1 |
DING H S , ZHAO H L , ZHAO X W , et al. Analysis of histology and long noncoding RNAs involved in the rabbit hair follicle density using RNA sequencing[J]. BMC Genomics, 2021, 22 (1): 89.
doi: 10.1186/s12864-021-07398-4
|
2 |
韩天龙, 王敏, 李志明. 铜在绒山羊日粮中的应用研究[J]. 饲料研究, 2011, 34 (10): 64- 66.
|
|
HAN T L , WANG M , LI Z M . Study on the application of copper in the diet of cashless goats[J]. Feed Research, 2011, 34 (10): 64- 66.
|
3 |
STERN B R , SOLIOZ M , KREWSKI D , et al. Copper and human health: biochemistry, genetics, and strategies for modeling dose-response relationships[J]. J Toxicol Environ Health B Crit Rev, 2007, 10 (3): 157- 222.
doi: 10.1080/10937400600755911
|
4 |
ACKERMAN C M , CHANG C J . Copper signaling in the brain and beyond[J]. J Biol Chem, 2018, 293 (13): 4628- 4635.
doi: 10.1074/jbc.R117.000176
|
5 |
向思佳, 刘扬中. 微量元素铜与人体生理功能和疾病[J]. 大学化学, 2022, 37 (3): 2107128.
|
|
XIANG S J , LIU Y Z . The essential trace element copper in human physiology and pathology[J]. University Chemistry, 2022, 37 (3): 2107128.
|
6 |
WANG J G , ZHU X Y , GUO Y Z , et al. Influence of dietary copper on serum growth-related hormone levels and growth performance of weanling pigs[J]. Biol Trace Elem Res, 2016, 172 (1): 134- 139.
doi: 10.1007/s12011-015-0574-2
|
7 |
SCOTT A , VADALASETTY K P , ŁUKASIEWICZ M , et al. Effect of different levels of copper nanoparticles and copper sulphate on performance, metabolism and blood biochemical profiles in broiler chicken[J]. J Anim Physiol Anim Nutr (Berl), 2018, 102 (1): e364- e373.
|
8 |
LI F , LIU L , CHEN X Y , et al. Dietary copper supplementation increases growth performance by increasing feed intake, digestibility, and antioxidant activity in Rex rabbits[J]. Biol Trace Elem Res, 2021, 199 (12): 4614- 4623.
doi: 10.1007/s12011-020-02568-z
|
9 |
LI F , WU X J , LIU H L , et al. Dietary copper supplementation enhances lipolysis in Rex rabbits[J]. J Trace Elem Med Biol, 2021, 68, 126851.
doi: 10.1016/j.jtemb.2021.126851
|
10 |
李福昌, 姜文学, 刘宏峰, 等. 日粮蛋氨酸水平对安哥拉兔氮利用、产毛性能及血液指标的影响[J]. 畜牧兽医学报, 2003, 34 (3): 246- 249.
doi: 10.3321/j.issn:0366-6964.2003.03.008
|
|
LI F C , JIANG W X , LIU H F , et al. Effects of varying levels of methionine on nitrogen utilization, wool production and relative blood traits in Angora rabbits[J]. Acta Veterinaria et Zootechnica Sinica, 2003, 34 (3): 246- 249.
doi: 10.3321/j.issn:0366-6964.2003.03.008
|
11 |
VAN SOEST P J . Development of a comprehensive system of feed analyses and its application to forages[J]. J Anim Sci, 1967, 26 (1): 119- 128.
doi: 10.2527/jas1967.261119x
|
12 |
WU X Z , GAO X H , YANG F H . Effects of dietary copper on organ indexes, tissular Cu, Zn and Fe deposition and fur quality of growing-furring male mink (Mustela vison)[J]. J Anim Sci Technol, 2015, 57, 6.
doi: 10.1186/s40781-015-0040-x
|
13 |
ZHONG W , LIU H L , LUO G L , et al. Dietary copper supplementation improves pelt characteristics of female silver fox (Vulpes fulva) during the winter fur-growing season[J]. Anim Sci J, 2014, 85 (7): 757- 762.
doi: 10.1111/asj.12208
|
14 |
连继勤, 陈成功, 王玉平, 等. 铜水平对幼兔早期生长及毛皮的影响[J]. 中国养兔杂志, 1997, (5): 13- 16.
|
|
LIAN J Q , CHEN C G , WANG Y P , et al. The effects of dietary copper levels on growth and pelt-weight gain of young rabbits[J]. Chinese Journal of Rabbit Farming, 1997, (5): 13- 16.
|
15 |
PYO H K , YOO H G , WON C H , et al. The effect of tripeptide-copper complex on human hair growth in vitro[J]. Arch Pharm Res, 2007, 30 (7): 834- 839.
doi: 10.1007/BF02978833
|
16 |
晏家友, 刁慧, 李书伟, 等. 日粮中添加低铜对断奶仔猪生长性能、抗氧化功能及组织器官铜沉积量的影响[J]. 中国饲料, 2021, (19): 19- 22.
|
|
YAN J Y , DIAO H , LI S W , et al. Effect of diet added with low copper on growth performance, antioxidant function, tissue and organs copper concentrations in weaning piglets[J]. China Feed, 2021, (19): 19- 22.
|
17 |
付辑光. 饲粮铜水平对泌乳牛生产性能、血液生化指标、瘤胃细菌区系与铜代谢相关基因影响的研究[D]. 保定: 河北农业大学, 2018.
|
|
FU J G. Effects of dietary copper level on performance, blood biochemical indices, rumen bacterial flora and genes expression related to copper metabolism of lactating dairy cattle[D]. Baoding: Hebei Agricultural University, 2018. (in Chinese)
|
18 |
李道林. 铜源和铜水平对生长獭兔的生长性能、毛皮品质及理化指标的影响[D]. 长春: 中国人民解放军军需大学, 2002.
|
|
LI D L. Effects of copper sources and copper levels on growth performance, fur quality and biochemical parameters of Rex rabbits[D]. Changchun: PLA Quartermaster University, 2002. (in Chinese)
|
19 |
张新宇, 刘超楠, 杨乾龙, 等. 铜水平对冬毛期乌苏里貉毛皮品质、血清生化指标及肝相关基因表达的影响[J]. 畜牧兽医学报, 2021, 52 (2): 429- 439.
doi: 10.11843/j.issn.0366-6964.2021.02.015
|
|
ZHANG X Y , LIU C N , YANG Q L , et al. Effects of copper supplemental level on fur quality, serum biochemical indices and liver related genes expression of fur growing raccoon dog[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52 (2): 429- 439.
doi: 10.11843/j.issn.0366-6964.2021.02.015
|
20 |
MILLAR S E . Molecular mechanisms regulating hair follicle development[J]. J Invest Dermatol, 2002, 118 (2): 216- 225.
doi: 10.1046/j.0022-202x.2001.01670.x
|
21 |
RHIND S M , MCMILLEN S R . Seasonal patterns of secondary fibre growth, moulting and hair follicle activity in Siberian and Icelandic X Scottish feral goats offered high and low levels of dietary protein[J]. Small Ruminant Res, 1995, 16 (1): 69- 76.
doi: 10.1016/0921-4488(94)00035-6
|
22 |
ZHANG W , ZHANG Y S , ZHU X P , et al. Effect of different levels of copper and molybdenum supplements on performance, nutrient digestibility, and follicle characteristics in cashmere goats[J]. Biol Trace Elem Res, 2011, 143 (3): 1470- 1479.
doi: 10.1007/s12011-011-8954-8
|
23 |
YANG Z F , MA L , HAN X , et al. A facile, biosynthetic design strategy for high-performance multifunctional bacterial cellulose-based dressing[J]. Compos Part B: Eng, 2022, 238, 109945.
doi: 10.1016/j.compositesb.2022.109945
|
24 |
REDDY S , ANDL T , BAGASRA A , et al. Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis[J]. Mech Dev, 2001, 107 (1-2): 69- 82.
doi: 10.1016/S0925-4773(01)00452-X
|
25 |
LEI M X , GUO H Y , QIU W M , et al. Modulating hair follicle size with Wnt10b/DKK1 during hair regeneration[J]. Exp Dermatol, 2014, 23 (6): 407- 413.
doi: 10.1111/exd.12416
|
26 |
ZHAO J , DING Q , LI L , et al. Deletions in the KAP6-1 gene are associated with fiber traits in cashmere-producing goats[J]. Anim Biotechnol, 2022, 33 (6): 1198- 1204.
doi: 10.1080/10495398.2021.1881529
|
27 |
WANG J , CUI B P , CHEN Z J , et al. The regulation of skin homeostasis, repair and the pathogenesis of skin diseases by spatiotemporal activation of epidermal mTOR signaling[J]. Front Cell Dev Biol, 2022, 10, 950973.
doi: 10.3389/fcell.2022.950973
|
28 |
MOORE G P M , THÉBAULT R G , ROUGEOT J , et al. Epidermal growth factor (EGF) facilitates depilation of the Angora rabbit[J]. Ann Zootech, 1987, 36 (4): 433- 438.
doi: 10.1051/animres:19870407
|
29 |
PHILPOTT M P , KEALEY T . Effects of EGF on the morphology and patterns of DNA synthesis in isolated human hair follicles[J]. J Invest Dermatol, 1994, 102 (2): 186- 191.
doi: 10.1111/1523-1747.ep12371760
|
30 |
WANG J M , XIANG H J , LU Y F , et al. Role and clinical significance of TGF-β1 and TGF-βR1 in malignant tumors (Review)[J]. Int J Mol Med, 2021, 47 (4): 55.
doi: 10.3892/ijmm.2021.4888
|
31 |
DINH K , WANG Q X . A probabilistic Boolean model on hair follicle cell fate regulation by TGF-β[J]. Biophys J, 2022, 121 (13): 2638- 2652.
doi: 10.1016/j.bpj.2022.05.035
|