畜牧兽医学报 ›› 2023, Vol. 54 ›› Issue (11): 4449-4457.doi: 10.11843/j.issn.0366-6964.2023.11.002
牛一凡1,2, 杨柏高1, 张培培1, 张航1, 冯肖艺1, 曹建华1, 余洲1, 郝海生1, 杜卫华1, 邹惠影1, 朱化彬1, 马友记2, 赵学明1*
收稿日期:
2023-05-05
出版日期:
2023-11-23
发布日期:
2023-11-26
通讯作者:
赵学明,主要从事家畜胚胎生物技术的研究,E-mail:zhaoxueming@caas.cn
作者简介:
牛一凡(1999-),男,河北邯郸人,硕士生,主要从事动物繁殖研究,E-mail:nyf.niuyifan@qq.com
基金资助:
NIU Yifan1,2, YANG Baigao1, ZHANG Peipei1, ZHANG Hang1, FENG Xiaoyi1, CAO Jianhua1, YU Zhou1, HAO Haisheng1, DU Weihua1, ZOU Huiying1, ZHU Huabin1, MA Youji2, ZHAO Xueming1*
Received:
2023-05-05
Online:
2023-11-23
Published:
2023-11-26
摘要: 牛胚胎基因组选择(embryonic genome selection, EGS)是指活检牛早期胚胎中部分滋养层细胞,通过微量胚胎细胞全基因组扩增,进行遗传育种值评估,筛选出优质早期胚胎。该项技术的基本步骤是:对第6天左右的早期牛囊胚进行活检取样,利用显微切割系统切取微量滋养层细胞,随后通过微量细胞全基因组扩增(whole genomic amplification),经单核苷酸多态性(single-nucleotide polymorphism)分析后,对早期胚胎进行生产性能预测,从而筛选出基因型优良的胚胎进行移植。本文总结了EGS技术中常用的活检方法、扩增方法,并概述了该技术在牛上的应用现状与该项技术当前存在的一些问题,以期为未来EGS技术的全面发展提供参考。
中图分类号:
牛一凡, 杨柏高, 张培培, 张航, 冯肖艺, 曹建华, 余洲, 郝海生, 杜卫华, 邹惠影, 朱化彬, 马友记, 赵学明. 牛胚胎基因组选择研究进展[J]. 畜牧兽医学报, 2023, 54(11): 4449-4457.
NIU Yifan, YANG Baigao, ZHANG Peipei, ZHANG Hang, FENG Xiaoyi, CAO Jianhua, YU Zhou, HAO Haisheng, DU Weihua, ZOU Huiying, ZHU Huabin, MA Youji, ZHAO Xueming. Advances in Bovine Embryo Genome Selection[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4449-4457.
[1] | MULLAART E,WELLS D.Embryo biopsies for genomic selection[M]//NIEMANN H,WRENZYCKI C.Animal Biotechnology 2:Emerging Breeding Technologies.Cham:Springer,2018:81-94. |
[2] | HOUSTON R D,BEAN T P,MACQUEEN D J,et al.Harnessing genomics to fast-track genetic improvement in aquaculture[J].Nat Rev Genet,2020,21(7):389-409. |
[3] | 胡智辉,王 欢,衡 诺,等.高通量SNP芯片在牛体外早期胚胎染色体质量鉴定中的初步应用[J].畜牧兽医学报,2022,53(11):3866-3879.HU Z H,WANG H,HENG N,et al.Preliminary application of high throughput SNP chip in chromosome quality identification of bovine early in vitro embryos[J].Acta Veterinaria et Zootechnica Sinica,2022,53(11):3866-3879.(in Chinese) |
[4] | CENARIU M,PALL E,CERNEA C,et al.Evaluation of bovine embryo biopsy techniques according to their ability to preserve embryo viability[J].J Biomed Biotechnol,2012,2012:541384. |
[5] | PONSART C,LE BOURHIS D,KNIJN H,et al.Reproductive technologies and genomic selection in dairy cattle[J].Reprod Fertil Dev,2013,26(1):12-21. |
[6] | GONZÁLEZ-RODRÍGUEZ N,MARTÍNEZ-RODERO I,SCHERZER J,et al.Vitrification and in-straw warming do not affect pregnancy rates of biopsied bovine embryos[J].Theriogenology,2022,191:221-230. |
[7] | TUTT D A R,PASSARO C,WHITWORTH D J,et al.Laser assisted blastomere extrusion biopsy of in vitro produced cattle embryos-A potential high throughput,minimally invasive approach for sampling pre-morula and morula stage embryos[J].Anim Reprod Sci,2020,219:106546. |
[8] | LAURI A,LAZZARI G,GALLI C,et al.Assessment of MDA efficiency for genotyping using cloned embryo biopsies[J]. Genomics,2013,101(1):24-29. |
[9] | 姚雅馨,喇永富,狄 冉,等.不同单细胞全基因组扩增方法的比较及MALBAC在辅助生殖中的应用[J].遗传,2018,40(8):620-631.YAO Y X,LA Y F,DI R,et al.Comparison of different single cell whole genome amplification methods and MALBAC applications in assisted reproduction[J].Hereditas (Beijing),2018,40(8):620-631.(in Chinese) |
[10] | DEAN F B,HOSONO S,FANG L H,et al.Comprehensive human genome amplification using multiple displacement amplification[J].Proc Natl Acad Sci U S A,2002,99(8):5261-5266. |
[11] | ORDÓÑEZ C D,REDREJO-RODRÍGUEZ M.DNA polymerases for whole genome amplification:considerations and future directions[J].Int J Mol Sci,2023,24(11):9331. |
[12] | HUTCHISON III C A,SMITH H O,PFANNKOCH C,et al.Cell-free cloning using φ29 DNA polymerase[J].Proc Natl Acad Sci U S A,2005,102(48):17332-17336. |
[13] | ZHANG J,SU X L,WANG Y F,et al.Improved single-cell genome amplification by a high-efficiency phi29 DNA polymerase[J].Front Bioeng Biotechnol,2023,11:1233856. |
[14] | PATRO S C,NIYONGABO A,MALDARELLI F,et al.New approaches to multi-parametric HIV-1 genetics using multiple displacement amplification:determining the what,how,and where of the HIV-1 reservoir[J].Viruses,2021, 13(12):2475. |
[15] | SIDORE A M,LAN F,LIM S W,et al.Enhanced sequencing coverage with digital droplet multiple displacement amplification[J].Nucleic Acids Res,2016,44(7):e66. |
[16] | ZHOU Y,JIA E T,QIAO Y,et al.Low bias multiple displacement amplification with confinement effect based on agarose gel[J].Anal Bioanal Chem,2021,413(17):4397-4405. |
[17] | LU S J,ZONG C H,FAN W,et al.Probing meiotic recombination and aneuploidy of single sperm cells by whole-genome sequencing[J].Science,2012,338(6114):1627-1630. |
[18] | ZONG C H,LU S J,CHAPMAN A R,et al.Genome-wide detection of single-nucleotide and copy-number variations of a single human cell[J].Science,2012,338(6114):1622-1626. |
[19] | VOLOZONOKA L,MISKOVA A,GAILITE L.Whole genome amplification in preimplantation genetic testing in the era of massively parallel sequencing[J].Int J Mol Sci,2022,23(9):4819. |
[20] | LI N,WANG L,WANG H,et al.The performance of whole genome amplification methods and next-generation sequencing for pre-implantation genetic diagnosis of chromosomal abnormalities[J].J Genet Genomics,2015,42(4): 151-159. |
[21] | CHEN C Y,XING D,TAN L Z,et al.Single-cell whole-genome analyses by Linear Amplification via Transposon Insertion (LIANTI)[J].Science,2017,356(6334):189-194. |
[22] | LI N N,JIN K R,BAI Y M,et al.Tn5 transposase applied in genomics research[J].Int J Mol Sci,2020,21(21):8329. |
[23] | ZHOU X X,XU Y,ZHU L B,et al.Comparison of multiple displacement amplification (MDA) and multiple annealing and looping-based amplification cycles (MALBAC) in limited DNA sequencing based on tube and droplet[J].Micromachines (Basel),2020,11(7):645. |
[24] | FU Y,SHEN X T,WU H T,et al.Preimplantation genetic testing for monogenic disease of spinal muscular atrophy by multiple displacement amplification:11 unaffected livebirths[J].Int J Med Sci,2019,16(9):1313-1319. |
[25] | GAWAD C,KOH W,QUAKE S R.Single-cell genome sequencing:current state of the science[J].Nat Rev Genet,2016,17(3):175-188. |
[26] | SOBOL M S,KASTER A K.Back to basics:a simplified improvement to multiple displacement amplification for microbial single-cell genomics[J].Int J Mol Sci,2023,24(5):4270. |
[27] | YAO K,GONZÁLEZ-ESCALONA N,HOFFMANN M.Multiple displacement amplification as a solution for low copy number plasmid sequencing[J].Front Microbiol,2021,12:617487. |
[28] | RUAN Q Y,RUAN W D,LIN X Y,et al.Digital-WGS:automated,highly efficient whole-genome sequencing of single cells by digital microfluidics[J].Sci Adv,2020,6(50):eabd6454. |
[29] | ARAKAWA K.Ultralow-input genome library preparation for nanopore sequencing with droplet MDA[M]//ARAKAWA K.Nanopore Sequencing.New York:Humana,2023:91-100. |
[30] | SHOJAEI SAADI H A,VIGNEAULT C,SARGOLZAEI M,et al.Impact of whole-genome amplification on the reliability of pre-transfer cattle embryo breeding value estimates[J].BMC Genomics,2014,15(1):889. |
[31] | GUIGNOT F,REIGNER F,PERREAU C,et al.Preimplantation genetic diagnosis in Welsh pony embryos after biopsy and cryopreservation[J].J Anim Sci,2015,93(11):5222-5231. |
[32] | GUIGNOT F,PERREAU C,CAVARROC C,et al.Sex and PRNP genotype determination in preimplantation caprine embryos[J].Reprod Domest Anim,2011,46(4):656-663. |
[33] | GUIGNOT F,BARIL G,DUPONT F,et al.Determination of sex and scrapie resistance genotype in preimplantation ovine embryos[J].Mol Reprod Dev,2009,76(2):183-190. |
[34] | FUJII T,HIRAYAMA H,NAITO A,et al.Production of calves by the transfer of cryopreserved bovine elongating conceptuses and possible application for preimplantation genomic selection[J].J Reprod Dev,2017,63(5):497-504. |
[35] | FUJII T,NAITO A,HIRAYAMA H,et al.Potential of preimplantation genomic selection for carcass traits in Japanese Black cattle[J].J Reprod Dev,2019,65(3):251-258. |
[36] | FUJII T,NAITO A,MORIYASU S,et al.Potential of preimplantation genomic selection using the blastomere separation technique in bovine in vitro fertilized embryos[J].J Reprod Dev,2021,67(2):155-159. |
[37] | LEUNG K,KLAUS A,LIN B K,et al.Robust high-performance nanoliter-volume single-cell multiple displacement amplification on planar substrates[J].Proc Natl Acad Sci U S A,2016,113(30):8484-8489. |
[38] | PÉREZ-MARÍN C C,VIZUETE G,VAZQUEZ-MARTINEZ R,et al.Comparison of different cryopreservation methods for horse and donkey embryos[J].Equine Vet J,2018,50(3):398-404. |
[39] | LOS F J,VAN OPSTAL D,VAN DEN BERG C.The development of cytogenetically normal,abnormal and mosaic embryos:a theoretical model[J].Hum Reprod Update,2004,10(1):79-94. |
[40] | SCOTT R T Jr,FERRY K,SU J,et al.Comprehensive chromosome screening is highly predictive of the reproductive potential of human embryos:a prospective,blinded,nonselection study[J].Fertil Steril,2012,97(4):870-875. |
[41] | BRODIE D,BEYER C E,OSBORNE E,et al.Preimplantation genetic diagnosis for chromosome rearrangements- one blastomere biopsy versus two blastomere biopsy[J].J Assist Reprod Genet,2012,29(8):821-827. |
[42] | ADLER A,LEE H L,MCCULLOH D H,et al.Blastocyst culture selects for euploid embryos:comparison of blastomere and trophectoderm biopsies[J].Reprod Biomed Online,2014,28(4):485-491. |
[43] | SCOTT R T Jr,UPHAM K M,FORMAN E J,et al.Cleavage-stage biopsy significantly impairs human embryonic implantation potential while blastocyst biopsy does not:a randomized and paired clinical trial[J].Fertil Steril,2013, 100(3): 624-630. |
[44] | LEAVER M,WELLS D.Non-invasive preimplantation genetic testing (niPGT):the next revolution in reproductive genetics?[J].Hum Reprod Update,2020,26(1):16-42. |
[45] | MASTENBROEK S,TWISK M,VAN ECHTEN-ARENDS J,et al.In vitro fertilization with preimplantation genetic screening[J].N Engl J Med,2007,357(1):9-17. |
[46] | ZAKHAROVA E E,ZALETOVA V V,KRIVOKHARCHENKO A S.Biopsy of human morula-stage embryos: outcome of 215 IVF/ICSI cycles with PGS[J].PLoS One,2014,9(9):e106433. |
[47] | MUNNÉ S.Chromosome abnormalities and their relationship to morphology and development of human embryos[J]. Reprod Biomed Online,2006,12(2):234-253. |
[48] | STAESSEN C,VERPOEST W,DONOSO P,et al.Preimplantation genetic screening does not improve delivery rate in women under the age of 36 following single-embryo transfer[J].Hum Reprod,2008,23(12):2818-2825. |
[49] | DEBROCK S,MELOTTE C,SPIESSENS C,et al.Preimplantation genetic screening for aneuploidy of embryos after in vitro fertilization in women aged at least 35 years:a prospective randomized trial[J].Fertil Steril,2010,93(2): 364-373. |
[50] | HARDARSON T,HANSON C,LUNDIN K,et al.Preimplantation genetic screening in women of advanced maternal age caused a decrease in clinical pregnancy rate:a randomized controlled trial[J].Hum Reprod,2008, 23(12): 2806-2812. |
[51] | SULLIVAN-PYKE C,DOKRAS A.Preimplantation genetic screening and preimplantation genetic diagnosis[J]. Obstet Gynecol Clin North Am,2018,45(1):113-125. |
[52] | CHUANG T H,HSIEH J Y,LEE M J,et al.Concordance between different trophectoderm biopsy sites and the inner cell mass of chromosomal composition measured with a next-generation sequencing platform[J].Mol Hum Reprod,2018,24(12):593-601. |
[53] | KULIEV A,RECHITSKY S.Preimplantation genetic testing:current challenges and future prospects[J].Expert Rev Mol Diagn,2017,17(12):1071-1088. |
[54] | CIMADOMO D,CAPALBO A,UBALDI F M,et al.The impact of biopsy on human embryo developmental potential during preimplantation genetic diagnosis[J].Biomed Res Int,2016,2016:7193075. |
[55] | AOYAMA N,KATO K.Trophectoderm biopsy for preimplantation genetic test and technical tips:a review[J]. Reprod Med Biol,2020,19(3):222-231. |
[56] | MARA L,PILICHI S,SANNA A,et al.Sexing of in vitro produced ovine embryos by duplex PCR[J].Mol Reprod Dev,2004,69(1):35-42. |
[57] | ROSSANT J,TAM P P L.Early human embryonic development:blastocyst formation to gastrulation[J].Dev Cell, 2022, 57(2):152-165. |
[58] | LAWRENZ B,EL KHATIB I,LIÑÁN A,et al.The clinicians’ dilemma with mosaicism-an insight from inner cell mass biopsies[J].Hum Reprod,2019,34(6):998-1010. |
[59] | DEL REY J,VIDAL F,RAMÍREZ L,et al.Novel double factor PGT strategy analyzing blastocyst stage embryos in a single NGS procedure[J].PLoS One,2018,13(10):e0205692. |
[60] | LU N,QIAO Y,LU Z H,et al.Chimera:the spoiler in multiple displacement amplification[J].Comput Struct Biotechnol J,2023,21:1688-1696. |
[61] | VALENTE R S,MARSICO T V,SUDANO M J.Basic and applied features in the cryopreservation progress of bovine embryos[J].Anim Reprod Sci,2022,239:106970. |
[62] | NAJAFZADEH V,SECHER J B M,PIHL M,et al.Vitrification yields higher cryo-survival rate than slow freezing in biopsied bovine in vitro produced blastocysts[J].Theriogenology,2021,171:44-54. |
[63] | MIKI T,EZOE K,KOURABA S,et al.Time from trophectoderm biopsy to vitrification affects the developmental competence of biopsied blastocysts[J].Reprod Med Biol,2022,21(1):e12439. |
[64] | WILSHER S,RIGALI F,COUTO G,et al.Vitrification of equine expanded blastocysts following puncture with or without aspiration of the blastocoele fluid[J].Equine Vet J,2019,51(4):500-505. |
[1] | 张元旭, 李竟, 王泽昭, 陈燕, 徐凌洋, 张路培, 高雪, 高会江, 李俊雅, 朱波, 郭鹏. 动物遗传评估软件研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1827-1841. |
[2] | 段益欣, 张林云, 赵永聚. SNP遗传力估计方法、影响因素及其在畜禽育种中的应用[J]. 畜牧兽医学报, 2024, 55(5): 1854-1865. |
[3] | 李剑南, 袁利明, 华进联. CD46基因在家畜抗病育种中的应用研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1866-1874. |
[4] | 王中波, 刘爽, 贺丽霞, 冯雪, 杨梦丽, 汪书哲, 刘源, 冯兰, 丁晓玲, 冀国尚, 杨润军, 张路培, 马云. 固原黄牛不同部位肌肉组织代谢组学分析[J]. 畜牧兽医学报, 2024, 55(4): 1565-1578. |
[5] | 武上杰, 栾园园, 王明坤, 张贺春, 于波, 马月辉, 蒋琳, 何晓红. 绵羊布鲁氏菌病抗病育种研究进展[J]. 畜牧兽医学报, 2024, 55(3): 882-893. |
[6] | 夏淑雯, 陈坤琳, 沈阳阳, 安振江, 赵芳, 丁强, 仲跻峰, 林志平, 王慧利. 江苏地区荷斯坦成母牛长寿性状遗传参数估计[J]. 畜牧兽医学报, 2024, 55(3): 1030-1039. |
[7] | 钟欣, 张晖, 张充, 刘小红. 母猪繁殖力基因遗传育种研究进展[J]. 畜牧兽医学报, 2024, 55(2): 438-450. |
[8] | 王元清, 王兢, 朱波, 陈燕, 徐凌洋, 王泽昭, 张路培, 高会江, 李俊雅, 高雪. 基因组选配研究及其在畜禽育种中的应用[J]. 畜牧兽医学报, 2024, 55(1): 1-10. |
[9] | 刘铃, 王丹丹, 崔凯, 马月辉, 蒋琳. 猪繁殖与呼吸综合征抗病育种研究进展[J]. 畜牧兽医学报, 2023, 54(2): 434-442. |
[10] | 张硕, 周雨潇, 吴海波, 索伦. 长效CRISPR/Cas9基因编辑结局的动态追踪研究[J]. 畜牧兽医学报, 2023, 54(10): 4196-4208. |
[11] | 吴俊超, 王立刚, 王立贤. 中国瘦肉型猪育种目标性状经济权重的测算[J]. 畜牧兽医学报, 2022, 53(9): 2877-2887. |
[12] | 庞志旭, 张洪志, 乔利英, 王万年, 潘洋洋, 刘文忠. 基于元共祖的基因组联合育种模拟研究[J]. 畜牧兽医学报, 2022, 53(7): 2172-2181. |
[13] | 欧阳清渊, 胡深强, 王继文. 家禽重要性状的基因组学研究与应用现状[J]. 畜牧兽医学报, 2022, 53(3): 663-679. |
[14] | 王迪, 俞英. 奶牛金葡菌乳房炎抗性的转录组及表观遗传学研究进展[J]. 畜牧兽医学报, 2022, 53(2): 329-338. |
[15] | 杨雨婷, 张兴, 牛安然, 闫之春, 龚华忠, 丁偌楠, 马黎. 基于高密度SNP标记重构猪多品种群体系谱[J]. 畜牧兽医学报, 2022, 53(12): 4183-4196. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||