畜牧兽医学报 ›› 2023, Vol. 54 ›› Issue (2): 451-462.doi: 10.11843/j.issn.0366-6964.2023.02.004
冯肖艺1,2, 徐茜1, 张航1, 杨柏高1, 张培培1, 郝海生1, 杜卫华1, 朱化彬1, 崔凯2, 赵学明1*
收稿日期:
2022-05-16
出版日期:
2023-02-23
发布日期:
2023-02-21
通讯作者:
赵学明,主要从事家畜胚胎生物技术研究,E-mail:zhaoxueming@caas.cn
作者简介:
冯肖艺(1999-),女,山东济南人,硕士生,主要从事动物繁殖研究,E-mail:17806257712@163.com
基金资助:
FENG Xiaoyi1,2, XU Xi1, ZHANG Hang1, YANG Baigao1, ZHANG Peipei1, HAO Haisheng1, DU Weihua1, ZHU Huabin1, CUI Kai2, ZHAO Xueming1*
Received:
2022-05-16
Online:
2023-02-23
Published:
2023-02-21
摘要: 体外胚胎冷冻保存技术是胚胎移植技术的重要组成部分,在辅助生殖技术中发挥重要作用,同时对种质资源保存、加强遗传改良和促进优质种源国际交流等方面具有重要意义。然而,体外胚胎冷冻过程中存在脂质含量过高、活性氧水平升高及机械损伤等问题,导致体外胚胎冷冻效率低,这极大地限制了体外胚胎冷冻保存技术的广泛应用。大量研究表明,通过去脂质、优化体外胚胎培养液、人工塌陷囊胚腔和优化冷冻程序等手段,可以有效提高冷冻后胚胎的存活率和发育能力。因此,本文概述了体外胚胎冷冻保存技术的研究进展和胚胎冷冻过程中存在的问题,总结了提高体外胚胎冷冻效率的方法措施,旨在为提高体外胚胎冷冻保存效率提供一定参考。
中图分类号:
冯肖艺, 徐茜, 张航, 杨柏高, 张培培, 郝海生, 杜卫华, 朱化彬, 崔凯, 赵学明. 牛体外胚胎冷冻保存的研究进展[J]. 畜牧兽医学报, 2023, 54(2): 451-462.
FENG Xiaoyi, XU Xi, ZHANG Hang, YANG Baigao, ZHANG Peipei, HAO Haisheng, DU Weihua, ZHU Huabin, CUI Kai, ZHAO Xueming. Advances in Cryopreservation of Bovine Embryo in vitro[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 451-462.
[1] | FRANCO M, HANSEN P J.Effects of hyaluronic acid in culture and cytochalasin B treatment before freezing on survival of cryopreserved bovine embryos produced in vitro[J].In Vitro Cell Dev Biol Anim, 2006, 42(1-2):40-44. |
[2] | GUPTA A, SINGH J, ANZAR M.Effect of cryopreservation technique and season on the survival of in vitro produced cattle embryos[J].Anim Reprod Sci, 2016, 164:162-168. |
[3] | MARINHO L S R, SANCHES B V, ROSA C O, et al.Pregnancy rates to fixed embryo transfer of vitrified IVP Bos indicus, Bos taurus or Bos indicus×Bos taurus embryos[J].Reprod Domest Anim, 2015, 50(5):807-811. |
[4] | FERRÉ L B, KJELLAND M E, TAIYEB A M, et al.Recent progress in bovine in vitro-derived embryo cryotolerance:impact of in vitro culture systems, advances in cryopreservation and future considerations[J].Reprod Domest Anim, 2020, 55(6):659-676. |
[5] | DOCHI O.Direct transfer of frozen-thawed bovine embryos and its application in cattle reproduction management[J].J Reprod Dev, 2019, 65(5):389-396. |
[6] | MIN S H, KIM J W, LEE Y H, et al.Forced collapse of the blastocoel cavity improves developmental potential in cryopreserved bovine blastocysts by slow-rate freezing and vitrification[J].Reprod Domest Anim, 2014, 49(4):684-692. |
[7] | GÓMEZ E, CARROCERA S, MARTÍN D, et al.Efficient one-step direct transfer to recipients of thawed bovine embryos cultured in vitro and frozen in chemically defined medium[J].Theriogenology, 2020, 146:39-47. |
[8] | TAKAHASHI T, INABA Y, SOMFAI T, et al.Supplementation of culture medium with L-carnitine improves development and cryotolerance of bovine embryos produced in vitro[J].Reprod Fertil Dev, 2013, 25(4):589-599. |
[9] | 高 峰, 何琪富, 吴盛辉, 等.哺乳动物配子冷冻保存并应用于珍稀濒危动物保护的技术策略[J].畜牧兽医学报, 2022, 53(8):2479-2489.GAO F, HE Q F, WU S H, et al.Mammalian gametes cryopreserved and applied to technical strategies for the protection of rare and endangered animals[J].Acta Veterinaria et Zootechnica Sinica, 2022, 53(8):2479-2489.(in Chinese) |
[10] | SUDANO M J, PASCHOAL D M, DA SILVA RASCADO T, et al.Lipid content and apoptosis of in vitro-produced bovine embryos as determinants of susceptibility to vitrification[J].Theriogenology, 2011, 75(7):1211-1220. |
[11] | VALENTE R S, MARSICO T V, SUDANO M J.Basic and applied features in the cryopreservation progress of bovine embryos[J].Anim Reprod Sci, 2022, 239:106970. |
[12] | VIANA J.2018 Statistics of embryo production and transfer in domestic farm animals[J].Embryo Technol Newsl, 2019, 36(4):7-19. |
[13] | SENA-NETTO S B, SPRÍCIGO J F W, LEME L O, et al.The replacement of fetal bovine serum with bovine serum albumin during oocyte maturation and embryo culture does not improve blastocyst quality after slow freezing cryopreservation[J].Biopreserv Biobank, 2020, 18(3):171-179. |
[14] | KASSENS A, HELD E, SALILEW-WONDIM D, et al.Intrafollicular oocyte transfer (IFOT) of abattoir-derived and in vitro-matured oocytes results in viable blastocysts and birth of healthy calves[J].Biol Reprod, 2015, 92(6):150. |
[15] | ARSHAD U, SAGHEER M, GONZÁLEZ-SILVESTRY F B, et al.Vitrification improves in-vitro embryonic survival in Bos taurus embryos without increasing pregnancy rate post embryo transfer when compared to slow-freezing:a systematic meta-analysis[J]. Cryobiology, 2021, 101:1-11. |
[16] | NAJAFZADEH V, BOJSEN-MØLLER SECHER J, PIHL M, et al.Vitrification yields higher cryo-survival rate than slow freezing in biopsied bovine in vitro produced blastocysts[J].Theriogenology, 2021, 171:44-54. |
[17] | CAVUSOGLU T, POPKEN J, GUENGOER T, et al.Ultra-Structural alterations in in vitro produced four-cell bovine embryos following controlled slow freezing or vitrification[J].Anat Histol Embryol, 2016, 45(4):291-307. |
[18] | MUCCI N, ALLER J, KAISER G G, et al.Effect of estrous cow serum during bovine embryo culture on blastocyst development and cryotolerance after slow freezing or vitrification[J].Theriogenology, 2006, 65(8):1551-1562. |
[19] | DO V H, WALTON S, CATT S, et al.A comparative analysis of the efficacy of three cryopreservation protocols on the survival of in vitro-derived cattle embryos at pronuclear and blastocyst stages[J].Cryobiology, 2017, 77:58-63. |
[20] | BARCELÓ-FIMBRES M, SEIDEL G E.Effects of fetal calf serum, phenazine ethosulfate and either glucose or fructose during in vitro culture ofbovine embryos on embryonic development after cryopreservation[J].Mol Reprod Dev, 2007, 74(11):1395-1405. |
[21] | DO V H, CATT S, KINDER J E, et al.Vitrification of in vitro-derived bovine embryos:targeting enhancement of quality by refining technology and standardising procedures[J].Reprod Fertil Dev, 2019, 31(5):837-846. |
[22] | LEVI-SETTI P E, PATRIZIO P, SCARAVELLI G.Evolution of human oocyte cryopreservation:slow freezing versus vitrification[J].Curr Opin Endocrinol Diabetes Obes, 2016, 23(6):445-450. |
[23] | TOMINAGA K, IWAKI F, HOCHI S.Conventional freezing of in vitro-produced and biopsied bovine blastocysts in the presence of a low concentration of glycerol and sucrose[J].J Reprod Dev, 2007, 53(2):443-447. |
[24] | TAJIMI H, YAMAZAKI T, OIKE S, et al.Vitrification for bovine embryos with low-quality grade[J].Anim Sci J, 2018, 89(8):1194-1200. |
[25] | WU H, YU X L, GUO X F, et al.Effect of liquid helium vitrification on the ultrastructure and related gene expression of mature bovine oocytes after vitrifying at immature stage[J].Theriogenology, 2017, 87:91-99. |
[26] | KAIDI S, BERNARD S, LAMBERT P, et al.Effect of conventional controlled-rate freezing and vitrification on morphology and metabolism of bovine blastocysts produced in vitro[J].Biol Reprod, 2001, 65(4):1127-1134. |
[27] | PANYABORIBAN S, THARASANIT T, CHANKITISAKUL V, et al.Treatment with chemical delipidation forskolin prior to cryopreservation improves the survival rates of swamp buffalo (Bubalus bubalis) and bovine (Bos indicus) in vitro produced embryos[J].Cryobiology, 2018, 84:46-51. |
[28] | DIAS L R O, LEME L O, SPRÍCIGO J F W, et al.Effect of delipidant agents during in vitro culture on the development, lipid content, gene expression and cryotolerance of bovine embryos[J].Reprod Domest Anim, 2020, 55(1):11-20. |
[29] | PRYOR J H, LOONEY C R, ROMO S, et al.Cryopreservation of in vitro produced bovine embryos:effects of lipid segregation and post-thaw laser assisted hatching[J].Theriogenology, 2011, 75(1):24-33. |
[30] | JANATI IDRISSI S, LE BOURHIS D, LEFEVRE A, et al.Lipid profile of bovine grade-1 blastocysts produced either in vivo or in vitro before and after slow freezing process[J].Sci Rep, 2021, 11(1):11618. |
[31] | KHURANA N K, NIEMANN H.Effects of cryopreservation on glucose metabolism and survival of bovine morulae and blastocysts derived in vitro or in vivo[J].Theriogenology, 2000, 54(2):313-326. |
[32] | DIEZ C, HEYMAN Y, LE BOURHIS D, et al.Delipidating in vitro-produced bovine zygotes:effect on further development and consequences for freezability[J].Theriogenology, 2001, 55(4):923-936. |
[33] | CARRILLO-GONZÁLEZ D F, RODRÍGUEZ-OSORIO N, LONG C R, et al.L-Carnitine supplementation during in vitro maturation and in vitro culture does not affect the survival rates after vitrification and warming but alters INF-T and PTGS2 gene expression[J].Int J Mol Sci, 2020, 21(16):5601. |
[34] | CARRILLO-GONZÁLEZ D F, MALDONADO-ESTRADA J G.L-carnitine supplementation in culture media improves the pregnancy rate of in vitro produced embryos with sexed semen from Bos taurus indicus cows[J].Trop Anim Health Prod, 2020, 52(5):2559-2565. |
[35] | GUYADER-JOLY C, PONCHON S, DURAND M, et al.Effect of lecithin on in vitro and in vivo survival of in vitro produced bovine blastocysts after cryopreservation[J].Theriogenology, 1999, 52(7):1193-1202. |
[36] | ACCORSI M F, DA SILVA LEÃO B C, DE SOUZA ROCHA-FRIGONI N A, et al.Reduction in cytoplasmic lipid content in bovine embryos cultured in vitro with linoleic acid in semi-defined medium is correlated with increases in cryotolerance[J].Zygote, 2016, 24(4):485-494. |
[37] | CAJAS Y N, CAÑÓN-BELTRÁN K, LADRÓN DE GUEVARA M, et al.Antioxidant nobiletin enhances oocyte maturation and subsequent embryo development and quality[J].Int J Mol Sci, 2020, 21(15):5340. |
[38] | JIANG W J, LI Y H, ZHAO Y H, et al.L-carnitine supplementation during in vitro culture regulates oxidative stress in embryos from bovine aged oocytes[J].Theriogenology, 2020, 143:64-73. |
[39] | LEN J S, KOH W S D, TAN S X.The roles of reactive oxygen species and antioxidants in cryopreservation[J].Biosci Rep, 2019, 39(8):BSR20191601. |
[40] | BARROZO L G, PAULINO L R F M, SILVA B R, et al.N-acetyl-cysteine and the control of oxidative stress during in vitro ovarian follicle growth, oocyte maturation, embryo development and cryopreservation[J].Anim Reprod Sci, 2021, 231:106801. |
[41] | MERTON J S, KNIJN H M, FLAPPER H, et al.Cysteamine supplementation during in vitro maturation of slaughterhouse- and opu-derived bovine oocytes improves embryonic development without affecting cryotolerance, pregnancy rate, and calf characteristics[J]. Theriogenology, 2013, 80(4):365-371. |
[42] | LI J J, LIU L Y, WENG J, et al.Biological roles of L-carnitine in oocyte and early embryo development[J].Mol Reprod Dev, 2021, 88(10):673-685. |
[43] | AMARAL C S, KOCH J, CORREA JÚNIOR E E, et al.Heat stress on oocyte or zygote compromises embryo development, impairs interferon tau production and increases reactive oxygen species and oxidative stress in bovine embryos produced in vitro[J].Mol Reprod Dev, 2020, 87(8):899-909. |
[44] | LÓPEZ-DAMIÁN E P, JIMÉNEZ-MEDINA J A, ALARCÓN M A, et al.Cryopreservation induces higher oxidative stress levels in Bos indicus embryos compared with Bos taurus[J].Theriogenology, 2020, 143:74-81. |
[45] | SU G H, WU S S, WU M L, et al.Melatonin improves the quality of frozen bull semen and influences gene expression related to embryo genome activation[J].Theriogenology, 2021, 176:54-62. |
[46] | HAYASHI T, KANSAKU K, ABE T, et al.Effects of resveratrol treatment on mitochondria and subsequent embryonic development of bovine blastocysts cryo-preserved by slow freezing[J].Anim Sci J, 2019, 90(7):849-856. |
[47] | BEKER-VAN WOUDENBERG A R, VAN TOL H T A, ROELEN B A J, et al.Estradiol and its membrane-impermeable conjugate (estradiol-bovine serum albumin) during in vitro maturation of bovine oocytes:effects on nuclear and cytoplasmic maturation, cytoskeleton, and embryo quality[J].Biol Reprod, 2004, 70(5):1465-1474. |
[48] | COTICCHIO G, DAL CANTO M, MIGNINI RENZINI M, et al.Oocyte maturation:gamete-somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization[J].Hum Reprod Update, 2015, 21(4):427-454. |
[49] | DÍEZ C, MUÑOZ M, CAAMAÑO J N, et al.Cryopreservation of the bovine oocyte:current status and perspectives[J].Reprod Domest Anim, 2012, 47(S3):76-83. |
[50] | HOCHI S, KIMURA K, HANADA A.Effect of linoleic acid-albumin in the culture medium on freezing sensitivity of in vitro-produced bovine morulae[J].Theriogenology, 1999, 52(3):497-504. |
[51] | IWATA H.Resveratrol enhanced mitochondrial recovery from cryopreservation-induced damages in oocytes and embryos[J]. Reprod Med Biol, 2021, 20(4):419-426. |
[52] | MOREIRA DA SILVA F, METELO R.Relation between physical properties of the zona pellucida and viability of bovine embryos after slow-freezing and vitrification[J].Reprod Domest Anim, 2005, 40(3):205-209. |
[53] | MASSIP A, MERMILLOD P, VAN LANGENDONCKT A, et al.Survival and viability of fresh and frozen-thawed in vitro bovine blastocysts[J].Reprod Nutr Dev, 1995, 35(1):3-10. |
[54] | OWEN C M, JOHNSON M A, RHODES-LONG K A, et al.Novel Synthetic oviductal fluid for Conventional Freezing 1 (SCF1) culture medium improves development and cryotolerance of in vitro produced Holstein embryos[J].J Anim Sci, 2022, 100(3):skac043. |
[55] | ZOLINI A M, CARRASCAL-TRIANA E, RUIZ DE KING A, et al.Effect of addition of L-carnitine to media for oocyte maturation and embryo culture on development and cryotolerance of bovine embryos produced in vitro[J].Theriogenology, 2019, 133:135-143. |
[56] | STOECKLEIN K S, ORTEGA M S, SPATE L D, et al.Improved cryopreservation of in vitro produced bovine embryos using FGF2, LIF, and IGF1[J].PLoS One, 2021, 16(2):e0243727. |
[57] | MESALAM A, LEE K L, KHAN I, et al.A combination of bovine serum albumin with insulin-transferrin-sodium selenite and/or epidermal growth factor as alternatives to fetal bovine serum in culture medium improves bovine embryo quality and trophoblast invasion by induction of matrix metalloproteinases[J].Reprod Fertil Dev, 2019, 31(2):333-346. |
[58] | VARGA S, DIEZ C, FERNÁNDEZ L, et al.Culture system and long-term storage of culture media in the in vitro production of bovine embryos[J].Acta Vet Hung, 2011, 59(1):129-139. |
[59] | NEDAMBALE T L, DINNYÉS A, GROEN W, et al.Comparison on in vitro fertilized bovine embryos cultured in KSOM or SOF and cryopreserved by slow freezing or vitrification[J].Theriogenology, 2004, 62(3-4):437-449. |
[60] | VALENTE R S, DE ALMEIDA T G, ALVES M F, et al.Cellular and apoptotic status monitoring according to the ability and speed to resume post-cryopreservation embryonic development[J].Theriogenology, 2020, 158:290-296. |
[61] | BALASUBRAMANIAN S, RHO G J.Effect of cysteamine supplementation of in vitro matured bovine oocytes on chilling sensitivity and development of embryos[J].Anim Reprod Sci, 2007, 98(3-4):282-292. |
[62] | DE MATOS D G, FURNUS C C, MOSES D F, et al.Stimulation of glutathione synthesis of in vitro matured bovine oocytes and its effect on embryo development and freezability[J].Mol Reprod Dev, 1996, 45(4):451-457. |
[63] | PALASZ A T, BREÑA P B, MARTINEZ M F, et al.Development, molecular composition and freeze tolerance of bovine embryos cultured in TCM-199 supplemented with hyaluronan[J].Zygote, 2008, 16(1):39-47. |
[64] | PICCO S J, ANCHORDOQUY J M, DE MATOS D G, et al.Effect of increasing zinc sulphate concentration during in vitro maturation of bovine oocytes[J].Theriogenology, 2010, 74(7):1141-1148. |
[65] | WOOLDRIDGE L K, NARDI M E, EALY A D.Zinc supplementation during in vitro embryo culture increases inner cell mass and total cell numbers in bovine blastocysts[J].J Anim Sci, 2019, 97(12):4946-4950. |
[66] | ZHAO X M, WANG N, HAO H S, et al.Melatonin improves the fertilization capacity and developmental ability of bovine oocytes by regulating cytoplasmic maturation events[J].J Pineal Res, 2018, 64(1):e12445. |
[67] | HAYASHI T, UEDA S, MORI M, et al.Influence of resveratrol pretreatment on thawed bovine embryo quality and mitochondrial DNA copy number[J].Theriogenology, 2018, 106:271-278. |
[68] | LEE S Y, KIM H J, PARK S J, et al.Optimization of a dilution method for human expanded blastocysts vitrified using EM grids after artificial shrinkage[J].J Assist Reprod Genet, 2006, 23(2):87-91. |
[69] | LI L F, ZHANG X H, ZHAO L H, et al.Comparison of DNA apoptosis in mouse and human blastocysts after vitrification and slow freezing[J].Mol Reprod Dev, 2012, 79(3):229-236. |
[70] | HIRAOKA K, HIRAOKA K, KINUTANI M, et al.Blastocoele collapse by micropipetting prior to vitrification gives excellent survival and pregnancy outcomes for human day 5 and 6 expanded blastocysts[J].Hum Reprod, 2004, 19(12):2884-2888. |
[71] | MUKAIDA T, OKA C, GOTO T, et al.Artificial shrinkage of blastocoeles using either a micro-needle or a laser pulse prior to the cooling steps of vitrification improves survival rate and pregnancy outcome of vitrified human blastocysts[J].Hum Reprod, 2006, 21(12):3246-3252. |
[72] | VAN LANDUYT L, POLYZOS N P, DE MUNCK N, et al.A prospective randomized controlled trial investigating the effect of artificial shrinkage (collapse) on the implantation potential of vitrified blastocysts[J].Hum Reprod, 2015, 30(11):2509-2518. |
[73] | MOHAMED M K, EL-NOURY M A H, AMER M K, et al.Comparative study between two techniques for artificial shrinkage of blastocysts prior to vitrification:LASER pulse versus micro-needle technique in increasing chemical, clinical pregnancy and live birth rates after ICSI, a randomized controlled trial[J].J Matern Fetal Neonatal Med, 2022, 35(25):4910-4917. |
[74] | CAO S R, ZHAO C, ZHANG J Q, et al.Retrospective clinical analysis of two artificial shrinkage methods applied prior to blastocyst vitrification on the outcome of frozen embryo transfer[J].J Assist Reprod Genet, 2014, 31(5):577-581. |
[75] | UCHIKURA A, MATSUNARI H, NAKANO K, et al.Application of hollow fiber vitrification for cryopreservation of bovine early cleavage stage embryos and porcine morula-blastomeres[J].J Reprod Dev, 2016, 62(2):219-223. |
[76] | MATSUNARI H, MAEHARA M, NAKANO K, et al.Hollow fiber vitrification:a novel method for vitrifying multiple embryos in a single device[J].J Reprod Dev, 2012, 58(5):599-608. |
[77] | KORNIENKO E V, ROMANOVA A B, IKONOPISTSEVA M V, et al.Optimization of triacetate cellulose hollow fiber vitrification (HFV) method for cryopreservation of in vitro matured bovine oocytes[J].Cryobiology, 2020, 97:66-70. |
[1] | 李剑南, 袁利明, 华进联. CD46基因在家畜抗病育种中的应用研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1866-1874. |
[2] | 陈丽丽, 赵康, 夏敏, 芦娜, 马毅. 不同出生季节对天津地区荷斯坦牛泌乳性能的影响[J]. 畜牧兽医学报, 2024, 55(5): 1970-1977. |
[3] | 屠芸, 曾雅楠, 张蒸豪, 洪瑞, 王震, 吴平, 周泽洋, 叶艺茹, 杜亚楠, 左福元, 张龚炜. 保种场涪陵水牛及西南地区水牛品种间遗传结构与ROH分析[J]. 畜牧兽医学报, 2024, 55(5): 1989-1998. |
[4] | 黄金, 李思远, 毛立, 蔡旭航, 谢玲玲, 王府, 周华, 李基棕, 李彬. 牛冠状病毒S1蛋白的真核表达及间接ELISA方法的建立与应用[J]. 畜牧兽医学报, 2024, 55(5): 2050-2060. |
[5] | 罗婷, 韩著, 徐业芬, 蔡林, 索朗斯珠, 徐晋花, 牛家强. 西藏牦牛源牛支原体T10株全基因组测序及其序列分析[J]. 畜牧兽医学报, 2024, 55(5): 2154-2167. |
[6] | 费国庆, 宁致远, 赵泽芳, 刘艳秋, 刘腾飞, 李贤, 丛日华, 陈鸿, 陈树林. 妊娠期奶牛黄体细胞的分离鉴定及培养特性[J]. 畜牧兽医学报, 2024, 55(5): 2214-2225. |
[7] | 彭佩雅, 陈钰焓, 杨龙, 王铭, 赵芮葶, 何俊, 印遇龙, 刘梅. 家畜基因组拷贝数变异研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1356-1369. |
[8] | 修豪宇, 李迎军, 原开敏, 汪超, 杨书含, 吕丽华, 王栋. 母牛发情期间躯体不同部位温度变化规律研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1381-1388. |
[9] | 向辉, 桂林森, 杨迪, 魏士昊, 宫艳斌, 史远刚, 马云, 淡新刚. 奶牛同期发情-定时输精技术研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1412-1422. |
[10] | 郭雪莲, 李永琴, 李瑞乾, 李昊, 靳双媛, 王雪妍, 杜家伟, 许立华. 牛呼吸道合胞体病毒G和F蛋白的生物学功能[J]. 畜牧兽医学报, 2024, 55(4): 1478-1487. |
[11] | 王中波, 刘爽, 贺丽霞, 冯雪, 杨梦丽, 汪书哲, 刘源, 冯兰, 丁晓玲, 冀国尚, 杨润军, 张路培, 马云. 固原黄牛不同部位肌肉组织代谢组学分析[J]. 畜牧兽医学报, 2024, 55(4): 1565-1578. |
[12] | 黄显朋, 邢嘉仪, 白媛媛, 姜雨婷, 麻志伟, 付伟, 兰道亮. 牦牛六个多能性相关转录因子OSKMNL的克隆和多顺反子慢病毒载体的构建[J]. 畜牧兽医学报, 2024, 55(4): 1579-1591. |
[13] | 尚恺圆, 江明锋, 官久强, 安添午, 赵洪文, 柏琴, 吴伟生, 李华德, 谢荣清, 沙泉, 罗晓林, 张翔飞. 围产期母体营养调控对犊牦牛生长发育、血清生化及免疫功能的影响[J]. 畜牧兽医学报, 2024, 55(4): 1638-1648. |
[14] | 罗小芬, 谢晓东, 赵超, 胡茜, 王永璇, 冉芳菲, 胡鹏飞, 文明, 朱二鹏, 程振涛. 牛支原体贵州株黏附相关蛋白的初步鉴定[J]. 畜牧兽医学报, 2024, 55(4): 1672-1683. |
[15] | 田睿, 徐思翔, 谢烽, 刘广锦, 王刚, 李庆霞, 代蕾, 谢国信, 张琼文, 陆亚警, 王光文, 王金秀, 张炜. 黄牛源产气荚膜梭菌分离株基因组的生物信息学分析[J]. 畜牧兽医学报, 2024, 55(4): 1707-1715. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||