, 2022. |
| MA L H. The role of METTL14 gene in proliferation, differentiationand lipid deposition of yak preadipocytes[D]. Lanzhou: Northwest Minzu University, 2022. (in Chinese) | |
| 26 | 张丹, 陈博雯, 杨博辉, 等. 湖羊m6A甲基转移酶METTL14基因CDS序列克隆及表达谱分析[J]. 南方农业学报, 2023, 54 (10): 3047- 3055. |
| ZHANG D , CHEN B W , YANG B H , et al. Cloning and expression profile analysis of CDS sequence of m6A methyltransferase METTL14 gene from Hu sheep[J]. Journal of Southern Agriculture, 2023, 54 (10): 3047- 3055. | |
| 27 | 丁浩, 林月月, 张涛, 等. m6A甲基化在鸡肌肉生长发育中的表达研究[J]. 中国畜牧兽医, 2021, 48 (5): 1525- 1534. |
| DING H , LIN Y Y , ZHANG T , et al. Study on the Expression of m6A Methylation in Chicken Muscle Growth and Development[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48 (5): 1525- 1534. | |
| 28 | 杨海平, 戴敏, 张东华. 细胞因子信号传导抑制蛋白-1(SOCS-1)研究进展[J]. 中国实验血液学杂志, 2007 (2): 437- 440. |
| YANG H P , DAI M , ZHANG D H . Progress of study on suppressor of cytokine signaling-1——review[J]. Journal of Experimental Hematology, 2007 (2): 437- 440. | |
| 29 |
DEYHLE M R , HAFEN P S , PARMLEY J , et al. CXCL10 increases in human skeletal muscle following damage but is not necessary for muscle regeneration[J]. Physiol Rep, 2018, 6 (8): e13689.
doi: 10.14814/phy2.13689 |
| 30 |
BERKES C A , TAPSCOTT S J . MyoD and the transcriptional control of myogenesis[J]. Semin Cell Dev Biol, 2005, 16 (4-5): 585- 595.
doi: 10.1016/j.semcdb.2005.07.006 |
| 31 |
MASCARELLO F , TONIOLO L , CANCELLARA P , et al. Expression and identification of 10 sarcomeric MyHC isoforms in human skeletal muscles of different embryological origin. Diversity and similarity in mammalian species[J]. Ann Anat, 2016, 207, 9- 20.
doi: 10.1016/j.aanat.2016.02.007 |
| 32 |
XIE S J , LEI H , YANG B , et al. Dynamic m(6)A mRNA methylation reveals the role of METTL3/14-m(6)A-MNK2-ERK signaling axis in skeletal muscle differentiation and regeneration[J]. Front Cell Dev Biol, 2021, 9, 744171.
doi: 10.3389/fcell.2021.744171 |
| 33 | 董可为, 沈尧, 王帅, 等. WTAP通过上调糖酵解抑制结直肠癌细胞分化[J]. 空军军医大学学报, 2024, 45 (3): 298-302+310. |
| DONG K W , SHEN Y , WANG S , et al. WTAP inhibits colorectal cancer cell differentiation by up-regulating glycolysis[J]. Journal of Air Force Medical University, 2024, 45 (3): 298-302+310. | |
| 34 | 刘铃, 王圣楠, 王丹丹, 等. Zbed6基因敲除对小鼠骨骼肌生长发育的影响及其分子作用机制研究[J]. 中国畜牧兽医, 2023, 50 (9): 3641- 3651. |
| LIU L , WANG S N , WANG D D , et al. Effect and molecular mechanism of Zbed6 gene knockout on the frowth and development of skeletal muscle in mice[J]. China Animal Husbandry & Veterinary Medicine, 2023, 50 (9): 3641- 3651. | |
| 35 |
GAO X Q , ZHANG Y H , LIU F , et al. The piRNA CHAPIR regulates cardiac hypertrophy by controlling METTL3-dependent N(6)-methyladenosine methylation of Parp10 mRNA[J]. Nat Cell Biol, 2020, 22 (11): 1319- 1331.
doi: 10.1038/s41556-020-0576-y |
| 36 |
LIU Z , ZHANG X , LEI H , et al. CASZ1 induces skeletal muscle and rhabdomyosarcoma differentiation through a feed-forward loop with MYOD and MYOG[J]. Nat Commun, 2020, 11 (1): 911.
doi: 10.1038/s41467-020-14684-4 |
| 37 |
AMIN N M , GIBBS D , CONLON F L . Differential regulation of CASZ1 protein expression during cardiac and skeletal muscle development[J]. Dev Dyn, 2014, 243 (7): 948- 956.
doi: 10.1002/dvdy.24126 |
| 38 |
KAMALUDIN A A , SMOLARCHUK C , BISCHOF J M , et al. Muscle dysfunction caused by loss of Magel2 in a mouse model of Prader-Willi and Schaaf-Yang syndromes[J]. Hum Mol Genet, 2016, 25 (17): 3798- 3809.
doi: 10.1093/hmg/ddw225 |
| 39 |
FERREIRA F J , CARVALHO L , LOGARINHO E , et al. foxm1 modulates cell non-autonomous response in zebrafish skeletal muscle homeostasis[J]. Cells, 2021, 10 (5): 1241.
doi: 10.3390/cells10051241 |
| 40 |
NEJAD F M , MOHAMMADABADI M , ROUDBARI Z , et al. Network visualization of genes involved in skeletal muscle myogenesis in livestock animals[J]. BMC Genomics, 2024, 25 (1): 294.
doi: 10.1186/s12864-024-10196-3 |
| 41 |
KITAJIMA Y , YOSHIOKA K , SUZUKI N . The ubiquitin-proteasome system in regulation of the skeletal muscle homeostasis and atrophy: from basic science to disorders[J]. J Physiol Sci, 2020, 70 (1): 40.
doi: 10.1186/s12576-020-00768-9 |
| 42 |
PIZON V , MÉCHALI F , BALDACCI G . RAP1A GTP/GDP cycles determine the intracellular location of the late endocytic compartments and contribute to myogenic differentiation[J]. Exp Cell Res, 1999, 246 (1): 56- 68.
doi: 10.1006/excr.1998.4284 |
| 43 |
HAO D , WANG X , WANG X , et al. Transcriptomic changes in bovine skeletal muscle cells after resveratrol treatment[J]. Gene, 2020, 754, 144849.
doi: 10.1016/j.gene.2020.144849 |
| 44 |
WANG Y , WANG J , HU H , et al. Dynamic transcriptome profiles of postnatal porcine skeletal muscle growth and development[J]. BMC Genom Data, 2021, 22 (1): 32.
doi: 10.1186/s12863-021-00984-1 |
| 45 |
ZHAN S , ZHAO W , SONG T , et al. Dynamic transcriptomic analysis in hircine longissimus dorsi muscle from fetal to neonatal development stages[J]. Funct Integr Genomics, 2018, 18 (1): 43- 54.
doi: 10.1007/s10142-017-0573-9 |
| 46 | MOHAMMADINEJAD F , MOHAMMADABADI M , ROUDBARI Z , et al. Identification of key genes and biological pathways associated with skeletal muscle maturation and hypertrophy in Bos taurus, Ovis aries, and Sus scrofa[J]. Animals (Basel), 2022, 12 (24): 3471. |
| 47 |
GLICKMAN M H , CIECHANOVER A . The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction[J]. Physiol Rev, 2002, 82 (2): 373- 428.
doi: 10.1152/physrev.00027.2001 |
| 48 | OLGUÍN H C . The gentle side of the UPS: Ubiquitin-proteasome system and the regulation of the myogenic program[J]. Front Cell Dev Biol, 2021, 9, 821839. |
| 49 |
HORISBERGER M A . Interferon-induced human protein MxA is a GTPase which binds transiently to cellular proteins[J]. J Virol, 1992, 66 (8): 4705- 4709.
doi: 10.1128/jvi.66.8.4705-4709.1992 |
| 50 |
ELLINWOOD N M , MCCUE J M , GORDY P W , et al. Cloning and characterization of cDNAs for a bovine (Bos taurus) Mx protein[J]. J Interferon Cytokine Res, 1998, 18 (9): 745- 755.
doi: 10.1089/jir.1998.18.745 |
| 51 |
SCARAMOZZA A , PARK D , KOLLU S , et al. Lineage tracing reveals a subset of reserve muscle stem cells capable of Clonal expansion under stress[J]. Cell Stem Cell, 2019, 24 (6): 944- 957.
doi: 10.1016/j.stem.2019.03.020 |
| 52 |
CHISTIAKOV D A . Interferon induced with helicase C domain 1 (IFIH1) and virus-induced autoimmunity: a review[J]. Viral Immunol, 2010, 23 (1): 3- 15.
doi: 10.1089/vim.2009.0071 |
| 53 |
WANG Q , XU J , BAO M , et al. Weighted gene co-expression network analysis reveals genes related to growth performance in Hu sheep[J]. Sci Rep, 2024, 14 (1): 13043.
doi: 10.1038/s41598-024-63850-x |
| 54 |
MORESI V , ADAMO S , BERGHELLA L . The JAK/STAT pathway in skeletal muscle pathophysiology[J]. Front Physiol, 2019, 10, 500.
doi: 10.3389/fphys.2019.00500 |
| 55 |
TRENERRY M K , DELLA GATTA P A , CAMERON-SMITH D . JAK/STAT signaling and human in vitromyogenesis[J]. BMC Physiol, 2011, 11, 6.
doi: 10.1186/1472-6793-11-6 |
| 56 |
HUANG L , ZHANG S M , ZHANG P , et al. Interferon regulatory factor 7 protects against vascular smooth muscle cell proliferation and neointima formation[J]. J Am Heart Assoc, 2014, 3 (5): e001309.
doi: 10.1161/JAHA.114.001309 |
| [1] | 胡金玲, 钟奇祺, 黄程, 雷明刚. AKR1B1介导AMPK/mTOR/S6通路调控猪骨骼肌卫星细胞增殖和分化[J]. 畜牧兽医学报, 2025, 56(8): 3722-3733. |
| [2] | 范婧, 李伟, 朱妍, 勿都巴拉, 史佳慧, 胡斯乐, 吴江鸿. 湖羊不同发育期瘤胃形态学变化及基因表达差异研究[J]. 畜牧兽医学报, 2025, 56(8): 3773-3786. |
| [3] | 魏康康, 马贵, 李文迪, 田雨, 张令锴, 朱继红, 胡亚美. 单细胞测序技术在绵羊卵巢生长发育过程中的研究进展[J]. 畜牧兽医学报, 2025, 56(7): 3080-3087. |
| [4] | 张嘉良, 黄畅, 杨永林, 杨华, 白文林, 马月辉, 赵倩君. 基于50K液相芯片的中国绵羊群体遗传结构与羊毛性状选择信号分析[J]. 畜牧兽医学报, 2025, 56(7): 3164-3176. |
| [5] | 刘雨蒙, 高星, 赵雅丽, 曹迪, 芒来, 张心壮. 硒多糖缓解马骨骼肌卫星细胞氧化损伤作用的研究[J]. 畜牧兽医学报, 2025, 56(7): 3357-3367. |
| [6] | 乔利英, 王万年, 张莉, 庞志旭, 张思颖, 李一凡, 刘文忠. 基于基因组标记对绵羊品种分类的机器学习方法研究[J]. 畜牧兽医学报, 2025, 56(5): 2157-2167. |
| [7] | 龚宇轩, 黑伟, 鲍武, 陈佳仪, 李萌, 郭晓红, 李步高. TMEM182基因调控猪骨骼肌卫星细胞成肌分化的研究[J]. 畜牧兽医学报, 2025, 56(4): 1676-1688. |
| [8] | 马应天, 姜璐瑶, 李增开, 秦剑平, 赵建华, 贺玉芳, 宋宇轩, 张磊. 矢车菊素-3-芸香糖苷对奶绵羊精液冷冻保存效果的影响[J]. 畜牧兽医学报, 2025, 56(4): 1768-1778. |
| [9] | 李艳娥, 梁友萍, 樊洁, 吴芳燕, 尧香悦, 李毛却乎, 次仁仓决, 郝桂英, 古小彬. 绵羊痒螨钙网蛋白对兔外周血单个核细胞Th1/Th2和Th17/Treg免疫平衡的影响[J]. 畜牧兽医学报, 2025, 56(4): 1910-1918. |
| [10] | 杨宇婷, 陈国梁, 常巧宁, 鲍武, 刘靖超, 姬梦婷, 荣晓音, 郭晓红, 杨阳, 李步高. miR-375-3p靶向Fam229a调控猪前体脂肪细胞分化[J]. 畜牧兽医学报, 2025, 56(3): 1120-1133. |
| [11] | 杨杨, 李良远, 万鹏程, 卢守亮, 刘长彬, 杨华, 王立民, 代蓉, 周平. 绵羊季节性发情性状核心基因和关键lncRNA的筛选与分析[J]. 畜牧兽医学报, 2025, 56(3): 1264-1277. |
| [12] | 余昕雅, 何海健, 王磊, 倪语晨, 杜静, 周莹珊, 董婉玉, 王晓杜. LncRNA 18850对猪流行性腹泻病毒复制的影响[J]. 畜牧兽医学报, 2025, 56(3): 1366-1375. |
| [13] | 张正雨, 杨培鸿, 郭宏, 李新, 张林林, 郭益文, 胡德宝, 丁向彬. 去乙酰化酶Sirt1对牛骨骼肌卫星细胞增殖和分化的影响[J]. 畜牧兽医学报, 2025, 56(2): 603-610. |
| [14] | 何雨, 王翔宇, 狄冉, 储明星, 梁琛. BMP4/SMAD4通过下调GJA1基因表达影响绵羊卵巢颗粒间隙连接活性[J]. 畜牧兽医学报, 2025, 56(2): 679-688. |
| [15] | 楚翼健, 崔久增, 李增开, 张磊, 褚婷婷, 黄艳平, 宋宇轩. 绵羊子宫内膜容受前期与容受期的阴道微生物比较研究[J]. 畜牧兽医学报, 2025, 56(2): 689-699. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||