畜牧兽医学报 ›› 2022, Vol. 53 ›› Issue (4): 999-1009.doi: 10.11843/j.issn.0366-6964.2022.04.001
李桃桃1, 金美林1, 费晓娟1, 王慧华1, 陆健2, 狄冉1, 魏彩虹1,*
收稿日期:
2021-08-17
出版日期:
2022-04-23
发布日期:
2022-04-25
通讯作者:
魏彩虹,主要从事肉羊遗传育种与繁殖研究,E-mail:weicaihong@caas.cn
作者简介:
李桃桃(1997-),女,甘肃环县人,硕士生,主要从事肉羊遗传育种与繁殖研究,E-mail:ltt_ltt2020@163.com
基金资助:
LI Taotao1, JIN Meilin1, FEI Xiaojuan1, WANG Huihua1, LU Jian2, DI Ran1, WEI Caihong1,*
Received:
2021-08-17
Online:
2022-04-23
Published:
2022-04-25
摘要: Hox基因编码保守的转录因子,它们控制发育过程中胚胎的骨骼模式。它们在受限的区域表达,并调节特定椎骨的形态。从最初在果蝇中发现该基因家族至今已有四十多年的历史。不断更新的研究使人们对Hox基因在脊椎动物中轴骨骼模式化中的作用有了新见解。本文综述了Hox基因在建立轴向形态中的遗传学和胚胎学发现,以及这些综合结果如何影响目前对脊椎动物Hox调控的理解。便于今后对动物的脊椎形态及数量变异进行研究。
中图分类号:
李桃桃, 金美林, 费晓娟, 王慧华, 陆健, 狄冉, 魏彩虹. Hox基因家族及其对动物脊椎形成的影响[J]. 畜牧兽医学报, 2022, 53(4): 999-1009.
LI Taotao, JIN Meilin, FEI Xiaojuan, WANG Huihua, LU Jian, DI Ran, WEI Caihong. The Hox Gene Family and Its Effects on Spine Formation in Animals[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(4): 999-1009.
[1] | BÜRGLIN T R.Homeodomain subtypes and functional diversity[J].Subcell Biochem, 2011,52:95-122. |
[2] | SEIFERT A,WERHEID D F,KNAPP S M,et al.Role of Hox genes in stem cell differentiation[J].World J Stem Cells, 2015,7(3):583-595. |
[3] | MIKSIUNAS R,MOBASHERI A,BIRONAITE D.Homeobox genes and homeodomain proteins:new insights into cardiac development,degeneration and regeneration[J].Adv Exp Med Biol, 2020,1212:155-178. |
[4] | HOLLAND P W H.Evolution of homeobox genes[J].Wiley Interdiscip Rev Dev Biol, 2013,2(1):31-45. |
[5] | HE B,NI Z L,KONG S B,et al.Homeobox genes for embryo implantation:from mouse to human[J].Animal Model Exp Med, 2018,1(1):14-22. |
[6] | MALLO M,ALONSO C R.The regulation of Hox gene expression during animal development[J].Development, 2013, 140(19):3951-3963. |
[7] | POPOVICI C,LEVEUGLE M,BIRNBAUM D,et al.Homeobox gene clusters and the human paralogy map[J].FEBS Lett, 2001,491(3):237-242. |
[8] | SMITH J J,TIMOSHEVSKAYA N,YE C X,et al.The sea lamprey germline genome provides insights into programmed genome rearrangement and vertebrate evolution[J].Nat Genet, 2018,50(2):270-277. |
[9] | DU H L,TAYLOR H S.The role of Hox genes in female reproductive tract development,adult function,and fertility[J].Cold Spring Harb Perspect Med, 2015,6(1):a023002. |
[10] | SHAH N,SUKUMAR S.The Hox genes and their roles in oncogenesis[J].Nat Rev Cancer, 2010,10(5):361-371. |
[11] | KRUMLAUF R.Hox genes,clusters and collinearity[J].Int J Dev Biol, 2018,62(11-12):659-663. |
[12] | PASCUAL-ANAYA J,D’ANIELLO S,KURATANI S,et al.Evolution of Hox gene clusters in deuterostomes[J].BMC Dev Biol, 2013,13:26. |
[13] | AKAM M.Hox and HOM:homologous gene clusters in insects and vertebrates[J].Cell, 1989,57(3):347-349. |
[14] | DUBOULE D.The rise and fall of Hox gene clusters[J].Development, 2007,134(14):2549-2560. |
[15] | NOORDERMEER D,DUBOULE D.Chromatin architectures and Hox gene collinearity[J].Curr Top Dev Biol, 2013,104:113-148. |
[16] | DURSTON A J,JANSEN H J,IN DER RIEDEN P,et al.Hox collinearity-a new perspective[J].Int J Dev Biol, 2011, 55(10-12):899-908. |
[17] | YOUNG T,ROWLAND J E,VAN DE VEN C,et al.Cdx and Hox genes differentially regulate posterior axial growth in mammalian embryos[J].Dev Cell, 2009,17(4):516-526. |
[18] | MALLO M,WELLIK D M,DESCHAMPS J.Hox genes and regional patterning of the vertebrate body plan[J].Dev Biol, 2010, 344(1):7-15. |
[19] | PINEAULT K M,WELLIK D M.Hox genes and limb musculoskeletal development[J].Curr Osteoporos Rep, 2014,12(4): 420-427. |
[20] | WELLIK D M,CAPECCHI M R.Hox 10 and Hox 11 genes are required to globally pattern the mammalian skeleton[J].Science, 2003,301(5631):363-367. |
[21] | MCINTYRE D C,RAKSHIT S,YALLOWITZ A R,et al.Hox patterning of the vertebrate rib cage[J].Development, 2007,134(16):2981-2989. |
[22] | WELLIK D M,HAWKES P J,CAPECCHI M R.Hox 11 paralogous genes are essential for metanephric kidney induction[J].Genes Dev, 2002,16(11):1423-1432. |
[23] | MAROULAKOU I G,SPYROPOULOS D D.The study of HOX gene function in hematopoietic,breast and lung carcinogenesis[J].Anticancer Res, 2003,23(3A):2101-2110. |
[24] | GAUNT S J.Hox cluster genes and collinearities throughout the tree of animal life[J].Int J Dev Biol, 2018,62(11-12):673-683. |
[25] | KMITA M,TARCHINI B,ZÀKÀNY J,et al.Early developmental arrest of mammalian limbs lacking HoxA /HoxD gene function[J].Nature, 2005,435(7045):1113-1116. |
[26] | FREITAS R,GÓMEZ-MARÍN C,WILSON J M,et al.Hoxd 13 contribution to the evolution of vertebrate appendages[J].Dev Cell, 2012,23(6):1219-1229. |
[27] | BOULET A M,CAPECCHI M R.Multiple roles of Hoxa 11 and Hoxd 11 in the formation of the mammalian forelimb zeugopod[J].Development, 2004,131(2):299-309. |
[28] | SONG J Y,PINEAULT K M,DONES J M,et al.Hox genes maintain critical roles in the adult skeleton[J].Proc Natl Acad Sci U S A, 2020,117(13):7296-7304. |
[29] | ZANATTA A,ROCHA A M,CARVALHO F M,et al.The role of the Hoxa 10/HOXA 10 gene in the etiology of endometriosis and its related infertility:a review[J].J Assist Reprod Genet, 2010,27(12):701-710. |
[30] | BENSON G V,LIM H,PARIA B C,et al.Mechanisms of reduced fertility in Hoxa -10 mutant mice:uterine homeosis and loss of maternal Hoxa -10 expression[J].Development, 1996,122(9):2687-2696. |
[31] | WANG Y,HU S G,YAO G X,et al.Identification of HOXA 10 target genes in human endometrial stromal cells by RNA-seq analysis[J].Acta Biochim Biophys Sin (Shanghai), 2021,53(3):365-371. |
[32] | BIRK O S,CASIANO D E,WASSIF C A,et al.The LIM homeobox gene Lhx 9 is essential for mouse gonad formation[J].Nature, 2000,403(6772):909-913. |
[33] | LAWRENCE H J,CHRISTENSEN J,FONG S,et al.Loss of expression of the Hoxa -9 homeobox gene impairs the proliferation and repopulating ability of hematopoietic stem cells[J].Blood, 2005,106(12):3988-3994. |
[34] | HUANG Y S,SITWALA K,BRONSTEIN J,et al.Identification and characterization of Hoxa 9 binding sites in hematopoietic cells[J].Blood, 2012,119(2):388-398. |
[35] | ALSAYEGH K,CORTÉS-MEDINA L V,RAMOS-MANDUJANO G,et al.Hematopoietic differentiation of human pluripotent stem cells:HOX and GATA transcription factors as master regulators[J].Curr Genomics, 2019,20(6):438-452. |
[36] | WEERKAMP F,LUIS T C,NABER B A E,et al.Identification of Notch target genes in uncommitted T-cell progenitors:no direct induction of a T-cell specific gene program[J].Leukemia, 2006,20(11):1967-1977. |
[37] | ALHARBI R A,PETTENGELL R,PANDHA H S,et al.The role of HOX genes in normal hematopoiesis and acute leukemia[J].Leukemia, 2013,27(5):1000-1008. |
[38] | THORSTEINSDOTTIR U,MAMO A,KROON E,et al.Overexpression of the myeloid leukemia-associated Hoxa 9 gene in bone marrow cells induces stem cell expansion[J].Blood, 2002,99(1):121-129. |
[39] | ADAMAKI M,GOULIELMAKI M,CHRISTODOULOU I,et al.Homeobox gene involvement in normal hematopoiesis and in the pathogenesis of childhood leukemias[J].Crit Rev Oncog, 2017,22(3-4):157-185. |
[40] | LI B,HUANG Q L,WEI G H.The role of HOX transcription factors in cancer predisposition and progression[J].Cancers (Basel), 2019,11(4):528. |
[41] | LUO Z F,RHIE S K,FARNHAM P J.The enigmatic HOX genes:can we crack their code?[J].Cancers (Basel), 2019,11(3):323. |
[42] | MONTERISI S,LO RISO P,RUSSO K,et al.HOXB 7 overexpression in lung cancer is a hallmark of acquired stem-like phenotype[J].Oncogene, 2018,37(26):3575-3588. |
[43] | DAI L F,HU W D,YANG Z,et al.Upregulated expression of HOXB 7 in intrahepatic cholangiocarcinoma is associated with tumor cell metastasis and poor prognosis[J].Lab Invest, 2019,99(6):736-748. |
[44] | BHATLEKAR S,FIELDS J Z,BOMAN B M.HOX genes and their role in the development of human cancers[J].J Mol Med (Berl), 2014,92(8):811-823. |
[45] | DE BESSA GARCIA S A,ARA AÚJO M,PEREIRA T,et al.HOX genes function in Breast Cancer development[J].Biochim Biophys Acta Rev Cancer, 2020,1873(2):188358. |
[46] | FENG Y Y,ZHANG T Y,WANG Y J,et al.Homeobox genes in cancers:from carcinogenesis to recent therapeutic intervention[J].Front Oncol, 2021,11:770428. |
[47] | CHRIST B,HUANG R J,SCAAL M.Amniote somite derivatives[J].Dev Dyn, 2007,236(9):2382-2396. |
[48] | NARITA Y,KURATANI S.Evolution of the vertebral formulae in mammals:a perspective on developmental constraints[J].J Exp Zool B Mol Dev Evol, 2005,304B(2):91-106. |
[49] | HAUTIER L,WEISBECKER V,SÁNCHEZ-VILLAGRA M R,et al.Skeletal development in sloths and the evolution of mammalian vertebral patterning[J].Proc Natl Acad Sci U S A, 2010,107(44):18903-18908. |
[50] | HORAN G S,RAMÍREZ-SOLIS R,FEATHERSTONE M S,et al.Compound mutants for the paralogous hoxa -4,hoxb -4,and hoxd -4 genes show more complete homeotic transformations and a dose-dependent increase in the number of vertebrae transformed[J].Genes Dev, 1995,9(13):1667-1677. |
[51] | BURKE A C,NELSON C E,MORGAN B A,et al.Hox genes and the evolution of vertebrate axial morphology[J].Development, 1995,121(2):333-346. |
[52] | CONDIE B G,CAPECCHI M R.Mice with targeted disruptions in the paralogous genes hoxa -3 and hoxd -3 reveal synergistic interactions[J].Nature, 1994,370(6487):304-307. |
[53] | BURKE A C,NOWICKI J L.A new view of patterning domains in the vertebrate mesoderm[J].Dev Cell, 2003,4(2):159-165. |
[54] | VINAGRE T,MONCAUT N,CARAPUÇO M,et al.Evidence for a myotomal Hox /Myf cascade governing nonautonomous control of rib specification within global vertebral domains[J].Dev Cell, 2010,18(4):655-661. |
[55] | WELLIK D M.Hox patterning of the vertebrate axial skeleton[J].Dev Dyn, 2007,236(9):2454-2463. |
[56] | CARAPUÓO M,NÓVOA A,BOBOLA N,et al.Hox genes specify vertebral types in the presomitic mesoderm[J].Genes Dev, 2005,19(18):2116-2121. |
[57] | DI-POÏ N,MONTOYA-BURGOS J I,MILLER H,et al.Changes in Hox genes’ structure and function during the evolution of the squamate body plan[J].Nature, 2010,464(7285):99-103. |
[58] | ECONOMIDES K D,ZELTSER L,CAPECCHI M R.Hoxb 13 mutations cause overgrowth of caudal spinal cordand tail vertebrae[J].Dev Biol, 2003,256(2):317-330. |
[59] | NEIJTS R,AMIN S,VAN ROOIJEN C,et al.Cdx is crucial for the timing mechanism driving colinear Hox activation and defines a trunk segment in the Hox cluster topology[J].Dev Biol, 2017,422(2):146-154. |
[60] | YOUNG T,DESCHAMPS J.Hox, Cdx, and anteroposterior patterning in the mouse embryo[J].Curr Top Dev Biol, 2009,88: 235-255. |
[61] | ZHU K J,SPAINK H P,DURSTON A J.Collinear Hox -Hox interactions are involved in patterning the vertebrate anteroposterior (A-P) axis[J].PLoS One, 2017,12(4):e0175287. |
[62] | KMITA M,DUBOULE D.Organizing axes in time and space; 25 years of colinear tinkering[J].Science, 2003,301(5631):331-333. |
[63] | ZHU K J,SPAINK H P,DURSTON A J.Hoxc 6 loss of function truncates the main body axis in Xenopus[J].Cell Cycle, 2017, 16(11):1136-1138. |
[64] | MCNULTY C L,PERES J N,BARDINE N,et al.Knockdown of the complete Hox paralogous group 1 leads to dramatic hindbrain and neural crest defects[J].Development, 2005,132(12):2861-2871. |
[65] | ALEXANDER T,NOLTE C,KRUMLAUF R.Hox genes and segmentation of the hindbrain and axial skeleton[J].Annu Rev Cell Dev Biol, 2009,25:431-456. |
[66] | DUBRULLE J,POURQUIÉ O.Coupling segmentation to axis formation[J].Development, 2004,131(23):5783-5793. |
[67] | 刘 倩,岳静伟,牛乃琪,等.脊椎动物胚胎期脊椎的形成及信号通路调控机制[J].畜牧兽医学报,2021,52(6):1461-1470.LIU Q,YUE J W,NIU N Q,et al.The regulation mechanism and signal pathway for spine formation in vertebrate embryo[J].Acta Veterinaria et Zootechnica Sinica, 2021,52(6):1461-1470.(in Chinese) |
[68] | NEIJTS R,DESCHAMPS J.At the base of colinear Hox gene expression:cis -features and trans -factors orchestrating the initial phase of Hox cluster activation[J].Dev Biol, 2017,428(2):293-299. |
[69] | MALLO M.Reassessing the role of Hox genes during vertebrate development and evolution[J].Trends Genet, 2018,34(3): 209-217. |
[70] | NEIJTS R,AMIN S,VAN ROOIJEN C,et al.Polarized regulatory landscape and Wnt responsiveness underlie Hox activation in embryos[J].Genes Dev, 2016,30(17):1937-1942. |
[71] | DURSTON A J.What are the roles of retinoids,other morphogens,and Hox genes in setting up the vertebrate body axis?[J].Genesis, 2019,57(7-8):e23296. |
[72] | ZÁKÁNY J,KMITA M,ALARCON P,et al.Localized and transient transcription of Hox genes suggests a link between patterning and the segmentation clock[J].Cell, 2001,106(2):207-217. |
[73] | CORDES R,SCHUSTER-GOSSLER K,SERTH K,et al.Specification of vertebral identity is coupled to Notch signalling and the segmentation clock[J].Development, 2004,131(6):1221-1233. |
[74] | POLLARD S L,HOLLAND P W H.Evidence for 14 homeobox gene clusters in human genome ancestry[J].Curr Biol, 2000, 10(17):1059-1062. |
[75] | AMIN S,NEIJTS R,SIMMINI S,et al.Cdx and T brachyury co-activate growth signaling in the embryonic axial progenitor niche[J].Cell Rep, 2016,17(12):3165-3177. |
[76] | JURBERG A D,AIRES R,VARELA-LASHERAS I,et al.Switching axial progenitors from producing trunk to tail tissues in vertebrate embryos[J].Dev Cell, 2013,25(5):451-462. |
[77] | MATSUBARA Y,HIRASAWA T,EGAWA S,et al.Anatomical integration of the sacral-hindlimb unit coordinated by GDF11 underlies variation in hindlimb positioning in tetrapods[J].Nat Ecol Evol, 2017,1(9):1392-1399. |
[78] | GAUNT S J,GEORGE M,PAUL Y L.Direct activation of a mouse Hoxd 11 axial expression enhancer by Gdf11/Smad signalling[J].Dev Biol, 2013,383(1):52-60. |
[79] | SOSHNIKOVA N,DUBOULE D.Epigenetic temporal control of mouse Hox genes in vivo [J].Science, 2009,324(5932):1320-1323. |
[80] | RINGROSE L,PARO R.Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins[J].Annu Rev Genet, 2004,38:413-443. |
[81] | SCHUETTENGRUBER B,MARTINEZ A M,IOVINO N,et al.Trithorax group proteins:switching genes on and keeping them active[J].Nat Rev Mol Cell Biol, 2011,12(12):799-814. |
[82] | LEE T I,JENNER R G,BOYER L A,et al.Control of developmental regulators by Polycomb in human embryonic stem cells[J].Cell, 2006,125(2):301-313. |
[83] | BARBER B A,RASTEGAR M.Epigenetic control of Hox genes during neurogenesis,development,and disease[J].Ann Anat, 2010,192(5):261-274. |
[84] | DUAN Y Y,ZHANG H,ZHANG Z,et al.VRTN is required for the development of thoracic vertebrae in mammals[J].Int J Biol Sci, 2018,14(6):667-681. |
[85] | LI K,SUN X H,CHEN M X,et al.Evolutionary changes of Hox genes and relevant regulatory factors provide novel insights into mammalian morphological modifications[J].Integr Zool, 2018,13(1):21-35. |
[86] | ROHRER G A,NONNEMAN D J,WIEDMANN R T,et al.A study of vertebra number in pigs confirms the association of vertnin and reveals additional QTL[J].BMC Genet, 2015,16:129. |
[87] | NIU N,WANG H,SHI G,et al.Genome scanning reveals novel candidate genes for vertebral and teat number in the Beijing Black Pig[J].Anim Genet, 2021,52(5):734-738. |
[88] | LI C Y,LI M,LI X Y,et al.Whole-genome resequencing reveals loci associated with thoracic vertebrae number in sheep[J].Front Genet, 2019,10:674. |
[89] | POSBERGH C J,HUSON H J.All sheeps and sizes:a genetic investigation of mature body size across sheep breeds reveals a polygenic nature[J].Anim Genet, 2021,52(1):99-107. |
[90] | YURCHENKO A A,DENISKOVA T E,YUDIN N S,et al.High-density genotyping reveals signatures of selection related to acclimation and economically important traits in 15 local sheep breeds from Russia[J].BMC Genomics, 2019,20(Suppl 3):294. |
[91] | GONZÁLEZ-PRENDES R,QUINTANILLA R,MÁRMOL-SÁNCHEZ E,et al.Comparing the mRNA expression profile and the genetic determinism of intramuscular fat traits in the porcine gluteus medius and longissimus dorsi muscles[J].BMC Genomics, 2019,20(1):170. |
[92] | DE WILDE J,HULSHOF M F,BOEKSCHOTEN M V,et al.The embryonic genes Dkk 3,Hoxd 8,Hoxd 9 and Tbx 1 identify muscle types in a diet-independent and fiber-type unrelated way[J].BMC Genomics, 2010,11:176. |
[93] | 楚金雨,李绍梅,杨 戈,等.基于转录组数据挖掘藏羊立毛肌发生的关键基因[J].畜牧兽医学报,2021,52(8):2171-2180.CHU J Y,LI S M,YANG G,et al.Mining key genes of arrector pili muscle development in tibetan sheep based on transcriptome data[J].Acta Veterinaria et Zootechnica Sinica, 2021,52(8):2171-2180.(in Chinese) |
[94] | ARMSTRONG E,IRIARTE A,NICOLINI P,et al.Comparison of transcriptomic landscapes of different lamb muscles using RNA-Seq[J].PLoS One, 2018,13(7):e0200732. |
[1] | 蓝昕蕊, 赵宝宝, 张碧菡, 林晓语, 马会明, 王勇胜. β-谷甾醇对猪卵母细胞体外成熟和胚胎发育的影响[J]. 畜牧兽医学报, 2024, 55(4): 1629-1637. |
[2] | 李钰浚, 何翃闳, 杨丽雪, 杨小耿, 李键, 张慧珠. 线粒体自噬调控哺乳动物胚胎发育的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 905-912. |
[3] | 张晨俭, 李隐侠, 丁强, 刘伟佳, 王慧利, 何南, 吴家顺, 曹少先. CRISPR/Cas9技术高效制备山羊SOCS2基因编辑胚胎[J]. 畜牧兽医学报, 2024, 55(1): 129-141. |
[4] | 张航, 杨柏高, 徐茜, 冯肖艺, 杜卫华, 郝海生, 朱化彬, 张培培, 赵学明. 热应激影响奶牛胚胎发育作用机制的研究进展[J]. 畜牧兽医学报, 2023, 54(7): 2692-2700. |
[5] | 朱家桥, 程来洋, 曹江琴, 朱闽, 李军伟, 鞠辉明, 刘宗平. XRCC1在卵子和早期胚胎中的定位与功能的初步分析[J]. 畜牧兽医学报, 2023, 54(5): 2126-2133. |
[6] | 秦雪, 沙懿文, 杨梦豪, 蔡瑞, 庞卫军. 非编码RNA调控哺乳动物子宫内膜容受性和蜕膜化的研究进展[J]. 畜牧兽医学报, 2023, 54(4): 1347-1358. |
[7] | 冯肖艺, 杨柏高, 郝海生, 杜卫华, 朱化彬, 崔凯, 赵学明. 热应激导致奶牛胚胎质量下降的机制及解决措施[J]. 畜牧兽医学报, 2023, 54(3): 868-876. |
[8] | 杨小耿, 张慧珠, 李键, 向华, 何翃闳. DNA甲基化在哺乳动物卵母细胞和早期胚胎发育中的研究进展[J]. 畜牧兽医学报, 2023, 54(2): 443-450. |
[9] | 冯肖艺, 徐茜, 张航, 杨柏高, 张培培, 郝海生, 杜卫华, 朱化彬, 崔凯, 赵学明. 牛体外胚胎冷冻保存的研究进展[J]. 畜牧兽医学报, 2023, 54(2): 451-462. |
[10] | 陈思颍, 孙雅雯, 李伉, 刘硕, 郝海生, 杜卫华, 邹惠影, 朱化彬, 庞云渭. 微流体技术在家畜体外胚胎生产中的应用进展[J]. 畜牧兽医学报, 2023, 54(12): 4889-4897. |
[11] | 张宸艺博, 余彤, 任斌斌, 郑睿智, 朱文治, 苏建民. 动物早期胚胎发育中表观重编程的机制[J]. 畜牧兽医学报, 2023, 54(12): 4898-4909. |
[12] | 牛一凡, 杨柏高, 张培培, 张航, 冯肖艺, 曹建华, 余洲, 郝海生, 杜卫华, 邹惠影, 朱化彬, 马友记, 赵学明. 牛胚胎基因组选择研究进展[J]. 畜牧兽医学报, 2023, 54(11): 4449-4457. |
[13] | 罗睿杰, 曹素英. 大家畜多能干细胞的研究进展与应用前景[J]. 畜牧兽医学报, 2023, 54(10): 4003-4015. |
[14] | 骆金红, 陈祥, 尚以顺, 敖叶, 李鹏程. 转录组测序筛选山羊妊娠早期胚胎附植相关基因[J]. 畜牧兽医学报, 2022, 53(5): 1465-1474. |
[15] | 匡婧靖, 贺艳娟, 胡群, 顾婷, 吴珍芳, 蔡更元, 洪林君. 猪子宫腔液外泌体来源的TIMP2蛋白对胚胎附植的影响[J]. 畜牧兽医学报, 2022, 53(4): 1122-1132. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||