[1] TERPOU A,PAPADAKI A,LAPPA I K,et al.Probiotics in food systems:significance and emerging strategies towards improved viability and delivery of enhanced beneficial value[J].Nutrients,2019,11(7):1591. [2] LERNER A,MATTHIAS T,AMINOV R,et al.Potential effects of Horizontal gene exchange in the human gut[J].Front Immunol,2017,27(8):1630. [3] SALMINEN S,COLLADO M C,ENDO A,et al.The international scientific association of probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics[J].Nat Rev Gastroenterol Hepatol,2021,18(9):649-667. [4] LAVELLE A,SOKOL H.Gut microbiota-derived metabolites as key actors in inflammatory bowel disease[J].Nat Rev Gastroenterol Hepatol,2020,17(4):223-237. [5] FISCHBACH M A,SEGRE J A.Signaling in host-associated microbial communities[J].Cell,2016,164(6):1288-1300. [6] ŻOIKIEWICZ J,MARZEC A,RUSZCZYNSKI M,et al.Postbiotics—A step beyond pre- and probiotics[J].Nutrients,2020,12(8):2189. [7] MUROSAKI S,YAMAMOTO Y,ITO K,et al.Heat-killed Lactobacillus plantarum L-137 suppresses naturally fed antigen-specific IgE production by stimulation of IL-12 production in mice[J].J Allergy Clin Immunol,1998,102(1):57-64. [8] TSILINGIRI K,BARBOSA T,PENNA G,et al.Probiotic and postbiotic activity in health and disease:comparison on a novel polarised ex-vivo organ culture model[J].Gut,2012,61(7):1007-1015. [9] OUWEHAND A C,TÖLKKÖ S,KULMALA J,et al.Adhesion of inactivated probiotic strains to intestinal mucus[J].Lett Appl Microbiol,2000,31(1):82-86. [10] ATHALYE-JAPE G,RAO S,SIMMER K,et al.Bifidobacterium breve M-16V as a probiotic for preterm infants:a strain-specific systematic review[J].J Parenter Enteral Nutr,2018,42(4):677-688. [11] KATARIA J,LI N,WYNN J L,et al.Probiotic microbes:do they need to be alive to be beneficial?[J].Nutr Rev,2009,67(9):546-550. [12] ALP D,KULEAŞAN H,KORKUT ALTINTAŞ A.The importance of the S-layer on the adhesion and aggregation ability of Lactic acid bacteria[J].Mol Biol Rep,2020,47(5):3449-3457. [13] XUE C H,ZHANG L W,LI H B,et al.Functionality of the S-layer proteins from Lactobacillus in the competitive against enteropathogens infection[J].Eur Food Res Technol,2013,236(2):249-255. [14] TAVERNITI V,STUKNYTE M,MINUZZO M,et al.S-layer protein mediates the stimulatory effect of Lactobacillus helveticus MIMLh5 on innate immunity[J].Appl Environ Microbiol,2013,79(4):1221-1231. [15] 牛钰涵.表层蛋白对乳杆菌益生性质的影响及其抑菌功能[D].无锡:江南大学,2019. NIU Y H.Effect of surface layer proteins from lactobacillus on the strains’ probiotic properties and their antibacterial function[D].Wuxi:Jiangnan University,2019.(in Chinese) [16] REUNANEN J,VON OSSOWSKI I,HENDRICKX A P A,et al.Characterization of the SpaCBA pilus fibers in the probiotic Lactobacillus rhamnosus GG[J].Appl Environ Microbiol,2012,78(7):2337-2344. [17] CAPURSO L.Thirty years of Lactobacillus rhamnosus GG[J].J Clin Gastroenterol,2019,53(S1):S1-S41. [18] HENDRICKX A P A,BONTEN M J M,VAN LUIT-ASBROEK M,et al.Expression of two distinct types of pili by a hospital-acquired Enterococcus faecium isolate[J].Microbiology (Reading),2008,154(10):3212-3223. [19] HENDRICKX A P A,VAN WAMEL W J B,POSTHUMA G,et al.Five genes encoding surface-exposed LPXTG proteins are enriched in hospital-adapted Enterococcus faecium clonal complex 17 isolates[J].J Bacteriol,2007,189(22):8321-8332. [20] TYTGAT H L P,DOUILLARD F P,REUNANEN J,et al.Lactobacillus rhamnosus GG outcompetes Enterococcus faecium via mucus-binding pili:evidence for a novel and heterospecific probiotic mechanism[J].Appl Environ Microbiol,2016,82(19):5756-5762. [21] CHEN Z Y,LIN S S,JIANG Y,et al.Effects of bread yeast cell wall beta-glucans on mice with loperamide-induced constipation[J].J Med Food,2019,22(10):1009-1021. [22] ROBERFROID M B.Chicory fructooligosaccharides and the gastrointestinal tract[J].Nutrition,2000,16(7-8):677-679. [23] GIBSON G R,ROBERFROID M B.Dietary modulation of the human colonic microbiota:introducing the concept of prebiotics[J].J Nutr,1995,125(6):1401-1412. [24] GANAN M,CARRASCOSA A V,DE PASCUAL-TERESA S,et al.Effect of mannoproteins on the growth,gastrointestinal viability,and adherence to caco-2 cells of lactic acid bacteria[J].J Food Sci,2012,77(3):M176-M180. [25] YAN F,LIU L P,DEMPSEY P J,et al.A Lactobacillus rhamnosus GG-derived soluble protein,p40,stimulates ligand release from intestinal epithelial cells to transactivate epidermal growth factor receptor[J].J Biol Chem,2013,288(42):30742-30751. [26] SCHIAVI E,GLEINSER M,MOLLOY E,et al.The surface-associated exopolysaccharide of Bifidobacterium longum 35624 plays an essential role in dampening host proinflammatory responses and repressing local TH17 responses[J].Appl Environ Microbiol,2016,82(24):7185-7196. [27] YIN M M,YAN X B,WENG W H,et al.Micro integral membrane protein (MIMP),a newly discovered anti-inflammatory protein of lactobacillus plantarum,enhances the gut barrier and modulates microbiota and inflammatory cytokines[J].Cell Physiol Biochem,2018,45(2):474-490. [28] WALTER J,LOACH D M,ALQUMBER M,et al.D-Alanyl ester depletion of teichoic acids in Lactobacillus reuteri 100-23 results in impaired colonization of the mouse gastrointestinal tract[J].Environ Microbiol,2007,9(7):1750-1760. [29] CHELAKKOT C,CHOI Y,KIM D K,et al.Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions[J].Exp Mol Med,2018,50(2):e450. [30] LEBEER S,VANDERLEYDEN J,DE KEERSMAECKER S C J.Host interactions of probiotic bacterial surface molecules:comparison with commensals and pathogens[J].Nat Rev Microbiol,2010,8(3):171-184. [31] LI P C,YU Q H,YE X L,et al.Lactobacillus S-layer protein inhibition of Salmonella-induced reorganization of the cytoskeleton and activation of MAPK signalling pathways in Caco-2 cells[J].Microbiology (Reading),2011,157(9):2639-2646. [32] MARTÍNEZ M G,ACOSTA M P,CANDURRA N A,et al.S-layer proteins of Lactobacillus acidophilus inhibits JUNV infection[J].Biochem Biophys Res Commun,2012,422(4):590-595. [33] 张铭书,夏永军,艾连中,等.益生菌磷壁酸引起的免疫反应研究进展[J].食品科学,2022,43(9):242-248. ZHANG M S,XIA Y J,AI L Z,et al.A review of studies on immunoregulation induced by probiotic teichoic acid[J].Food Science,2022,43(9):242-248.(in Chinese) [34] KIM K W,KANG S S,WOO S J,et al.Lipoteichoic acid of probiotic Lactobacillus plantarum attenuates poly I:C-induced IL-8 production in porcine intestinal epithelial cells[J].Front Microbiol,2017,8:1827. [35] KAJI R,KIYOSHIMA-SHIBATA J,NAGAOKA M,et al.Bacterial teichoic acids reverse predominant IL-12 production induced by certain Lactobacillus strains into predominant IL-10 production via TLR2-dependent ERK activation in macrophages[J].J Immunol,2010,184(7):3505-3513. [36] OTTMAN N,REUNANEN J,MEIJERINK M,et al.Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function[J].PLoS One,2017,12(3):e0173004. [37] LU Y C,YEH W C,OHASHI P S.LPS/TLR4 signal transduction pathway[J].Cytokine,2008,42(2):145-151. [38] 洪 亮,余方流,黄月娥.不同乳酸杆菌肽聚糖对小鼠肠道黏膜的免疫调节作用[J].皖南医学院学报,2019,38(5):419-420,424. HONG L,YU F L,HUANG Y E.Immunomodulatory effects of different lactobacillus peptidoglycans on intestinal mucosa in mice[J].Journal of Wannan Medical College,2019,38(5):419-420,424.(in Chinese) [39] REN C C,ZHAN Q X,DE HAAN B J,et al.Protective effects of lactic acid bacteria on gut epithelial barrier dysfunction are Toll like receptor 2 and protein kinase C dependent[J].Food Funct,2020,11(2):1230-1234. [40] FERNANDEZ E M,VALENTI V,ROCKEL C,et al.Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan-derived muropeptide[J].Gut,2011,60(8):1050-1059. [41] HAMER H M,JONKERS D M A E,BAST A,et al.Butyrate modulates oxidative stress in the colonic mucosa of healthy humans[J].Clin Nutr,2009,28(1):88-93. [42] MOFFETT J R,PUTHILLATHU N,VENGILOTE R,et al.Acetate revisited:a key biomolecule at the nexus of metabolism,epigenetics and oncogenesis — Part 1:acetyl-CoA,acetogenesis and acyl-CoA short-chain synthetases[J].Front Physiol,2020,11:580167. [43] DONOHOE D R,GARGE N,ZHANG X X,et al.The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon[J].Cell Metab,2011,13(5):517-526. [44] KIMURA I,INOUE D,MAEDA T,et al.Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41)[J].Proc Natl Acad Sci U S A,2011,108(19):8030-8035. [45] FOLEY M H,O’FLAHERTY S,ALLEN G,et al.Lactobacillus bile salt hydrolase substrate specificity governs bacterial fitness and host colonization[J].Proc Natl Acad Sci U S A,2021,118(6):e2017709118. [46] JIA W,XIE G X,JIA W P.Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis[J].Nat Rev Gastroenterol Hepatol,2018,15(2):111-128. [47] LONG S L,GAHAN C G M,JOYCE S A.Interactions between gut bacteria and bile in health and disease[J].Mol Aspects Med,2017,56:54-65. [48] HUANG F J,ZHENG X J,MA X H,et al.Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism[J].Nat Commun,2019,10(1):4971. [49] JIANG C T,XIE C,LV Y,et al.Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction[J].Nat Commun,2015,6(1)10166. [50] LIN S,YANG X M,LONG Y R,et al.Dietary supplementation with Lactobacillus plantarum modified gut microbiota,bile acid profile and glucose homoeostasis in weaning piglets[J].Br J Nutr,2020,124(8):797-808. [51] JOHN W R.Ruminal microbial metabolism of peptides and amino acids[J].J Nutr,1996,126 Suppl 4:1326S-1334S. [52] DAI Z L,WU G Y,ZHU W Y.Amino acid metabolism in intestinal bacteria:links between gut ecology and host health[J].Front Biosci (Landmark Ed),2011,16(5):1768-1786. [53] YAGHOUBFAR R,BEHROUZI A,ZARE BANADKOKI E,et al.Effect of Akkermansia muciniphila,Faecalibacterium prausnitzii,and their extracellular vesicles on the serotonin system in intestinal epithelial cells[J].Probiotics Antimicrob Proteins,2021,13(6):1546-1556. [54] BONAZ B,BAZIN T,PELLISSIER S.The vagus nerve at the interface of the microbiota-gut-brain axis[J].Front Neurosci,2018,12:49. [55] ABIZAID A,HOUGLAND J L.Ghrelin signaling:GOAT and GHS-R1a take a LEAP in complexity[J].Trends Endocrinol Metab,2020,31(2):107-117. [56] TIAN C L,YE F,XU T J,et al.GHRP-6 induces CREB phosphorylation and growth hormone secretion via a protein kinase Cσ-dependent pathway in GH3 cells[J].J Huazhong Univ Sci Technol Med Sci,2010,30(2):183-187. [57] YANO J M,YU K,DONALDSON G P,et al.Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis[J].Cell,2015,161(2):264-276. [58] DE VADDER F,GRASSET E,MANNERÅS HOLM L,et al.Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks[J].Proc Natl Acad Sci U S A,2018,115(25):6458-6463. [59] ARIMORI Y,NAKAMURA R,HIROSE Y,et al.Daily intake of heat-killed Lactobacillus plantarum L-137 enhances type I interferon production in healthy humans and pigs[J].Immunopharmacol Immunotoxicol,2012,34(6):937-943. [60] KANG J,LEE J J,CHO J H,et al.Effects of dietary inactivated probiotics on growth performance and immune responses of weaned pigs[J].J Anim Sci Technol,2021,63(3):520-530. [61] SUKEGAWA S,IHARA Y,YUGE K,et al.Effects of oral administration of heat-killed Enterococcus faecium strain NHRD IHARA in post-weaning piglets[J].Anim Sci J,2014,85(4):454-460. [62] HYABG M K,CHOI Y J,HOUDE R,et al.Effects of Lactobacilli and an acidophilic fungus on the production performance and immune responses in broiler chickens[J].Poult Sci,2004,83(5):788-795. [63] 章亭洲,朱廷恒,赵 艳,等.酵母及其相关产品在饲料行业的应用[J].饲料博览,2021(1):26-34. ZHANG T Z,ZHU T H,ZHAO Y,et al.Application of yeasts and its relative products in feed industry[J].Feed Review,2021(1):26-34.(in Chinese) [64] 赵芳芳,张日俊.酵母细胞壁生理功能及其应用[J].中国饲料,2003(17):17-18. ZHAO F F,ZHANG R J.The application and physiological function of the cell wall of yeast[J].China Feed,2003(17):17-18.(in Chinese) [65] FIRMIN S,MORGAVI D P,YIANNIKOURIS A,et al.Effectiveness of modified yeast cell wall extracts to reduce aflatoxin B1 absorption in dairy ewes[J].J Dairy Sci,2011,94(11):5611-5619. [66] AAZAMI M H,FATHI NASRI M H,MOJTAHEDI M,et al.Effect of yeast cell wall and (1→3)-β-d-glucan on transfer of aflatoxin from feed to milk in Saanen dairy goats[J].Anim Feed Sci Technol,2019,254:114191. [67] KHAFIPOUR E,KRAUSE D O,PLAIZIER J C.Alfalfa pellet-induced subacute ruminal acidosis in dairy cows increases bacterial endotoxin in the rumen without causing inflammation[J].J Dairy Sci,2009,92(4):1712-1724. [68] PENG Q H,CHENG L,KANG K,et al.Effects of yeast and yeast cell wall polysaccharides supplementation on beef cattle growth performance,rumen microbial populations and lipopolysaccharides production[J].J Integr Agric,2020,19(3):810-819. [69] SALINAS-CHAVIRA J,MONTANO M F,TORRENTERA N,et al.Influence of feeding enzymatically hydrolysed yeast cell wall+yeast culture on growth performance of calf-fed Holstein steers[J].J Appl Anim Res,2018,46(1):327-330. [70] MA T,TU Y,ZHANG N F,et al.Effects of dietary yeast β-glucan on nutrient digestibility and serum profiles in pre-ruminant Holstein calves[J].J Integr Agric,2015,14(4):749-757. [71] PASCUAL A,PAULETTO M,GIANTIN M,et al.Effect of dietary supplementation with yeast cell wall extracts on performance and gut response in broiler chickens[J].J Anim Sci Biotechnol,2020,11:40. [72] LEE J J,KYOUNG H,CHO J H,et al.Dietary yeast cell wall improves growth performance and prevents of diarrhea of weaned pigs by enhancing gut health and anti-inflammatory immune responses[J].Animals (Basel),2021,11(8):2269. [73] SUGAHARA H,YAO R,ODAMAKI T,et al.Differences between live and heat-killed bifidobacteria in the regulation of immune function and the intestinal environment[J].Benef Microbes,2017,8(3):463-472. [74] ZHONG J F,WU W G,ZHANG X Q,et al.Effects of dietary addition of heat-killed Mycobacterium phlei on growth performance,immune status and anti-oxidative capacity in early weaned piglets[J].Arch Anim Nutr,2016,70(4):249-262. [75] LUO K,TIAN X L,WANG B,et al.Evaluation of paraprobiotic applicability of Clostridium butyricum CBG01 in improving the growth performance,immune responses and disease resistance in Pacific white shrimp,Penaeus vannamei[J].Aquaculture,2021,544:737041. |