畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (10): 4679-4689.doi: 10.11843/j.issn.0366-6964.2024.10.039
占小秀1,2(), 刘鹏宇1,2, 向小娥3, 毛胜勇1,2, 金巍1,2,*(
)
收稿日期:
2023-10-10
出版日期:
2024-10-23
发布日期:
2024-11-04
通讯作者:
金巍
E-mail:2021105048@stu.njau.edu.cn;jinwei@njau.edu.cn
作者简介:
占小秀(1998-), 女, 安徽太湖人, 硕士生, 主要从事反刍动物营养与瘤胃微生物研究, E-mail: 2021105048@stu.njau.edu.cn
基金资助:
Xiaoxiu ZHAN1,2(), Pengyu LIU1,2, Xiao'e XIANG3, Shengyong MAO1,2, Wei JIN1,2,*(
)
Received:
2023-10-10
Online:
2024-10-23
Published:
2024-11-04
Contact:
Wei JIN
E-mail:2021105048@stu.njau.edu.cn;jinwei@njau.edu.cn
摘要:
甲烷马赛球菌是哺乳动物消化道中的固有菌群,能够利用三甲胺(TMA)生成甲烷,然而其对宿主的作用机制尚不十分清楚。本文旨在利用小鼠模型研究灌胃甲烷马赛球菌菌株DZ1活菌对小鼠血清氧化三甲胺(TMAO)和炎症因子、肝抗氧化能力及盲肠微生物区系的影响。试验采用14只5周龄雄性C57BL/6J小鼠(体重18.4±1.1 g),随机分为对照组(n=7)和处理组(n=7),单笼饲养。处理组每天灌胃200 μL DZ1菌液(1.09×109个细胞·mL-1),对照组每天灌胃200 μL无菌PBS溶液,试验期4周。结果显示,与对照组相比,处理组小鼠日增重和采食量没有显著变化(P>0.05)。处理组小鼠血清TMAO浓度和炎症因子水平显著降低(P < 0.05)。处理组小鼠肝中超氧化酶歧化酶(SOD)活性显著升高(P=0.035),肝总抗氧化能力(T-AOC)显著提高(P=0.039)。盲肠细菌16S rRNA基因测序结果显示,处理组和对照组菌群结构没有显著差异(ANOSIM,P=0.161)。处理组中疣微菌门(Verrucomicrobia)的相对丰度有降低的趋势(P=0.064),Lawsonibacter属、瘤胃球菌属(Ruminococcus)和阿克曼菌属(Akkermansia)等的相对丰度显著降低(P < 0.05)。综上,灌胃甲烷马赛球菌菌株DZ1未显著影响小鼠盲肠细菌区系结构,但降低了小鼠血清TMAO和炎症因子水平,提高了肝组织总抗氧化能力。
中图分类号:
占小秀, 刘鹏宇, 向小娥, 毛胜勇, 金巍. 甲烷马赛球菌DZ1对小鼠血清氧化三甲胺和炎症因子、肝脏抗氧化能力及盲肠微生物区系的影响[J]. 畜牧兽医学报, 2024, 55(10): 4679-4689.
Xiaoxiu ZHAN, Pengyu LIU, Xiao'e XIANG, Shengyong MAO, Wei JIN. Effects of Methanomassiliicoccus DZ1 on Serum Trimethylamine-N-oxide and Inflammatory Factors, Liver Antioxidant Capacity and Cecum Microbiota in Mice[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4679-4689.
表 1
BRN培养基成分"
项目 Item | 体积/质量 Volume/mass | 成分 Component |
缓冲液A Buffer A | 50 mL | 每100 mL含K2HPO4 0.3 g,4 ℃保存 |
缓冲液B Buffer B | 50 mL | 每100 mL含(NH4)2SO4 0.6 g,MgSO4·7H2O 0.06 g,KH2PO4 0.3 g, CaCl2·2H2O 0.06 g,NaCl 0.6 g,4 ℃保存 |
基础培养液Basal medium | 400 mL | 2 g胰蛋白胨、2 g酵母膏、5 g NaHCO3 |
无细胞瘤胃液Cell-free rumen fluid | 200 mL | |
NH4Cl Ammonium chloride | 1 g | |
辅酶M Coenzyme M | 10 mL | 每100 mL含辅酶M 0.4 g,4 ℃保存 |
脂肪酸溶液Fatty acid solution | 50 mL | |
微量元素溶液Trace element solution | 10 mL | |
还原剂Reductant | 1 g | L-半胱氨酸盐酸盐 |
指示剂Indicator | 1 mL | 0.1% 刃天青1 mL(w/v) |
表 2
实时荧光定量PCR引物序列"
类别 Categories | 引物序列(5′→3′) Primers sequences (5′→3′) | 参考文献 References |
古菌Archaea | 915f-AAG AAT TGG CGG GGG AGC AC | Jeyanathan等[ |
1386r-GCG GTG TGT GCA AGG AGC | ||
甲烷马赛球菌Mmc | 762f-GAC GAA GCC CTG GGT C | Jeyanathan等[ |
1099r-GAG GGT CTC GTT CGT TAT | ||
胆碱降解菌基因cutC | 389-aa-f-TTY GCI GGI TAY CAR CCN TT | Martínez-del Campo等[ |
Choline degrading bacteria gene cutc | 492-aa-r-TGN GGR TCI ACY CAI CCC AT |
表 3
盲肠微生物定量PCR分析"
项目Item | 对照组 Control | 处理组 Treatment | 标准误 SEM | P值 P-value |
总古菌/lg10(copies·g-1) Total archaea | 5.50 | 5.90 | 0.31 | 0.536 |
甲烷马赛球菌/lg10(copies·g-1) Mmc | 3.81 | 4.67 | 0.22 | 0.048 |
甲烷马赛球菌占古菌比例/% The proportion of Mmc to archaea | 3.85 | 11.73 | 4.16 | 0.083 |
细菌cutC/lg10(copies·g-1) Bacterial CutC | 7.06 | 6.96 | 0.05 | 0.394 |
表 5
小鼠盲肠细菌在门水平上的相对丰度(仅展示任意一组相对丰度平均值>0.1%的门)"
门水平 Phylums | 对照组 Control | 处理组 Treatment | 标准误 SEM | P值 P-value |
Firmicutes | 67.61 | 70.73 | 2.24 | 0.277 |
Bacteroidetes | 15.94 | 19.27 | 2.60 | 0.277 |
Verrucomicrobia | 11.63 | 4.27 | 2.01 | 0.064 |
Proteobacteria | 3.67 | 4.45 | 0.73 | 0.949 |
Actinobacteria | 0.63 | 0.68 | 0.15 | 0.848 |
Unclassified | 0.19 | 0.26 | 0.02 | 0.110 |
Deferribacteres | 0.16 | 0.18 | 0.05 | 0.655 |
表 6
小鼠盲肠细菌在属水平上的相对丰度(仅展示任意一组相对丰度平均值> 1%的属)"
门水平 Phylums | 属水平 Genus | 对照组 Control | 处理组 Treatment | 标准误 SEM | P 值 P-value |
Firmicutes | Kineothrix | 10.81 | 8.64 | 2.88 | 0.456 |
Duncaniella | 7.99 | 9.54 | 2.73 | 0.535 | |
Enterocloster | 6.78 | 4.30 | 1.36 | 0.097 | |
Ligilactobacillus | 6.30 | 6.28 | 3.19 | 0.456 | |
Limosilactobacillus | 6.05 | 12.15 | 2.96 | 0.128 | |
Muribaculum | 4.50 | 4.49 | 2.18 | 0.456 | |
Lactobacillus | 3.96 | 9.33 | 3.26 | 0.710 | |
Eisenbergiella | 3.40 | 2.67 | 1.04 | 0.710 | |
Anaerostipes | 2.32 | 0.69 | 0.99 | 0.073 | |
Schaedlerella | 2.24 | 2.06 | 0.87 | 0.710 | |
Acetatifactor | 2.12 | 1.15 | 0.58 | 0.073 | |
Herbivorax | 1.99 | 1.12 | 0.83 | 0.456 | |
Faecalimonas | 1.26 | 1.94 | 0.38 | 0.165 | |
Lacrimispora | 1.20 | 1.19 | 0.24 | 0.902 | |
Herbinix | 1.14 | 0.17 | 0.58 | 0.053 | |
Dubosiella | 1.10 | 1.15 | 1.11 | 0.710 | |
Lawsonibacter | 1.07 | 0.57 | 0.23 | 0.026 | |
Extibacter | 1.05 | 1.71 | 0.46 | 0.128 | |
Ruminococcus | 1.05 | 0.33 | 0.36 | 0.038 | |
Roseburia | 1.04 | 1.04 | 0.34 | 1.000 | |
Hungatella | 1.02 | 0.65 | 0.24 | 0.209 | |
Blautia | 1.00 | 1.12 | 0.18 | 0.456 | |
Anaerocolumna | 0.94 | 2.04 | 1.05 | 0.318 | |
Mediterraneibacter | 0.73 | 1.10 | 0.13 | 1.000 | |
Verrucomicrobia | Akkermansia | 11.63 | 4.26 | 3.28 | 0.007 |
Proteobacteria | Desulfovibrio | 2.99 | 3.49 | 1.64 | 0.073 |
Bacteroidota | Odoribacter | 0.54 | 1.05 | 0.54 | 0.620 |
Paramuribaculum | 0.80 | 1.07 | 0.42 | 0.902 |
1 |
WANG Z N , ZHAO Y Z . Gut microbiota derived metabolites in cardiovascular health and disease[J]. Protein Cell, 2018, 9 (5): 416- 431.
doi: 10.1007/s13238-018-0549-0 |
2 |
KOETH R A , WANG Z N , LEVISON B S , et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis[J]. Nat Med, 2013, 19 (5): 576- 585.
doi: 10.1038/nm.3145 |
3 |
CRACIUN S , MARKS J A , BALSKUS E P . Characterization of choline trimethylamine-lyase expands the chemistry of glycyl radical enzymes[J]. ACS Chem Biol, 2014, 9 (7): 1408- 1413.
doi: 10.1021/cb500113p |
4 |
HE M X , TAN C P , XU Y J , et al. Gut microbiota-derived trimethylamine-n-oxide: a bridge between dietary fatty acid and cardiovascular disease?[J]. Food Res Int, 2020, 138, 109812.
doi: 10.1016/j.foodres.2020.109812 |
5 |
DOLPHIN C T , RILEY J H , SMITH R L , et al. Structural organization of the human flavin-containing monooxygenase 3 gene (FMO3), the favored candidate for fish-odor syndrome, determined directly from genomic DNA[J]. Genomics, 1997, 46 (2): 260- 267.
doi: 10.1006/geno.1997.5031 |
6 |
MIAO J , LING A V , MANTHENA P V , et al. Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis[J]. Nat Commun, 2015, 6, 6498.
doi: 10.1038/ncomms7498 |
7 |
TANG W H W , WANG Z N , FAN Y Y , et al. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis[J]. J Am Coll Cardiol, 2014, 64 (18): 1908- 1914.
doi: 10.1016/j.jacc.2014.02.617 |
8 |
ZHU W F , GREGORY J C , ORG E , et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk[J]. Cell, 2016, 165 (1): 111- 124.
doi: 10.1016/j.cell.2016.02.011 |
9 |
TANG W H W , WANG Z N , KENNEDY D J , et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease[J]. Cir Res, 2015, 116 (3): 448- 455.
doi: 10.1161/CIRCRESAHA.116.305360 |
10 |
CHEN Y Y , WENG Z K , LIU Q , et al. FMO3 and its metabolite TMAO contribute to the formation of gallstones[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865 (10): 2576- 2585.
doi: 10.1016/j.bbadis.2019.06.016 |
11 | SUN X L , JIAO X F , MA Y R , et al. Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome[J]. Biochem Biophys Res Commun, 2016, 481 (1/2): 63- 70. |
12 |
BORREL G , PARISOT N , HARRIS H M , et al. Comparative genomics highlights the unique biology of Methanomassiliicoccales, a thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine[J]. BMC Genomics, 2014, 15, 679.
doi: 10.1186/1471-2164-15-679 |
13 | OREN A , GARRITY G M . List of new names and new combinations previously effectively, but not validly, published[J]. Int J Syst Evol Microbiol, 2013, 63 (9): 3131- 3134. |
14 |
HENDERSON G , COX F , GANESH S , et al. Global Rumen Census Collaborators, et al.Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range[J]. Sci Rep, 2015, 5, 14567.
doi: 10.1038/srep14567 |
15 |
ZHOU Y , JIN W , XIE F , et al. The role of methanomassiliicoccales in trimethylamine metabolism in the rumen of dairy cows[J]. Animal, 2021, 15 (7): 100259.
doi: 10.1016/j.animal.2021.100259 |
16 |
REA S , BOWMAN J P , POPOVSKI S , et al. Methanobrevibacter millerae sp. nov. and Methanobrevibacter olleyae sp. nov., methanogens from the ovine and bovine rumen that can utilize formate for growth[J]. Int J Syst Evol Microbiol, 2007, 57 (3): 450- 456.
doi: 10.1099/ijs.0.63984-0 |
17 |
BALCH W E , FOX G E , MAGRUM L J , et al. Methanogens: reevaluation of a unique biological group[J]. Microbiol Rev, 1979, 43 (2): 260- 296.
doi: 10.1128/mr.43.2.260-296.1979 |
18 | LOWE S E , THEODOROU M K , TRINCI A P J , et al. Growth of anaerobic rumen fungi on defined and semi-defined media lacking rumen fluid[J]. J Gen Microbiol, 1985, 131 (9): 2225- 2229. |
19 |
HAI X , LANDERAS V , DOBRE M A , et al. Mechanism of prominent trimethylamine oxide (TMAO) accumulation in hemodialysis patients[J]. PLoS One, 2015, 10 (12): e0143731.
doi: 10.1371/journal.pone.0143731 |
20 |
ZOETENDAL E G , AKKERMANS A D L , DE VOS W M . Temperature gradient gel electrophoresis analysis of 16s rRNA from human fecal samples reveals stable and host-specific communities of active bacteria[J]. Appl Environ Microbiol, 1998, 64 (10): 3854- 3859.
doi: 10.1128/AEM.64.10.3854-3859.1998 |
21 |
JEYANATHAN J , KIRS M , RONIMUS R S , et al. Methanogen community structure in the rumens of farmed sheep, cattle and red deer fed different diets[J]. FEMS Microbiol Ecol, 2011, 76 (2): 311- 326.
doi: 10.1111/j.1574-6941.2011.01056.x |
22 | MARTÍNEZ-DEL CAMPO A , BODEA S , HAMER H A , et al. Characterization and detection of a widely distributed gene cluster that predicts anaerobic choline utilization by human gut bacteria[J]. mBio, 2015, 6 (2): e00042- 15. |
23 |
JOHNSON J S , SPAKOWICZ D J , HONG B Y , et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis[J]. Nat Commun, 2019, 10 (1): 5029.
doi: 10.1038/s41467-019-13036-1 |
24 |
SCHLOSS P D , WESTCOTT S L , RYABIN T , et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Appl Environ Microbiol, 2009, 75 (23): 7537- 7541.
doi: 10.1128/AEM.01541-09 |
25 |
LOZUPONE C , LLADSER M E , KNIGHTS D , et al. UniFrac: an effective distance metric for microbial community comparison[J]. ISME J, 2011, 5 (2): 169- 172.
doi: 10.1038/ismej.2010.133 |
26 |
AMATO K R , YEOMAN C J , KENT A , et al. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes[J]. ISME J, 2013, 7 (7): 1344- 1353.
doi: 10.1038/ismej.2013.16 |
27 | ALTAY O , NIELSEN J , UHLEN M , et al. Systems biology perspective for studying the gut microbiota in human physiology and liver diseases[J]. EBioMedicine, 2019, 49, 364- 373. |
28 | ARON-WISNEWSKY J , VIGLIOTTI C , WITJES J , et al. Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders[J]. Nat Rev Gastroenterol Hepatol, 2020, 17 (5): 279- 297. |
29 |
秦士贞, 杨敏敏, 任志雄, 等. 枯草芽孢杆菌对脂多糖应激肉仔鸡肠道免疫、肠道组织形态以及肠道屏障的影响[J]. 畜牧兽医学报, 2023, 54 (11): 4676- 4690.
doi: 10.11843/j.issn.0366-6964.2023.11.022 |
QIN S Z , YANG M M , REN Z X , et al. Effects of Bacillus subtilis on intestinal immunity, intestinal tissue morphology and intestinal barrier of broilers challenged with lipopolysaccharide[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (11): 4676- 4690.
doi: 10.11843/j.issn.0366-6964.2023.11.022 |
|
30 | SAKAMOTO M , IINO T , YUKI M , et al. Lawsonibacter asaccharolyticus gen. nov., sp. nov., a butyrate-producing bacterium isolated from human faeces[J]. Int J Syst Evol Microbiol, 2018, 68 (6): 2074- 2081. |
31 | CHANG P V , HAO L M , OFFERMANNS S , et al. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition[J]. Proc Natl Acad Sci U S A, 2014, 111 (6): 2247- 2252. |
32 | BREBAN M , TAP J , LEBOIME A , et al. Faecal microbiota study reveals specific dysbiosis in spondyloarthritis[J]. Ann Rheum Dis, 2017, 76 (9): 1614- 1622. |
33 | DEL CHIERICO F , NOBILI V , VERNOCCHI P , et al. Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach[J]. Hepatology, 2017, 65 (2): 451- 464. |
34 | CANI P D , DEPOMMIER C , DERRIEN M , et al. Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms[J]. Nat Rev Gastroenterol Hepatol, 2022, 19 (10): 625- 637. |
35 | GEERLINGS S Y , KOSTOPOULOS I , DE VOS W M.D , et al. Akkermansia muciniphila in the human gastrointestinal tract: when, where, and how?[J]. Microorganisms, 2018, 6 (8): 75. |
36 | YANG W X , BAI X Y , LUAN X H , et al. Delicate regulation of IL-1β-mediated inflammation by cyclophilin A[J]. Cell Rep, 2022, 38 (11): 110513. |
37 | QING H , DESROULEAUX R , ISRANI-WINGER K , et al. Origin and function of stress-induced IL-6 in murine models[J]. Cell, 2020, 182 (2): 372- 387. |
38 | CHO C E , CAUDILL M A C . Trimethylamine-N-oxide: friend, foe, or simply caught in the cross-fire?[J]. Trends Endocrinol Metab, 2017, 28 (2): 121- 130. |
39 | SANCHEZ-LOPEZ E , ZHONG Z Y , STUBELIUS A , et al. Choline uptake and metabolism modulate macrophage IL-1β and IL-18 production[J]. Cell Metab, 2019, 29 (6): 1350- 1362. |
40 | LAI Y S , TANG H E , ZHANG X R , et al. Trimethylamine-N-oxide aggravates kidney injury via activation of p38/MAPK signaling and upregulation of HuR[J]. Kidney Blood Press Res, 2022, 47 (1): 61- 71. |
41 | PINHO J , MARQUES S A , FREITAS E , et al. Red cell distribution width as a predictor of 1-year survival in ischemic stroke patients treated with intravenous thrombolysis[J]. Thromb Res, 2018, 164, 4- 8. |
42 | YANG C C , ZHAO Y , REN D Y , et al. Protective effect of saponins-enriched fraction of Gynostemma pentaphyllum against high choline-induced vascular endothelial dysfunction and hepatic damage in mice[J]. Biol Pharm Bull, 2020, 43 (3): 463- 473. |
43 | MACHADO V S , OIKONOMOU G , LIMA S F , et al. The effect of injectable trace minerals (selenium, copper, zinc, and manganese) on peripheral blood leukocyte activity and serum superoxide dismutase activity of lactating Holstein cows[J]. Vet J, 2014, 200 (2): 299- 304. |
44 | ROSA C G S , COLARES J R , DA FONSECA S R B , et al. Sarcopenia, oxidative stress and inflammatory process in muscle of cirrhotic rats-Action of melatonin and physical exercise[J]. Exp Mol Pathol, 2021, 121, 104662. |
[1] | 李碧波, 吴克, 师晓龙, 闫奕凝, 李嘉豪, 段国庆, 李熊, 任彦鹏, 董佳宁, 张春香, 任有蛇. 羊源Lactobacillus plantarum对腹泻羔羊空肠菌群及肠道黏膜屏障的调控作用[J]. 畜牧兽医学报, 2024, 55(8): 3552-3569. |
[2] | 宋云方, 程浩, 冯露雅, 白平, 邓远坤, 夏耀耀, 谭碧娥, 王婧. 营养调控肠道免疫细胞活化机制研究进展[J]. 畜牧兽医学报, 2024, 55(7): 2846-2858. |
[3] | 陈倩玲, 沙玉柱, 刘秀, 邵鹏阳, 王翻兄, 陈小伟, 杨文鑫, 谢转回, 高敏, 黄薇. 肠道微生物与线粒体互作调控动物脂肪沉积的研究进展[J]. 畜牧兽医学报, 2024, 55(6): 2293-2303. |
[4] | 冯铭, 伊旭东, 庞卫军. 肠道微生物通过骨骼肌纤维类型、肌内脂肪含量和骨骼肌代谢调控猪肉质研究进展[J]. 畜牧兽医学报, 2024, 55(6): 2304-2312. |
[5] | 徐兰梦, 黄榆智, 韩玉竹, 李常营, 章杰. 肠道微生物调控脂肪沉积及其代谢相关疾病的研究进展[J]. 畜牧兽医学报, 2024, 55(10): 4263-4277. |
[6] | 徐成, 田文杰, 马月辉, 王圣楠, 蒋琳, 王丹丹. 基于16S rRNA测序分析敲除基因ZBED6后巴马猪肠道微生物菌群的变化[J]. 畜牧兽医学报, 2024, 55(10): 4302-4310. |
[7] | 郑先瑞, 卓明雪, 纪金丽, 蒋维虎, 邓在双, 张吉成, 田雅莉, 丁月云, 张晓东, 殷宗俊. 皖南黑猪不同生长阶段血清免疫指标及肠道菌群的特征分析[J]. 畜牧兽医学报, 2023, 54(9): 3770-3783. |
[8] | 禹世雄, 魏凌云, 徐甜甜, 焦金真, 蒋林树, 贺志雄. 幼龄反刍动物肠道微生物定植规律及其营养调控研究进展[J]. 畜牧兽医学报, 2023, 54(7): 2701-2707. |
[9] | 纪鹏, 张斌, 张春勇, 邢笑锟, 杨佳, 刘韶娜, 方碟, 潘洪彬, 赵彦光, 安清聪. 日粮添加乳铁蛋白对断奶仔猪肠道微生物多样性的影响[J]. 畜牧兽医学报, 2023, 54(7): 2942-2955. |
[10] | 杜海东, 娜仁花. 反刍动物胃肠道上皮屏障功能及与微生物互作研究[J]. 畜牧兽医学报, 2023, 54(5): 1804-1814. |
[11] | 刘燕坤, 罗润波, 林焱, 朱伟云. 噬菌体鸡尾酒对断奶仔猪生长性能、血液参数和粪样菌群的影响[J]. 畜牧兽医学报, 2023, 54(4): 1555-1567. |
[12] | 陆梦琪, 杨文杰, 李萍, 余鹏, 董翎, 牛晓玉, 杨克礼, 邹维华, 宋卉. 基于16S rRNA测序分析PRRSV感染仔猪肺和肠道中微生物菌群的变化[J]. 畜牧兽医学报, 2023, 54(4): 1664-1678. |
[13] | 袁岩聪, 何航, 刘安芳, 万堃, 章杰. 不同体重四川白鹅消化生理、免疫和肠道微生物的比较分析[J]. 畜牧兽医学报, 2023, 54(3): 1124-1134. |
[14] | 刘攀, 李瑞琦, 谭占坤, 王逸飞, 陈晓晨, 何伟先, 杜忍让, 马健, 褚瑰燕, 蔡传江. 高纤维日粮对生长育肥猪生长性能、肉品质及肠道微生物的影响[J]. 畜牧兽医学报, 2023, 54(10): 4247-4259. |
[15] | 袁铜, 黄靓, 杨琳, 王文策, 朱勇文. 肠道菌群及其代谢产物调节动物线粒体功能的研究进展[J]. 畜牧兽医学报, 2023, 54(1): 48-57. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||