畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (10): 4263-4277.doi: 10.11843/j.issn.0366-6964.2024.10.003
徐兰梦(), 黄榆智, 韩玉竹, 李常营*(
), 章杰*(
)
收稿日期:
2024-02-18
出版日期:
2024-10-23
发布日期:
2024-11-04
通讯作者:
李常营,章杰
E-mail:2131126509@qq.com;licy1983@163.com;zhangjie813@163.com
作者简介:
徐兰梦(2002-), 女, 安徽安庆人, 硕士生, 主要从事畜禽肠道微生物研究, E-mail: 2131126509@qq.com
基金资助:
Lanmeng XU(), Yuzhi HUANG, Yuzhu HAN, Changying LI*(
), Jie ZHANG*(
)
Received:
2024-02-18
Online:
2024-10-23
Published:
2024-11-04
Contact:
Changying LI, Jie ZHANG
E-mail:2131126509@qq.com;licy1983@163.com;zhangjie813@163.com
摘要:
脂肪组织是机体的重要组成部分,不仅具有储存能量、保护组织和调节体温等作用,还能通过分泌细胞因子参与代谢调节,在肥胖及相关并发症的发病过程中发挥着重要作用。大量研究已证实,肠道微生物与宿主脂肪代谢及其相关疾病之间具有紧密联系。本文综述了肠道微生物影响脂肪沉积的主要因素,包括脂肪细胞、脂肪酸组成和脂肪相关血液指标。探讨肠道微生物如何通过一系列途径参与调节脂肪吸收、生成和分解过程,同时详细阐述了肠道微生物与脂肪代谢紊乱引起的疾病之间的关联。本文旨在完善和加深对肠道微生物调控脂肪沉积及其相关代谢疾病的了解,为下一步的研究和临床实践提供理论基础和借鉴。
中图分类号:
徐兰梦, 黄榆智, 韩玉竹, 李常营, 章杰. 肠道微生物调控脂肪沉积及其代谢相关疾病的研究进展[J]. 畜牧兽医学报, 2024, 55(10): 4263-4277.
Lanmeng XU, Yuzhi HUANG, Yuzhu HAN, Changying LI, Jie ZHANG. Research Progress of Gut Microbiota Regulating Fat Deposition and Metabolic Related Diseases[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4263-4277.
1 |
CHEN Y B , LAWSON R , SHANDILYA U , et al. Dietary protein, lipid and insect meal on growth, plasma biochemistry and hepatic immune expression of lake whitefish (Coregonus clupeaformis)[J]. Fish Shellfish Immunol Rep, 2023, 5, 100111.
doi: 10.1016/j.fsirep.2023.100111 |
2 | 徐子叶, 吴纬澈, 汪以真, 等. 调控肌内脂肪沉积的分子机制研究进展[J]. 中国畜牧杂志, 2018, 54 (5): 1- 5. |
XU Z Y , WU W C , WANG Y Z , et al. Research progress on molecular mechanisms regulating intramuscular fat deposition[J]. Chinese Journal of Animal Science, 2018, 54 (5): 1- 5. | |
3 |
AL SAMARRAIE A , PICHETTE M , ROUSSEAU G . Role of the gut microbiome in the development of atherosclerotic cardiovascular disease[J]. Int J Mol Sci, 2023, 24 (6): 5420.
doi: 10.3390/ijms24065420 |
4 |
BÄCKHED F , DING H , WANG T , et al. The gut microbiota as an environmental factor that regulates fat storage[J]. Proc Natl Acad Sci U S A, 2004, 101 (44): 15718- 15723.
doi: 10.1073/pnas.0407076101 |
5 |
LEUNG C , RIVERA L , FURNESS J B , et al. The role of the gut microbiota in NAFLD[J]. Nat Rev Gastroenterol Hepatol, 2016, 13 (7): 412- 425.
doi: 10.1038/nrgastro.2016.85 |
6 |
HENAO-MEJIA J , ELINAV E , JIN C C , et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity[J]. Nature, 2012, 482 (7384): 179- 185.
doi: 10.1038/nature10809 |
7 |
VATANEN T , FRANZOSA E A , SCHWAGER R , et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study[J]. Nature, 2018, 562 (7728): 589- 594.
doi: 10.1038/s41586-018-0620-2 |
8 |
DUAN Y H , ZHONG Y Z , XIAO H , et al. Gut microbiota mediates the protective effects of dietary β-hydroxy-β-methylbutyrate (HMB) against obesity induced by high-fat diets[J]. FASEB J, 2019, 33 (9): 10019- 10033.
doi: 10.1096/fj.201900665RR |
9 |
AHMED B , SULTANA R , GREENE M W . Adipose tissue and insulin resistance in obese[J]. Biomed Pharmacother, 2021, 137, 111315.
doi: 10.1016/j.biopha.2021.111315 |
10 |
WU D , WANG H Y , XIE L J , et al. Cross-talk between gut microbiota and adipose tissues in obesity and related metabolic diseases[J]. Front Endocrinol (Lausanne), 2022, 13, 908868.
doi: 10.3389/fendo.2022.908868 |
11 |
DONG H J , QIN M , WANG P , et al. Regulatory effects and mechanisms of exercise on activation of brown adipose tissue (BAT) and browning of white adipose tissue (WAT)[J]. Adipocyte, 2023, 12 (1): 2266147.
doi: 10.1080/21623945.2023.2266147 |
12 |
LEE Y S , PARK E J , PARK G S , et al. Lactiplantibacillus plantarum ATG-K2 exerts an anti-obesity effect in high-fat diet-induced obese mice by modulating the gut microbiome[J]. Int J Mol Sci, 2021, 22 (23): 12665.
doi: 10.3390/ijms222312665 |
13 |
WANG Z Y , LAM K L , HU J M , et al. Chlorogenic acid alleviates obesity and modulates gut microbiota in high-fat-fed mice[J]. Food Sci Nutr, 2019, 7 (2): 579- 588.
doi: 10.1002/fsn3.868 |
14 |
SUN C B , LI A , WANG H , et al. Positive regulation of acetate in adipocyte differentiation and lipid deposition in obese mice[J]. Nutrients, 2023, 15 (17): 3736.
doi: 10.3390/nu15173736 |
15 |
GHESMATI Z , RASHID M , FAYEZI S , et al. An update on the secretory functions of brown, white, and beige adipose tissue: towards therapeutic applications[J]. Rev Endocr Metab Disord, 2024, 25 (2): 279- 308.
doi: 10.1007/s11154-023-09850-0 |
16 |
BARGUT T C L , SOUZA-MELLO V , AGUILA M B , et al. Browning of white adipose tissue: lessons from experimental models[J]. Horm Mol Biol Clin Investig, 2017, 31 (1): 20160051.
doi: 10.1515/hmbci-2016-0051 |
17 |
SUÁREZ-ZAMORANO N , FABBIANO S , CHEVALIER C , et al. Microbiota depletion promotes browning of white adipose tissue and reduces obesity[J]. Nat Med, 2015, 21 (12): 1497- 1501.
doi: 10.1038/nm.3994 |
18 |
XU Y , WANG N , TAN H Y , et al. Panax notoginseng saponins modulate the gut microbiota to promote thermogenesis and beige adipocyte reconstruction via leptin-mediated AMPKα/STAT3 signaling in diet-induced obesity[J]. Theranostics, 2020, 10 (24): 11302- 11323.
doi: 10.7150/thno.47746 |
19 |
ZHANG S , LI J J , SHI X Y , et al. Naringenin activates beige adipocyte browning in high fat diet-fed C57BL/6 mice by shaping the gut microbiota[J]. Food Funct, 2022, 13 (19): 9918- 9930.
doi: 10.1039/D2FO01610A |
20 |
CHEVALIER C , STOJANOVIC' O , COLIN D J , et al. Gut microbiota orchestrates energy homeostasis during cold[J]. Cell, 2015, 163 (6): 1360- 1374.
doi: 10.1016/j.cell.2015.11.004 |
21 |
SIMOPOULOS A P . An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity[J]. Nutrients, 2016, 8 (3): 128.
doi: 10.3390/nu8030128 |
22 |
ROGERO M M , CALDER P C . Obesity, inflammation, toll-like receptor 4 and fatty acids[J]. Nutrients, 2018, 10 (4): 432.
doi: 10.3390/nu10040432 |
23 |
MIYAMOTO J , IGARASHI M , WATANABE K , et al. Gut microbiota confers host resistance to obesity by metabolizing dietary polyunsaturated fatty acids[J]. Nat Commun, 2019, 10 (1): 4007.
doi: 10.1038/s41467-019-11978-0 |
24 |
KINDT A , LIEBISCH G , CLAVEL T , et al. The gut microbiota promotes hepatic fatty acid desaturation and elongation in mice[J]. Nat Commun, 2018, 9 (1): 3760.
doi: 10.1038/s41467-018-05767-4 |
25 | FURUSE M , MURAI A , OKUMURA J . Gut microflora can modify fatty acid composition in liver and egg yolk lipids of laying Japanese quail (Coturnix coturnix japonica)[J]. Comp Biochem Physiol Comp Physiol, 1992, 103 (3): 569- 571. |
26 |
WALL R , ROSS R P , SHANAHAN F , et al. Metabolic activity of the enteric microbiota influences the fatty acid composition of murine and porcine liver and adipose tissues[J]. Am J Clin Nutr, 2009, 89 (5): 1393- 1401.
doi: 10.3945/ajcn.2008.27023 |
27 |
LEE K , PAEK K , LEE H Y , et al. Antiobesity effect of trans-10, cis-12-conjugated linoleic acid-producing Lactobacillus plantarum PL62 on diet-induced obese mice[J]. J Appl Microbiol, 2007, 103 (4): 1140- 1146.
doi: 10.1111/j.1365-2672.2007.03336.x |
28 |
SEBASTIÀ C , FOLCH J M , BALLESTER M , et al. Interrelation between gut microbiota, SCFA, and fatty acid composition in pigs[J]. mSystems, 2024, 9 (1): e0104923.
doi: 10.1128/msystems.01049-23 |
29 |
JIA X K , XU W , ZHANG L , et al. Impact of gut microbiota and microbiota-related metabolites on hyperlipidemia[J]. Front Cell Infect Microbiol, 2021, 11, 634780.
doi: 10.3389/fcimb.2021.634780 |
30 |
HAN S W , PAN Y F , YANG X , et al. Intestinal microorganisms involved in colorectal cancer complicated with dyslipidosis[J]. Cancer Biol Ther, 2019, 20 (1): 81- 89.
doi: 10.1080/15384047.2018.1507255 |
31 |
HAN H , WANG M Y , ZHONG R Q , et al. Depletion of gut microbiota inhibits hepatic lipid accumulation in high-fat diet-fed mice[J]. Int J Mol Sci, 2022, 23 (16): 9350.
doi: 10.3390/ijms23169350 |
32 |
ZHANG Y N , MA L , ZHANG L , et al. Effects and action mechanisms of lotus leaf (Nelumbo nucifera) ethanol extract on gut microbes and obesity in high-fat diet-fed rats[J]. Front Nutr, 2023, 10, 1169843.
doi: 10.3389/fnut.2023.1169843 |
33 |
LI X H , HU Y , LV Y F , et al. Gut microbiota and lipid metabolism alterations in mice induced by oral cadmium telluride quantum dots[J]. J Appl Toxicol, 2020, 40 (8): 1131- 1140.
doi: 10.1002/jat.3972 |
34 |
ZHANG F , QIU L , XU X P , et al. Beneficial effects of probiotic cholesterol-lowering strain of Enterococcus faecium WEFA23 from infants on diet-induced metabolic syndrome in rats[J]. J Dairy Sci, 2017, 100 (3): 1618- 1628.
doi: 10.3168/jds.2016-11870 |
35 |
TARANTO M P , MEDICI M , PERDIGON G , et al. Evidence for hypocholesterolemic effect of Lactobacillus reuteri in hypercholesterolemic mice[J]. J Dairy Sci, 1998, 81 (9): 2336- 2340.
doi: 10.3168/jds.S0022-0302(98)70123-7 |
36 |
XIAO J Z , KONDO S , TAKAHASHI N , et al. Effects of milk products fermented by Bifidobacterium longum on blood lipids in rats and healthy adult male volunteers[J]. J Dairy Sci, 2003, 86 (7): 2452- 2461.
doi: 10.3168/jds.S0022-0302(03)73839-9 |
37 |
LIN S Y , AYRES J W , WINKLER Jr W , et al. Lactobacillus effects on cholesterol: in vitro and in vivo results[J]. J Dairy Sci, 1989, 72 (11): 2885- 2899.
doi: 10.3168/jds.S0022-0302(89)79439-X |
38 | 吴永保, 李琳, 闻治国, 等. 动物体内极长链多不饱和脂肪酸代谢及其生理功能[J]. 中国畜牧杂志, 2018, 54 (3): 20- 26. |
WU Y B , LI L , WEN Z G , et al. Research progress on metabolism and physiological function of very-long-chain polyunsaturated fatty acids in animals[J]. Chinese Journal of Animal Science, 2018, 54 (3): 20- 26. | |
39 |
JIN Y X , WU Y , ZENG Z Y , et al. From the cover: exposure to oral antibiotics induces gut microbiota dysbiosis associated with lipid metabolism dysfunction and low-grade inflammation in mice[J]. Toxicol Sci, 2016, 154 (1): 140- 152.
doi: 10.1093/toxsci/kfw150 |
40 |
HAMAMAH S , AMIN A , AL-KASAIR A L , et al. Dietary fat modulation of gut microbiota and impact on regulatory pathways controlling food intake[J]. Nutrients, 2023, 15 (15): 3365.
doi: 10.3390/nu15153365 |
41 |
LIU H M , DU T , XLI C , et al. STAT3 phosphorylation in central leptin resistance[J]. Nutr Metab (Lond), 2021, 18 (1): 39.
doi: 10.1186/s12986-021-00569-w |
42 |
TREVELLINE B K , KOHL K D . The gut microbiome influences host diet selection behavior[J]. Proc Natl Acad Sci U S A, 2022, 119 (17): e2117537119.
doi: 10.1073/pnas.2117537119 |
43 |
KIM J D , YOON N A , JIN S , et al. Microglial UCP2 mediates inflammation and obesity induced by high-fat feeding[J]. Cell Metab, 2019, 30 (5): 952- 962.5.
doi: 10.1016/j.cmet.2019.08.010 |
44 |
GU M , LIU C , YANG T Y , et al. High-fat diet induced gut microbiota alterations associating with Ghrelin/JAK2/STAT3 up-regulation to promote benign prostatic hyperplasia development[J]. Front Cell Dev Biol, 2021, 9, 615928.
doi: 10.3389/fcell.2021.615928 |
45 |
SHANAHAN F . The colonic microbiota in health and disease[J]. Curr Opin Gastroenterol, 2013, 29 (1): 49- 54.
doi: 10.1097/MOG.0b013e32835a3493 |
46 | 秦昆鹏, 王志云, 高骞, 等. 乙酸对脂肪代谢的影响及其作用机制[J]. 动物营养学报, 2021, 33 (5): 2544- 2554. |
QIN K P , WANG Z Y , GAO Q , et al. Effects of acetic acid on fat metabolism and its mechanism[J]. Chinese Journal of Animal Nutrition, 2021, 33 (5): 2544- 2554. | |
47 |
RAYBOULD H E . Gut microbiota, epithelial function and derangements in obesity[J]. J Physiol, 2012, 590 (3): 441- 446.
doi: 10.1113/jphysiol.2011.222133 |
48 |
GILLILAND S E , NELSON C R , MAXWELL C . Assimilation of cholesterol by Lactobacillus acidophilus[J]. Appl Environ Microbiol, 1985, 49 (2): 377- 381.
doi: 10.1128/aem.49.2.377-381.1985 |
49 |
MARTINEZ-GURYN K , HUBERT N , FRAZIER K , et al. Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids[J]. Cell Host Microbe, 2018, 23 (4): 458- 469.5.
doi: 10.1016/j.chom.2018.03.011 |
50 |
SEMOVA I , CARTEN J D , STOMBAUGH J , et al. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish[J]. Cell Host Microbe, 2012, 12 (3): 277- 288.
doi: 10.1016/j.chom.2012.08.003 |
51 |
BEGLEY M , GAHAN C G M , HILL C . The interaction between bacteria and bile[J]. FEMS Microbiol Rev, 2005, 29 (4): 625- 651.
doi: 10.1016/j.femsre.2004.09.003 |
52 |
RAMASAMY K , ABDULLAH N , WONG M C , et al. Bile salt deconjugation and cholesterol removal from media by Lactobacillus strains used as probiotics in chickens[J]. J Sci Food Agric, 2010, 90 (1): 65- 69.
doi: 10.1002/jsfa.3780 |
53 |
SAYIN S I , WAHLSTRÖM A , FELIN J , et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist[J]. Cell Metab, 2013, 17 (2): 225- 235.
doi: 10.1016/j.cmet.2013.01.003 |
54 |
TANNOCK G W , DASHKEVICZ M P , FEIGHNER S D . Lactobacilli and bile salt hydrolase in the murine intestinal tract[J]. Appl Environ Microbiol, 1989, 55 (7): 1848- 1851.
doi: 10.1128/aem.55.7.1848-1851.1989 |
55 |
SATO H , ZHANG L S , MARTINEZ K , et al. Antibiotics suppress activation of intestinal mucosal mast cells and reduce dietary lipid absorption in sprague-dawley rats[J]. Gastroenterology, 2016, 151 (5): 923- 932.
doi: 10.1053/j.gastro.2016.07.009 |
56 |
PREISS-LANDL K , ZIMMERMANN R , HÄMMERLE G , et al. Lipoprotein lipase: the regulation of tissue specific expression and its role in lipid and energy metabolism[J]. Curr Opin Lipidol, 2002, 13 (5): 471- 481.
doi: 10.1097/00041433-200210000-00002 |
57 |
JAKAB J , MIŠKIC' B , MIKŠIC' Š , et al. Adipogenesis as a potential anti-obesity target: a review of pharmacological treatment and natural products[J]. Diabetes Metab Syndr Obes, 2021, 14, 67- 83.
doi: 10.2147/DMSO.S281186 |
58 |
ZHANG T , DING H , CHEN L , et al. Antibiotic-induced dysbiosis of microbiota promotes chicken lipogenesis by altering metabolomics in the cecum[J]. Metabolites, 2021, 11 (8): 487.
doi: 10.3390/metabo11080487 |
59 |
PARK E J , LEE Y S , KIM S M , et al. Beneficial effects of Lactobacillus plantarum strains on non-alcoholic fatty liver disease in high fat/high fructose diet-fed rats[J]. Nutrients, 2020, 12 (2): 542.
doi: 10.3390/nu12020542 |
60 |
DENTIN R , PÉGORIER J P , BENHAMED F , et al. Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression[J]. J Biol Chem, 2004, 279 (19): 20314- 20326.
doi: 10.1074/jbc.M312475200 |
61 |
ALVES C C , WAITZBERG D L , DE ANDRADE sL S , et al. Prebiotic and synbiotic modifications of beta oxidation and lipogenic gene expression after experimental hypercholesterolemia in rat liver[J]. Front Microbiol, 2017, 8, 2010.
doi: 10.3389/fmicb.2017.02010 |
62 |
BRAHE L K , ASTRUP A , LARSEN L H . Can we prevent obesity-related metabolic diseases by dietary modulation of the gut microbiota?[J]. Adv Nutr, 2016, 7 (1): 90- 101.
doi: 10.3945/an.115.010587 |
63 |
WEITKUNAT K , SCHUMANN S , PETZKE K J , et al. Effects of dietary inulin on bacterial growth, short-chain fatty acid production and hepatic lipid metabolism in gnotobiotic mice[J]. J Nutr Biochem, 2015, 26 (9): 929- 937.
doi: 10.1016/j.jnutbio.2015.03.010 |
64 |
DELZENNE N M , KOK N . Effects of fructans-type prebiotics on lipid metabolism[J]. Am J Clin Nutr, 2001, 73 (2): 456s- 458s.
doi: 10.1093/ajcn/73.2.456s |
65 |
HEIMANN E , NYMAN M , DEGERMAN E . Propionic acid and butyric acid inhibit lipolysis and de novo lipogenesis and increase insulin-stimulated glucose uptake in primary rat adipocytes[J]. Adipocyte, 2015, 4 (2): 81- 88.
doi: 10.4161/21623945.2014.960694 |
66 |
GAO X , LIN S H , REN F , et al. Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia[J]. Nat Commun, 2016, 7, 11960.
doi: 10.1038/ncomms11960 |
67 |
TAKAHASHI D , HOSHINA N , KABUMOTO Y , et al. Microbiota-derived butyrate limits the autoimmune response by promoting the differentiation of follicular regulatory T cells[J]. EBioMedicine, 2020, 58, 102913.
doi: 10.1016/j.ebiom.2020.102913 |
68 |
LI G L , YAO W , JIANG H L . Short-chain fatty acids enhance adipocyte differentiation in the stromal vascular fraction of porcine adipose tissue[J]. J Nutr, 2014, 144 (12): 1887- 1895.
doi: 10.3945/jn.114.198531 |
69 |
DING L L , YANG L , WANG Z T , et al. Bile acid nuclear receptor FXR and digestive system diseases[J]. Acta Pharm Sin B, 2015, 5 (2): 135- 144.
doi: 10.1016/j.apsb.2015.01.004 |
70 |
CHIANG J Y L , PATHAK P , LIU H L , et al. Intestinal farnesoid X receptor and takeda G protein couple receptor 5 signaling in metabolic regulation[J]. Dig Dis, 2017, 35 (3): 241- 245.
doi: 10.1159/000450981 |
71 |
PATHAK P , HELSLEY R N , BROWN A L , et al. Small molecule inhibition of gut microbial choline trimethylamine lyase activity alters host cholesterol and bile acid metabolism[J]. Am J Physiol Heart Circ Physiol, 2020, 318 (6): H1474- H1486.
doi: 10.1152/ajpheart.00584.2019 |
72 |
CHEN J Z , VITETTA L . Gut microbiota metabolites in NAFLD pathogenesis and therapeutic implications[J]. Int J Mol Sci, 2020, 21 (15): 5214.
doi: 10.3390/ijms21155214 |
73 |
LONG Y C , ZIERATH J R . AMP-activated protein kinase signaling in metabolic regulation[J]. J Clin Invest, 2006, 116 (7): 1776- 1783.
doi: 10.1172/JCI29044 |
74 |
CHANG H , KWON O , SHIN M S , et al. Role of Angptl4/Fiaf in exercise-induced skeletal muscle AMPK activation[J]. J Appl Physiol (1985), 2018, 125 (3): 715- 722.
doi: 10.1152/japplphysiol.00984.2016 |
75 |
SHAN B X , AI Z F , ZENG S F , et al. Gut microbiome-derived lactate promotes to anxiety-like behaviors through GPR81 receptor-mediated lipid metabolism pathway[J]. Psychoneuroendocrinology, 2020, 117, 104699.
doi: 10.1016/j.psyneuen.2020.104699 |
76 |
ARAÚJO J R , TAZI A , BURLEN-DEFRANOUX O , et al. Fermentation products of commensal bacteria alter enterocyte lipid metabolism[J]. Cell Host Microbe, 2020, 27 (3): 358- 375.7.
doi: 10.1016/j.chom.2020.01.028 |
77 |
SCHWEIGER M , SCHREIBER R , HAEMMERLE G , et al. Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism[J]. J Biol Chem, 2006, 281 (52): 40236- 40241.
doi: 10.1074/jbc.M608048200 |
78 |
JIA Y M , HONG J , LI H F , et al. Butyrate stimulates adipose lipolysis and mitochondrial oxidative phosphorylation through histone hyperacetylation-associated β3-adrenergic receptor activation in high-fat diet-induced obese mice[J]. Exp Physiol, 2017, 102 (2): 273- 281.
doi: 10.1113/EP086114 |
79 |
JOCKEN J W E , GONZÁLEZ HERNÁNDEZ M A , HOEBERS N T H , et al. Short-chain fatty acids differentially affect intracellular lipolysis in a human white adipocyte model[J]. Front Endocrinol (Lausanne), 2018, 8, 372.
doi: 10.3389/fendo.2017.00372 |
80 |
LU Y Y , FAN C N , LI P , et al. Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating g protein-coupled receptors and gut microbiota[J]. Sci Rep, 2016, 6, 37589.
doi: 10.1038/srep37589 |
81 |
YAMASHITA H , MARUTA H , JOZUKA M , et al. Effects of acetate on lipid metabolism in muscles and adipose tissues of type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats[J]. Biosci Biotechnol Biochem, 2009, 73 (3): 570- 576.
doi: 10.1271/bbb.80634 |
82 |
HONG J , JIA Y M , PAN S F , et al. Butyrate alleviates high fat diet-induced obesity through activation of adiponectin-mediated pathway and stimulation of mitochondrial function in the skeletal muscle of mice[J]. Oncotarget, 2016, 7 (35): 56071- 56082.
doi: 10.18632/oncotarget.11267 |
83 |
YAN H , AJUWON K M . Mechanism of butyrate stimulation of triglyceride storage and adipokine expression during adipogenic differentiation of porcine stromovascular cells[J]. PLoS One, 2015, 10 (12): e0145940.
doi: 10.1371/journal.pone.0145940 |
84 |
GRABNER G F , XIE H , SCHWEIGER M , et al. Lipolysis: cellular mechanisms for lipid mobilization from fat stores[J]. Nat Metab, 2021, 3 (11): 1445- 1465.
doi: 10.1038/s42255-021-00493-6 |
85 |
LI Y , MA Z Q , JIANG S , et al. A global perspective on FOXO1 in lipid metabolism and lipid-related diseases[J]. Prog Lipid Res, 2017, 66, 42- 49.
doi: 10.1016/j.plipres.2017.04.002 |
86 |
MENG Q H , LI Y , XU Y D , et al. Acetobacter and lactobacillus alleviate the symptom of insulin resistance by blocking the JNK-JAK/STAT pathway in Drosophila melanogaster[J]. Biochim Biophys Acta Mol Basis Dis, 2024, 1870 (1): 166901.
doi: 10.1016/j.bbadis.2023.166901 |
87 |
KIM Y A , KEOGH J B , CLIFTON P M . Probiotics, prebiotics, synbiotics and insulin sensitivity[J]. Nutr Res Rev, 2018, 31 (1): 35- 51.
doi: 10.1017/S095442241700018X |
88 |
WANG J F , FU S P , LI S N , et al. Short-chain fatty acids inhibit growth hormone and prolactin gene transcription via cAMP/PKA/CREB signaling pathway in dairy cow anterior pituitary cells[J]. Int J Mol Sci, 2013, 14 (11): 21474- 21488.
doi: 10.3390/ijms141121474 |
89 |
KALTENECKER D , MUELLER K M , BENEDIKT P , et al. Adipocyte STAT5 deficiency promotes adiposity and impairs lipid mobilisation in mice[J]. Diabetologia, 2017, 60 (2): 296- 305.
doi: 10.1007/s00125-016-4152-8 |
90 |
KALTENECKER D , SPIRK K , RUGE F , et al. STAT5 is required for lipid breakdown and beta-adrenergic responsiveness of brown adipose tissue[J]. Mol Metab, 2020, 40, 101026.
doi: 10.1016/j.molmet.2020.101026 |
91 |
WU M F , XI Q H , SHENG Y , et al. Antioxidant peptides from monkfish swim bladders: ameliorating nafld in vitro by suppressing lipid accumulation and oxidative stress via regulating AMPK/Nrf2 pathway[J]. Mar Drugs, 2023, 21 (6): 360.
doi: 10.3390/md21060360 |
92 |
XU N B , LI X F , WENG J , et al. Adiponectin ameliorates GMH-induced brain injury by regulating microglia M1/M2 polarization via AdipoR1/APPL1/AMPK/PPARγ signaling pathway in neonatal rats[J]. Front Immunol, 2022, 13, 873382.
doi: 10.3389/fimmu.2022.873382 |
93 |
GÉRARD P . Metabolism of cholesterol and bile acids by the gut microbiota[J]. Pathogens, 2013, 3 (1): 14- 24.
doi: 10.3390/pathogens3010014 |
94 |
VEIGA P , JUSTE C , LEPERCQ P , et al. Correlation between faecal microbial community structure and cholesterol-to-coprostanol conversion in the human gut[J]. FEMS Microbiol Lett, 2005, 242 (1): 81- 86.
doi: 10.1016/j.femsle.2004.10.042 |
95 |
REN D W , LI L , SCHWABACHER A W , et al. Mechanism of cholesterol reduction to coprostanol by Eubacterium coprostanoligenes ATCC 51222[J]. Steroids, 1996, 61 (1): 33- 40.
doi: 10.1016/0039-128X(95)00173-N |
96 |
LYE H S , RUSUL G , LIONG M T . Removal of cholesterol by Lactobacilli via incorporation and conversion to coprostanol[J]. J Dairy Sci, 2010, 93 (4): 1383- 1392.
doi: 10.3168/jds.2009-2574 |
97 |
ZIARNO M , ZARE'BA D , S'CIBISZ I , et al. Exploring the cholesterol-modifying abilities of Lactobacilli cells in digestive models and dairy products[J]. Microorganisms, 2023, 11 (6): 1478.
doi: 10.3390/microorganisms11061478 |
98 |
BUBECK A M , URBAIN P , HORN C , et al. High-fat diet impact on intestinal cholesterol conversion by the microbiota and serum cholesterol levels[J]. iScience, 2023, 26 (9): 107697.
doi: 10.1016/j.isci.2023.107697 |
99 |
ŁOZIŃSKA N , JUNGNICKEL C . Importance of conjugation of the bile salt on the mechanism of lipolysis[J]. Molecules, 2021, 26 (19): 5764.
doi: 10.3390/molecules26195764 |
100 |
ROHR M W , NARASIMHULU C A , RUDESKI-ROHR T A , et al. Negative effects of a high-fat diet on intestinal permeability: a review[J]. Adv Nutr, 2020, 11 (1): 77- 91.
doi: 10.1093/advances/nmz061 |
101 |
KONG C , GAO R Y , YAN X B , et al. Probiotics improve gut microbiota dysbiosis in obese mice fed a high-fat or high-sucrose diet[J]. Nutrition, 2019, 60, 175- 184.
doi: 10.1016/j.nut.2018.10.002 |
102 |
SINGH R P , HALAKA D A , HAYOUKA Z , et al. High-fat diet induced alteration of mice microbiota and the functional ability to utilize fructooligosaccharide for ethanol production[J]. Front Cell Infect Microbiol, 2020, 10, 376.
doi: 10.3389/fcimb.2020.00376 |
103 |
MARQUES T M , WALL R , O'SULLIVAN O , et al. Dietary trans-10, cis-12-conjugated linoleic acid alters fatty acid metabolism and microbiota composition in mice[J]. Br J Nutr, 2015, 113 (5): 728- 738.
doi: 10.1017/S0007114514004206 |
104 |
JAMAR G , PISANI L P . Inflammatory crosstalk between saturated fatty acids and gut microbiota-white adipose tissue axis[J]. Eur J Nutr, 2023, 62 (3): 1077- 1091.
doi: 10.1007/s00394-022-03062-z |
105 |
TAO F Z , XING X , WU J N , et al. Enteral nutrition modulation with n-3 PUFAs directs microbiome and lipid metabolism in mice[J]. PLoS One, 2021, 16 (3): e0248482.
doi: 10.1371/journal.pone.0248482 |
106 |
ROHM T V , MEIER D T , OLEFSKY J M , et al. Inflammation in obesity, diabetes, and related disorders[J]. Immunity, 2022, 55 (1): 31- 55.
doi: 10.1016/j.immuni.2021.12.013 |
107 |
LE CHATELIER E , NIELSEN T , QIN J J , et al. Richness of human gut microbiome correlates with metabolic markers[J]. Nature, 2013, 500 (7464): 541- 546.
doi: 10.1038/nature12506 |
108 |
CANI P D , AMAR J , IGLESIAS M A , et al. Metabolic endotoxemia initiates obesity and insulin resistance[J]. Diabetes, 2007, 56 (7): 1761- 1772.
doi: 10.2337/db06-1491 |
109 |
VELLOSO L A , FOLLI F , SAAD M J . TLR4 at the crossroads of nutrients, gut microbiota, and metabolic inflammation[J]. Endocr Rev, 2015, 36 (3): 245- 271.
doi: 10.1210/er.2014-1100 |
110 |
NAVALÓN-MONLLOR V , SORIANO-ROMANÍ L , SILVA M , et al. Microbiota dysbiosis caused by dietetic patterns as a promoter of Alzheimer's disease through metabolic syndrome mechanisms[J]. Food Funct, 2023, 14 (16): 7317- 7334.
doi: 10.1039/D3FO01257C |
111 |
IN KIM H , KIM J K , KIM J Y , et al. Lactobacillus plantarum LC27 and Bifidobacterium longum LC67 simultaneously alleviate high-fat diet-induced colitis, endotoxemia, liver steatosis, and obesity in mice[J]. Nutr Res, 2019, 67, 78- 89.
doi: 10.1016/j.nutres.2019.03.008 |
112 |
BEAUMONT M , NEYRINCK A M , OLIVARES M , et al. The gut microbiota metabolite indole alleviates liver inflammation in mice[J]. FASEB J, 2018, 32 (12): 6681- 6693.
doi: 10.1096/fj.201800544 |
113 |
CHENG Z L , ZHANG L , YANG L , et al. The critical role of gut microbiota in obesity[J]. Front Endocrinol (Lausanne), 2022, 13, 1025706.
doi: 10.3389/fendo.2022.1025706 |
114 |
MACIA L , TAN J , VIEIRA A T , et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome[J]. Nat Commun, 2015, 6, 6734.
doi: 10.1038/ncomms7734 |
115 |
PARK S , KIM Y J , CHOI C Y , et al. Bariatric surgery can reduce albuminuria in patients with severe obesity and normal kidney function by reducing systemic inflammation[J]. Obes Surg, 2018, 28 (3): 831- 837.
doi: 10.1007/s11695-017-2940-y |
116 |
NEAL M D , LEAPHART C , LEVY R , et al. Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier[J]. J Immunol, 2006, 176 (5): 3070- 3079.
doi: 10.4049/jimmunol.176.5.3070 |
117 |
VIJAY-KUMAR M , AITKEN J D , CARVALHO F A , et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5[J]. Science, 2010, 328 (5975): 228- 231.
doi: 10.1126/science.1179721 |
118 |
TURNBAUGH P J , HAMADY M , YATSUNENKO T , et al. A core gut microbiome in obese and lean twins[J]. Nature, 2009, 457 (7228): 480- 484.
doi: 10.1038/nature07540 |
119 |
PASCALE A , MARCHESI N , MARELLI C , et al. Microbiota and metabolic diseases[J]. Endocrine, 2018, 61 (3): 357- 371.
doi: 10.1007/s12020-018-1605-5 |
120 |
DOS SANTOS PEREIRA INDIANI C M , RIZZARDI K F , CASTELO P M , et al. Childhood obesity and firmicutes/bacteroidetes ratio in the gut microbiota: a systematic review[J]. Child Obes, 2018, 14 (8): 501- 509.
doi: 10.1089/chi.2018.0040 |
121 |
MICHELS N , ZOUIOUICH S , VANDERBAUWHEDE B , et al. Human microbiome and metabolic health: an overview of systematic reviews[J]. Obes Rev, 2022, 23 (4): e13409.
doi: 10.1111/obr.13409 |
122 |
GOODRICH J K , WATERS J L , POOLE A C , et al. Human genetics shape the gut microbiome[J]. Cell, 2014, 159 (4): 789- 799.
doi: 10.1016/j.cell.2014.09.053 |
123 |
LEY R E , BÄCKHED F , TURNBAUGH P , et al. Obesity alters gut microbial ecology[J]. Proc Natl Acad Sci U S A, 2005, 102 (31): 11070- 11075.
doi: 10.1073/pnas.0504978102 |
124 |
KADEER G , FU W R , HE Y Q , et al. Effect of different doses of Lacticaseibacillus paracasei K56 on body fat and metabolic parameters in adult individuals with obesity: a pilot study[J]. Nutr Metab (Lond), 2023, 20 (1): 16.
doi: 10.1186/s12986-023-00739-y |
125 |
CHEN J J , WANG R , LI X F , et al. Bifidobacterium adolescentis supplementation ameliorates visceral fat accumulation and insulin sensitivity in an experimental model of the metabolic syndrome[J]. Br J Nutr, 2012, 107 (10): 1429- 1434.
doi: 10.1017/S0007114511004491 |
126 |
TAI N W , WONG F S , WEN L . The role of gut microbiota in the development of type 1, type 2 diabetes mellitus and obesity[J]. Rev Endocr Metab Disord, 2015, 16 (1): 55- 65.
doi: 10.1007/s11154-015-9309-0 |
127 |
ALLIN K H , TREMAROLI V , CAESAR R , et al. Aberrant intestinal microbiota in individuals with prediabetes[J]. Diabetologia, 2018, 61 (4): 810- 820.
doi: 10.1007/s00125-018-4550-1 |
128 |
HAN X , WANG Y , ZHANG P P , et al. Kazak faecal microbiota transplantation induces short-chain fatty acids that promote glucagon-like peptide-1 secretion by regulating gut microbiota in db/db mice[J]. Pharm Biol, 2021, 59 (1): 1075- 1085.
doi: 10.1080/13880209.2021.1954667 |
129 |
GUO W Q , ZHANG Z L , LI L R , et al. Gut microbiota induces DNA methylation via SCFAs predisposing obesity-prone individuals to diabetes[J]. Pharmacol Res, 2022, 182, 106355.
doi: 10.1016/j.phrs.2022.106355 |
130 |
DE GROOT P F , BELZER C , AYDIN Ö , et al. Distinct fecal and oral microbiota composition in human type 1 diabetes, an observational study[J]. PLoS One, 2017, 12 (12): e0188475.
doi: 10.1371/journal.pone.0188475 |
131 |
YUAN X X , WANG R R , HAN B , et al. Functional and metabolic alterations of gut microbiota in children with new-onset type 1 diabetes[J]. Nat Commun, 2022, 13 (1): 6356.
doi: 10.1038/s41467-022-33656-4 |
132 |
HILL J H , FRANZOSA E A , HUTTENHOWER C , et al. A conserved bacterial protein induces pancreatic beta cell expansion during zebrafish development[J]. Elife, 2016, 5, e20145.
doi: 10.7554/eLife.20145 |
133 |
DEL CHIERICO F , RAPINI N , DEODATI A , et al. Pathophysiology of type 1 diabetes and gut microbiota role[J]. Int J Mol Sci, 2022, 23 (23): 14650.
doi: 10.3390/ijms232314650 |
134 |
COSTA F R C , FRANÇOZO M C S , DE OLIVEIRA G G , et al. Gut microbiota translocation to the pancreatic lymph nodes triggers NOD2 activation and contributes to T1D onset[J]. J Exp Med, 2016, 213 (7): 1223- 1239.
doi: 10.1084/jem.20150744 |
135 |
PERRY R J , PENG L , BARRY N A , et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome[J]. Nature, 2016, 534 (7606): 213- 217.
doi: 10.1038/nature18309 |
136 |
HENDRIKX T , SCHNABL B . Indoles: metabolites produced by intestinal bacteria capable of controlling liver disease manifestation[J]. J Intern Med, 2019, 286 (1): 32- 40.
doi: 10.1111/joim.12892 |
137 |
GURUNG M , LI Z P , YOU H , et al. Role of gut microbiota in type 2 diabetes pathophysiology[J]. EBioMedicine, 2020, 51, 102590.
doi: 10.1016/j.ebiom.2019.11.051 |
138 |
NOURELDEIN M H , BITAR S , YOUSSEF N , et al. Butyrate modulates diabetes-linked gut dysbiosis: epigenetic and mechanistic modifications[J]. J Mol Endocrinol, 2020, 64 (1): 29- 42.
doi: 10.1530/JME-19-0132 |
139 |
MUSSO G , GAMBINO R , CASSADER M . Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes[J]. Annu Rev Med, 2011, 62, 361- 380.
doi: 10.1146/annurev-med-012510-175505 |
140 |
BAKO H Y , IBRAHIM M A , ISAH M S , et al. Inhibition of JAK-STAT and NF-κB signalling systems could be a novel therapeutic target against insulin resistance and type 2 diabetes[J]. Life Sci, 2019, 239, 117045.
doi: 10.1016/j.lfs.2019.117045 |
141 |
LEE Y S , LEE D , PARK G S , et al. Lactobacillus plantarum HAC01 ameliorates type 2 diabetes in high-fat diet and streptozotocin-induced diabetic mice in association with modulating the gut microbiota[J]. Food Funct, 2021, 12 (14): 6363- 6373.
doi: 10.1039/D1FO00698C |
142 |
GONZALEZ A , KRIEG R , MASSEY H D , et al. Sodium butyrate ameliorates insulin resistance and renal failure in CKD rats by modulating intestinal permeability and mucin expression[J]. Nephrol Dial Transplant, 2019, 34 (5): 783- 794.
doi: 10.1093/ndt/gfy238 |
143 |
EL HAGE R , HERNANDEZ-SANABRIA E , CALATAYUD ARROYO M , et al. Supplementation of a propionate-producing consortium improves markers of insulin resistance in an in vitro model of gut-liver axis[J]. Am J Physiol Endocrinol Metab, 2020, 318 (5): E742- E749.
doi: 10.1152/ajpendo.00523.2019 |
144 |
TIROSH A , CALAY E S , TUNCMAN G , et al. The short-chain fatty acid propionate increases glucagon and FABP4 production, impairing insulin action in mice and humans[J]. Sci Transl Med, 2019, 11 (489): eaav0120.
doi: 10.1126/scitranslmed.aav0120 |
145 |
ZHAI L X , WU J Y , LAM Y Y , et al. Gut-Microbial metabolites, probiotics and their roles in type 2 diabetes[J]. Int J Mol Sci, 2021, 22 (23): 12846.
doi: 10.3390/ijms222312846 |
146 | YAQUB S , ANANIAS P , SHAH A , et al. Decoding the pathophysiology of non-alcoholic fatty liver disease progressing to non-alcoholic steatohepatitis: a systematic review[J]. Cureus, 2021, 13 (9): e18201. |
147 |
STOLS-GONÇALVES D , MAK A L , MADSEN M S , et al. Faecal Microbiota transplantation affects liver DNA methylation in Non-alcoholic fatty liver disease: a multi-omics approach[J]. Gut Microbes, 2023, 15 (1): 2223330.
doi: 10.1080/19490976.2023.2223330 |
148 |
LI F X , YE J Z , SHAO C X , et al. Compositional alterations of gut microbiota in nonalcoholic fatty liver disease patients: a systematic review and meta-analysis[J]. Lipids Health Dis, 2021, 20 (1): 22.
doi: 10.1186/s12944-021-01440-w |
149 |
YANG C , XU J G , XU X M , et al. Characteristics of gut microbiota in patients with metabolic associated fatty liver disease[J]. Sci Rep, 2023, 13 (1): 9988.
doi: 10.1038/s41598-023-37163-4 |
150 |
ABENAVOLI L , MAURIZI V , RINNINELLA E , et al. Fecal microbiota transplantation in NAFLD treatment[J]. Medicina (Kaunas), 2022, 58 (11): 1559.
doi: 10.3390/medicina58111559 |
151 |
HAN C , LI Z S , LIU R Y , et al. Lonicerae flos polysaccharides improve nonalcoholic fatty liver disease by activating the adenosine 5'-monophosphate-activated protein kinase pathway and reshaping gut microbiota[J]. J Sci Food Agric, 2023, 103 (15): 7721- 7738.
doi: 10.1002/jsfa.12854 |
152 |
ZHOU D , PAN Q , SHEN F , et al. Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota[J]. Sci Rep, 2017, 7 (1): 1529.
doi: 10.1038/s41598-017-01751-y |
153 |
BARBER T M , HANSON P , WEICKERT M O . Metabolic-associated fatty liver disease and the gut microbiota[J]. Endocrinol Metab Clin North Am, 2023, 52 (3): 485- 496.
doi: 10.1016/j.ecl.2023.01.004 |
154 |
JI Y , GAO Y , CHEN H , et al. Indole-3-acetic acid alleviates nonalcoholic fatty liver disease in mice via attenuation of hepatic lipogenesis, and oxidative and inflammatory stress[J]. Nutrients, 2019, 11 (9): 2062.
doi: 10.3390/nu11092062 |
155 | ZHAO T T , GU J L , ZHANG H X , et al. Sodium butyrate-modulated mitochondrial function in high-insulin induced HepG2 cell dysfunction[J]. Oxid Med Cell Longev, 2020, 2020, 1904609. |
[1] | 陈栋, 周文譞, 赵真坚, 申琦, 余杨, 崔晟頔, 王俊戈, 陈子旸, 禹世欣, 陈佳苗, 王翔枫, 吴平先, 郭宗义, 王金勇, 唐国庆. 基于计算机视觉技术的猪肌内脂肪含量和眼肌面积测定系统的研发[J]. 畜牧兽医学报, 2024, 55(9): 3843-3852. |
[2] | 娄明, 罗昊玉, 牟芳, 李辉, 王宁. 鸡胰岛素信号通路的研究进展[J]. 畜牧兽医学报, 2024, 55(8): 3288-3296. |
[3] | 李瑶, 贾蕊, 李杰, 滚双宝, 杨巧丽, 王龙龙, 张鹏霞, 高小莉, 黄晓宇. 低温对合作猪脂肪组织形态、脂代谢相关基因表达和酶活性及AMPK/PGC-1α通路的影响[J]. 畜牧兽医学报, 2024, 55(8): 3418-3426. |
[4] | 梁小娟, 李雨爽, 付周, 唐铎, 李莹莹, 王守伟. 鸽脂肪前体细胞的分离培养及成脂诱导分化研究[J]. 畜牧兽医学报, 2024, 55(8): 3482-3492. |
[5] | 彭章蓉, 孙皓然, 张乔儒, 杨颖, 郭鸿莹, 常彤, 赵卉, 张铁涛. 不同年龄梅花鹿肌内脂肪沉积规律及其对风味品质影响[J]. 畜牧兽医学报, 2024, 55(8): 3541-3551. |
[6] | 宋云方, 程浩, 冯露雅, 白平, 邓远坤, 夏耀耀, 谭碧娥, 王婧. 营养调控肠道免疫细胞活化机制研究进展[J]. 畜牧兽医学报, 2024, 55(7): 2846-2858. |
[7] | 梁小娟, 李雨爽, 李莹莹, 王守伟. 北京黑猪脂肪前体细胞的分离培养及成脂诱导分化研究[J]. 畜牧兽医学报, 2024, 55(7): 2877-2889. |
[8] | 曹晓娟, 刘昊东, 李鹏辉, 李嘉成, 樊奇, 王星, 李彩琴, 杨子程, 郭永清, 陈玉洁, 张小宇, 海日汗, 杜晨光. 胰淀素作用于背外侧被盖核胆碱乙酰转移酶神经元调节小鼠体重[J]. 畜牧兽医学报, 2024, 55(7): 3185-3192. |
[9] | 吕英光, 焦广明, 桑金芳, 寇志鹏, 刘涛, 王月, 陆翔宇, 朴晨曦, 马亚军, 张建涛, 王洪斌. 脂肪间充质干细胞对巴马小型猪自体皮肤移植愈合过程的影响[J]. 畜牧兽医学报, 2024, 55(7): 3193-3204. |
[10] | 朱明德, 陈奕静, 戴鹏秀, 张翊华, 张欣珂. 重编程诱导犬脂肪间充质干细胞向胰岛素分泌细胞分化[J]. 畜牧兽医学报, 2024, 55(7): 3205-3212. |
[11] | 陈倩玲, 沙玉柱, 刘秀, 邵鹏阳, 王翻兄, 陈小伟, 杨文鑫, 谢转回, 高敏, 黄薇. 肠道微生物与线粒体互作调控动物脂肪沉积的研究进展[J]. 畜牧兽医学报, 2024, 55(6): 2293-2303. |
[12] | 冯铭, 伊旭东, 庞卫军. 肠道微生物通过骨骼肌纤维类型、肌内脂肪含量和骨骼肌代谢调控猪肉质研究进展[J]. 畜牧兽医学报, 2024, 55(6): 2304-2312. |
[13] | 王中波, 刘爽, 贺丽霞, 冯雪, 杨梦丽, 汪书哲, 刘源, 冯兰, 丁晓玲, 冀国尚, 杨润军, 张路培, 马云. 固原黄牛不同部位肌肉组织代谢组学分析[J]. 畜牧兽医学报, 2024, 55(4): 1565-1578. |
[14] | 梁淑怡, 李凡, 江青艳, 王松波. 脯氨酸羟化酶(PHDs)对动物骨骼肌发育和脂肪沉积的调控作用及其机制[J]. 畜牧兽医学报, 2024, 55(3): 867-873. |
[15] | 常馨丹, 胡帆, 伍志武, 叶炳森, 刘铁海, 林杰, 贺志雄, 谭支良. 日粮添加高比例过瘤胃脂肪对生长肉用绵羊采食行为的影响[J]. 畜牧兽医学报, 2024, 55(3): 1077-1084. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||