畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (10): 4302-4310.doi: 10.11843/j.issn.0366-6964.2024.10.006
徐成(), 田文杰, 马月辉, 王圣楠, 蒋琳, 王丹丹*(
)
收稿日期:
2024-03-15
出版日期:
2024-10-23
发布日期:
2024-11-04
通讯作者:
王丹丹
E-mail:1326843913@qq.com;wangdd1993@126.com
作者简介:
徐成(1999-), 男, 江苏无锡人, 硕士, 主要从事畜禽资源分子评价研究, E-mail: 1326843913@qq.com
基金资助:
Cheng XU(), Wenjie TIAN, Yuehui MA, Shengnan WANG, Lin JIANG, Dandan WANG*(
)
Received:
2024-03-15
Online:
2024-10-23
Published:
2024-11-04
Contact:
Dandan WANG
E-mail:1326843913@qq.com;wangdd1993@126.com
摘要:
旨在探究在巴马猪中ZBED6基因敲除之后肠道菌群的变化和肌肉表型的关联。本研究以5月龄野生型和ZBED6敲除型广西巴马小型猪为研究对象,按性别和基因型分成3组进行比较,分别是野生型公猪比野生型母猪(公WT: 母WT)、野生型母猪比敲除型母猪(母WT: 母KO)、野生型公猪比敲除型公猪(公WT: 公KO),利用16S rRNA基因的高通量测序技术分析各肠段微生物组成。结果表明:1)在巴马猪中,大肠的菌群多样性显著高于小肠;2)与雌性野生型猪相比,雄性野生型猪瘦肉率更高,回肠苏黎世杆菌属、盲肠链球菌属、直肠消化链球菌属在雄性野生型猪中显著富集,回肠乳杆菌属在雌性野生型猪中显著富集;3)敲除ZBED6之后,猪的肌肉生长增加。肠道菌群组成显示,母猪的回肠中乳杆菌含量显著下降,盲肠中SMB53的含量显著上升。敲除ZBED6后,公猪直肠中普雷沃菌属和瘤胃球菌属的含量显著上升,盲肠中SMB53的含量显著上升。结果提示,苏黎世杆菌属、链球菌属、消化链球菌属和乳杆菌属在肠道内的差异可能会影响能量代谢从而促进雄性野生型猪的肌肉生长;敲除了ZBED6之后,猪的盲肠中SMB53丰度的显著增加可能是导致肌肉增多的一个因素。
中图分类号:
徐成, 田文杰, 马月辉, 王圣楠, 蒋琳, 王丹丹. 基于16S rRNA测序分析敲除基因ZBED6后巴马猪肠道微生物菌群的变化[J]. 畜牧兽医学报, 2024, 55(10): 4302-4310.
Cheng XU, Wenjie TIAN, Yuehui MA, Shengnan WANG, Lin JIANG, Dandan WANG. Changes in Gut Microbiota after ZBED6 Knockout were Analyzed Based on 16S rRNA Sequencing[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4302-4310.
1 |
LARSON G , DOBNEY K , ALBARELLA U , et al. Worldwide phylogeography of wild boar reveals multiple centers of pig domestication[J]. Science, 2005, 307 (5715): 1618- 1621.
doi: 10.1126/science.1106927 |
2 |
GROSICKI G J , FIELDING R A , LUSTGARTEN M S . Gut microbiota contribute to age-related changes in skeletal muscle size, composition, and function: biological basis for a gut-muscle axis[J]. Calcif Tissue Int, 2018, 102 (4): 433- 442.
doi: 10.1007/s00223-017-0345-5 |
3 |
TICINESI A , LAURETANI F , MILANI C , et al. Aging gut microbiota at the cross-road between nutrition, physical frailty, and sarcopenia: is there a gut-muscle axis?[J]. Nutrients, 2017, 9 (12): 1303.
doi: 10.3390/nu9121303 |
4 |
PETERSEN L M , BAUTISTA E J , NGUYEN H , et al. Community characteristics of the gut microbiomes of competitive cyclists[J]. Microbiome, 2017, 5 (1): 98.
doi: 10.1186/s40168-017-0320-4 |
5 |
LIU Z H , LIU H Y , ZHOU H B , et al. Moderate-intensity exercise affects gut microbiome composition and influences cardiac function in myocardial infarction mice[J]. Front Microbiol, 2017, 8, 1687.
doi: 10.3389/fmicb.2017.01687 |
6 | LAMOUREUX E V , GRANDY S A , LANGILLE M G I . Moderate exercise has limited but distinguishable effects on the mouse microbiome[J]. mSystems, 2017, 2 (4): e00006- 17. |
7 | 严鸿林. 肠道微生物及其与营养互作对猪骨骼肌表型及代谢的调控[D]. 成都: 四川农业大学, 2018. |
YAN H L. Regulation of porcine skeletal muscle-phenotypes and metabolism by gut microbiota and its interaction with nutrition[D]. Chengdu: Sichuan Agricultural University, 2018. | |
8 |
LEE C C , LIAO Y C , LEE M C , et al. Lactobacillus plantarum TWK10 attenuates aging-associated muscle weakness, bone loss, and cognitive impairment by modulating the gut microbiome in mice[J]. Front Nutr, 2021, 8, 708096.
doi: 10.3389/fnut.2021.708096 |
9 |
LEE M C , HO C S , HSU Y J , et al. Live and heat-killed probiotic Lactobacillus paracasei PS23 accelerated the improvement and recovery of strength and damage biomarkers after exercise-induced muscle damage[J]. Nutrients, 2022, 14 (21): 4563.
doi: 10.3390/nu14214563 |
10 |
JEON J T , CARLBORG Ö , TÖRNSTEN A , et al. A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus[J]. Nat Genet, 1999, 21 (2): 157- 158.
doi: 10.1038/5938 |
11 |
VAN LAERE A S , NGUYEN M , BRAUNSCHWEIG M , et al. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig[J]. Nature, 2003, 425 (6960): 832- 836.
doi: 10.1038/nature02064 |
12 |
JUNGERIUS B J , VAN LAERE A S , TE PAS M F W , et al. The IGF2-intron3-G3072A substitution explains a major imprinted QTL effect on backfat thickness in a Meishan×European white pig intercross[J]. Genet Res, 2004, 84 (2): 95- 101.
doi: 10.1017/S0016672304007098 |
13 |
MARKLJUNG E , JIANG L , JAFFE J D , et al. ZBED6, a novel transcription factor derived from a domesticated DNA transposon regulates IGF2 expression and muscle growth[J]. PLoS Biol, 2009, 7 (12): e1000256.
doi: 10.1371/journal.pbio.1000256 |
14 |
HAYWARD A , GHAZAL A , ANDERSSON G , et al. ZBED evolution: repeated utilization of DNA transposons as regulators of diverse host functions[J]. PLoS One, 2013, 8 (3): e59940.
doi: 10.1371/journal.pone.0059940 |
15 | YOUNIS S , SCHÖNKE M , MASSART J , et al. The ZBED6-IGF2 axis has a major effect on growth of skeletal muscle and internal organs in placental mammals[J]. Proc Natl Acad Sci U S A, 2018, 115 (9): E2048- E2057. |
16 | LIU L , WANG S N , TIAN W J , et al. Effect of ZBED6 single-allele knockout on the growth and development of skeletal muscle in mice[J]. Biology (Basel), 2023, 12 (2): 325. |
17 |
WANG D D , PAN D K , XIE B C , et al. Porcine ZBED6 regulates growth of skeletal muscle and internal organs via multiple targets[J]. PLoS Genet, 2021, 17 (10): e1009862.
doi: 10.1371/journal.pgen.1009862 |
18 |
WANG X , JIANG L , WALLERMAN O , et al. Transcription factor ZBED6 affects gene expression, proliferation, and cell death in pancreatic beta cells[J]. Proc Natl Acad Sci U S A, 2013, 110 (40): 15997- 16002.
doi: 10.1073/pnas.1303625110 |
19 |
WANG S N , TIAN W J , PAN D K , et al. A comprehensive analysis of the myocardial transcriptome in ZBED6-Knockout Bama Xiang Pigs[J]. Genes (Basel), 2022, 13 (8): 1382.
doi: 10.3390/genes13081382 |
20 |
BOKULICH N A , KAEHLER B D , RIDEOUT J R , et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QⅡME 2's q2-feature-classifier plugin[J]. Microbiome, 2018, 6 (1): 90.
doi: 10.1186/s40168-018-0470-z |
21 |
CALLAHAN B J , MCMURDIE P J , ROSEN M J , et al. DADA2:high-resolution sample inference from Illumina amplicon data[J]. Nat Methods, 2016, 13 (7): 581- 583.
doi: 10.1038/nmeth.3869 |
22 |
DIXON P . VEGAN, a package of R functions for community ecology[J]. J Veg Sci, 2003, 14 (6): 927- 930.
doi: 10.1111/j.1654-1103.2003.tb02228.x |
23 |
LOVE M I , HUBER W , ANDERS S . Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biol, 2014, 15 (12): 550.
doi: 10.1186/s13059-014-0550-8 |
24 | MANDAL S , VAN TREUREN W , WHITE R A , et al. Analysis of composition of microbiomes: a novel method for studying microbial composition[J]. Microb Ecol Health Dis, 2015, 26, 27663. |
25 |
ROHART F , GAUTIER B , SINGH A , et al. mixOmics: an R package for 'omics feature selection and multiple data integration[J]. PLoS Comput Biol, 2017, 13 (11): e1005752.
doi: 10.1371/journal.pcbi.1005752 |
26 |
MO J L , GAO L , ZHANG N , et al. Structural and quantitative alterations of gut microbiota in experimental small bowel obstruction[J]. PLoS One, 2021, 16 (8): e0255651.
doi: 10.1371/journal.pone.0255651 |
27 |
BROWNE H P , FORSTER S C , ANONYE B O , et al. Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation[J]. Nature, 2016, 533 (7604): 543- 546.
doi: 10.1038/nature17645 |
28 |
LYNCH J B , GONZALEZ E L , CHOY K , et al. Gut microbiota Turicibacter strains differentially modify bile acids and host lipids[J]. Nat Commun, 2023, 14 (1): 3669.
doi: 10.1038/s41467-023-39403-7 |
29 |
MARTÍNEZ I , STEGEN J C , MALDONADO-GÓMEZ M X , et al. The gut microbiota of rural papua new guineans: composition, diversity patterns, and ecological processes[J]. Cell Rep, 2015, 11 (4): 527- 538.
doi: 10.1016/j.celrep.2015.03.049 |
30 |
CHEN L H , CHANG S S , CHANG H Y , et al. Probiotic supplementation attenuates age-related sarcopenia via the gut-muscle axis in SAMP8 mice[J]. J Cachexia Sarcopenia Muscle, 2022, 13 (1): 515- 531.
doi: 10.1002/jcsm.12849 |
31 |
ISAACSON R , KIM H B . The intestinal microbiome of the pig[J]. Anim Health Res Rev, 2012, 13 (1): 100- 109.
doi: 10.1017/S1466252312000084 |
32 |
张贺, 徐荣莹, 苏勇, 等. 单胃动物肠道微生物研究进展[J]. 动物营养学报, 2020, 32 (10): 4674- 4685.
doi: 10.3969/j.issn.1006-267x.2020.10.019 |
ZHANG H , XU R Y , SU Y , et al. A review: gut microbiota in monogastric animals[J]. Chinese Journal of Animal Nutrition, 2020, 32 (10): 4674- 4685.
doi: 10.3969/j.issn.1006-267x.2020.10.019 |
|
33 |
计伟, 谢春艳, 赵艳平, 等. 乳酸菌的生物学功能及其在母猪和仔猪生产中的应用[J]. 动物营养学报, 2018, 30 (11): 4320- 4326.
doi: 10.3969/j.issn.1006-267x.2018.11.006 |
JI W , XIE C Y , ZHAO Y P , et al. Biological functions of Lactobacillus and its application in Sows' and Piglets' production[J]. Chinese Journal of Animal Nutrition, 2018, 30 (11): 4320- 4326.
doi: 10.3969/j.issn.1006-267x.2018.11.006 |
|
34 |
ALLEN J M , BERGMILLER M E , PENCE B D , et al. Voluntary and forced exercise differentially alters the gut microbiome in C57BL/6J mice[J]. J Appl Physiol (1985), 2015, 118 (8): 1059- 1066.
doi: 10.1152/japplphysiol.01077.2014 |
35 |
GOMEZ A , PETRZELKOVA K J , BURNS M B , et al. Gut microbiome of coexisting BaAka pygmies and bantu reflects gradients of traditional subsistence patterns[J]. Cell Rep, 2016, 14 (9): 2142- 2153.
doi: 10.1016/j.celrep.2016.02.013 |
36 |
TETT A , PASOLLI E , MASETTI G , et al. Prevotella diversity, niches and interactions with the human host[J]. Nat Rev Microbiol, 2021, 19 (9): 585- 599.
doi: 10.1038/s41579-021-00559-y |
37 | SUN Y , SU Y , ZHU W Y . Microbiome-metabolome responses in the cecum and colon of pig to a high resistant starch diet[J]. Front Microbiol, 2016, 7, 779. |
38 |
WVST P K , HORN M A , DRAKE H L . Clostridiaceae and Enterobacteriaceae as active fermenters in earthworm gut content[J]. ISME J, 2011, 5 (1): 92- 106.
doi: 10.1038/ismej.2010.99 |
39 | LONG C X , WU J Q , TAN Z J , et al. Different intestinal microbiota with growth stages of three-breed hybrid pig[J]. BioMed Res Int, 2022, 2022, 5603451. |
40 |
CRESPO-PIAZUELO D , MIGURA-GARCIA L , ESTELLÉ J , et al. Association between the pig genome and its gut microbiota composition[J]. Sci Rep, 2019, 9 (1): 8791.
doi: 10.1038/s41598-019-45066-6 |
41 |
HORIE M , MIURA T , HIRAKATA S , et al. Comparative analysis of the intestinal flora in type 2 diabetes and nondiabetic mice[J]. Exp Anim, 2017, 66 (4): 405- 416.
doi: 10.1538/expanim.17-0021 |
42 |
FARIA S L , SANTOS A , MAGRO D O , et al. Gut microbiota modifications and weight regain in morbidly obese women after Roux-en-Y gastric bypass[J]. Obes Surg, 2020, 30 (12): 4958- 4966.
doi: 10.1007/s11695-020-04956-9 |
[1] | 宋云方, 程浩, 冯露雅, 白平, 邓远坤, 夏耀耀, 谭碧娥, 王婧. 营养调控肠道免疫细胞活化机制研究进展[J]. 畜牧兽医学报, 2024, 55(7): 2846-2858. |
[2] | 陈倩玲, 沙玉柱, 刘秀, 邵鹏阳, 王翻兄, 陈小伟, 杨文鑫, 谢转回, 高敏, 黄薇. 肠道微生物与线粒体互作调控动物脂肪沉积的研究进展[J]. 畜牧兽医学报, 2024, 55(6): 2293-2303. |
[3] | 冯铭, 伊旭东, 庞卫军. 肠道微生物通过骨骼肌纤维类型、肌内脂肪含量和骨骼肌代谢调控猪肉质研究进展[J]. 畜牧兽医学报, 2024, 55(6): 2304-2312. |
[4] | 徐兰梦, 黄榆智, 韩玉竹, 李常营, 章杰. 肠道微生物调控脂肪沉积及其代谢相关疾病的研究进展[J]. 畜牧兽医学报, 2024, 55(10): 4263-4277. |
[5] | 占小秀, 刘鹏宇, 向小娥, 毛胜勇, 金巍. 甲烷马赛球菌DZ1对小鼠血清氧化三甲胺和炎症因子、肝脏抗氧化能力及盲肠微生物区系的影响[J]. 畜牧兽医学报, 2024, 55(10): 4679-4689. |
[6] | 郑先瑞, 卓明雪, 纪金丽, 蒋维虎, 邓在双, 张吉成, 田雅莉, 丁月云, 张晓东, 殷宗俊. 皖南黑猪不同生长阶段血清免疫指标及肠道菌群的特征分析[J]. 畜牧兽医学报, 2023, 54(9): 3770-3783. |
[7] | 纪鹏, 张斌, 张春勇, 邢笑锟, 杨佳, 刘韶娜, 方碟, 潘洪彬, 赵彦光, 安清聪. 日粮添加乳铁蛋白对断奶仔猪肠道微生物多样性的影响[J]. 畜牧兽医学报, 2023, 54(7): 2942-2955. |
[8] | 禹世雄, 魏凌云, 徐甜甜, 焦金真, 蒋林树, 贺志雄. 幼龄反刍动物肠道微生物定植规律及其营养调控研究进展[J]. 畜牧兽医学报, 2023, 54(7): 2701-2707. |
[9] | 杜海东, 娜仁花. 反刍动物胃肠道上皮屏障功能及与微生物互作研究[J]. 畜牧兽医学报, 2023, 54(5): 1804-1814. |
[10] | 陆梦琪, 杨文杰, 李萍, 余鹏, 董翎, 牛晓玉, 杨克礼, 邹维华, 宋卉. 基于16S rRNA测序分析PRRSV感染仔猪肺和肠道中微生物菌群的变化[J]. 畜牧兽医学报, 2023, 54(4): 1664-1678. |
[11] | 袁岩聪, 何航, 刘安芳, 万堃, 章杰. 不同体重四川白鹅消化生理、免疫和肠道微生物的比较分析[J]. 畜牧兽医学报, 2023, 54(3): 1124-1134. |
[12] | 刘攀, 李瑞琦, 谭占坤, 王逸飞, 陈晓晨, 何伟先, 杜忍让, 马健, 褚瑰燕, 蔡传江. 高纤维日粮对生长育肥猪生长性能、肉品质及肠道微生物的影响[J]. 畜牧兽医学报, 2023, 54(10): 4247-4259. |
[13] | 袁铜, 黄靓, 杨琳, 王文策, 朱勇文. 肠道菌群及其代谢产物调节动物线粒体功能的研究进展[J]. 畜牧兽医学报, 2023, 54(1): 48-57. |
[14] | 郭新羽, 沙玉柱, 蒲小宁, 吕卫兵, 刘秀, 胡江, 罗玉柱, 王继卿, 李少斌, 赵志东. 环境温度对动物肠道微生物菌群影响的研究进展[J]. 畜牧兽医学报, 2022, 53(9): 2858-2866. |
[15] | 张德明, 黄嘉訸, 李劲树, 郑红梅, 王少英, 杨公社, 史新娥. 猪肠道微生物及其代谢产物与肠道屏障研究进展[J]. 畜牧兽医学报, 2022, 53(5): 1334-1344. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||