[1] |
GIL-RANEDO J, HERNANDO E, RIOLOBOS L, et al. The mammalian cell cycle regulates parvovirus nuclear capsid assembly[J]. PLoS Pathog, 2015, 11(6):e1004920.
|
[2] |
ROS C, BAYAT N, WOLFISBERG R, et al. Protoparvovirus cell entry[J]. Viruses, 2017, 9(11):313.
|
[3] |
XIA C F, DONG X S, LI H, et al. Cancer statistics in China and united states, 2022:profiles, trends, and determinants[J]. Chin Med J (Engl), 2022, 135(5):584-590.
|
[4] |
PAN C X, KIM D Y, NAMBUDIRI V E. Novel cancer treatment using oncolytic virus therapy[M]//REZAEI N. Handbook of Cancer and Immunology. Cham:Springer, 2022:1-43.
|
[5] |
MIETZSCH M, PÉNZES J J, AGBANDJE-MCKENNA M. Twenty-five years of structural parvovirology[J]. Viruses, 2019, 11(4):362.
|
[6] |
MATTOLA S, SALOKAS K, AHO V, et al. Parvovirus nonstructural protein 2 interacts with chromatin-regulating cellular proteins[J]. PLoS Pathog, 2022, 18(4):e1010353.
|
[7] |
LEZHNIN Y N, KRAVCHENKO Y E, FROLOVA E I, et al. Oncotoxic proteins in cancer therapy:mechanisms of action[J]. Mol Biol (Mosk), 2015, 49(2):231-243.
|
[8] |
MÄNTYLÄ E, KANN M, VIHINEN-RANTA M. Protoparvovirus knocking at the nuclear door[J]. Viruses, 2017, 9(10):286.
|
[9] |
MATTOLA S, HAKANEN S, SALMINEN S, et al. Concepts to reveal parvovirus-nucleus interactions[J]. Viruses, 2021, 13(7):1306.
|
[10] |
KANG H T, LIU D F, TIAN J, et al. Feline Panleucopenia virus NS2 suppresses the host IFN-β induction by disrupting the interaction between TBK1 and STING[J]. Viruses, 2017, 9(1):23.
|
[11] |
MÉSZÁROS I, TÓTH R, OLASZ F, et al. The SAT protein of porcine parvovirus accelerates viral spreading through induction of irreversible endoplasmic reticulum stress[J]. J Virol, 2017, 91(16):e00627-17.
|
[12] |
FARR G A, COTMORE S F, TATTERSALL P. VP2 cleavage and the leucine ring at the base of the fivefold cylinder control PH-dependent externalization of both the VP1 N terminus and the genome of minute virus of mice[J]. J Virol, 2006, 80(1):161-171.
|
[13] |
VIHINEN-RANTA M, WANG D, WEICHERT W S, et al. The VP1 N-terminal sequence of canine parvovirus affects nuclear transport of capsids and efficient cell infection[J]. J Virol, 2002, 76(4):1884-1891.
|
[14] |
TU M Y, LIU F, CHEN S, et al. Role of capsid proteins in parvoviruses infection[J]. Virol J, 2015, 12:114.
|
[15] |
FEI-FEI D, YONG-FENG Z, JIAN-LI W, et al. Molecular characterization of feline panleukopenia virus isolated from mink and its pathogenesis in mink[J]. Vet Microbiol, 2017, 205:92-98.
|
[16] |
COTMORE S F, AGBANDJE-MCKENNA M, CANUTI M, et al. ICTV virus taxonomy profile:Parvoviridae[J]. J Gen Virol, 2019, 100(3):367-368.
|
[17] |
PÉNZES J J, SÖDERLUND-VENERMO M, CANUTI M, et al. Reorganizing the family Parvoviridae:a revised taxonomy independent of the canonical approach based on host association[J]. Arch Virol, 2020, 165(9):2133-2146.
|
[18] |
PARKER J S L, MURPHY W J, WANG D, et al. Canine and feline parvoviruses can use human or feline transferrin receptors to bind, enter, and infect cells[J]. J Virol, 2001, 75(8):3896-3902.
|
[19] |
SIMPSON A A, CHANDRASEKAR V, HÉBERT B, et al. Host range and variability of calcium binding by surface loops in the capsids of canine and feline parvoviruses[J]. J Mol Biol, 2000, 300(3):597-610.
|
[20] |
CURETON D K, HARBISON C E, COCUCCI E, et al. Limited transferrin receptor clustering allows rapid diffusion of canine parvovirus into clathrin endocytic structures[J]. J Virol, 2012, 86(9):5330-5340.
|
[21] |
GARCIN P O, PANTÉ N. The minute virus of mice exploits different endocytic pathways for cellular uptake[J]. Virology, 2015, 482:157-166.
|
[22] |
BOISVERT M, BOUCHARD-LÉVESQUE V, FERNANDES S, et al. Classic nuclear localization signals and a novel nuclear localization motif are required for nuclear transport of porcine parvovirus capsid proteins[J]. J Virol, 2014, 88(20):11748-11759.
|
[23] |
MÄNTYLÄ E, AHO V, KANN M, et al. Cytoplasmic parvovirus capsids recruit importin beta for nuclear delivery[J]. J Virol, 2020, 94(4):e01532-19.
|
[24] |
AU S, COHEN S, PANTÉ N. Microinjection of Xenopus laevis oocytes as a system for studying nuclear transport of viruses[J]. Methods, 2010, 51(1):114-120.
|
[25] |
CHRISTENSEN J, TATTERSALL P. Parvovirus initiator protein NS1 and RPA coordinate replication fork progression in a reconstituted DNA replication system[J]. J Virol, 2002, 76(13):6518-6531.
|
[26] |
COTMORE S F, TATTERSALL P. Parvovirus diversity and DNA damage responses[J]. Cold Spring Harb Perspect Biol, 2013, 5(2):a012989.
|
[27] |
LYI S M, TAN M J A, PARRISH C R. Parvovirus particles and movement in the cellular cytoplasm and effects of the cytoskeleton[J]. Virology, 2014, 456-457:342-352.
|
[28] |
MAROTO B, VALLE N, SAFFRICH R, et al. Nuclear export of the nonenveloped parvovirus virion is directed by an unordered protein signal exposed on the capsid surface[J]. J Virol, 2004, 78(19):10685-10694.
|
[29] |
JINDAL H K, YONG C B, WILSON G M, et al. Mutations in the NTP-binding motif of minute virus of mice (MVM) NS-1 protein uncouple ATPase and DNA helicase functions[J]. J Biol Chem, 1994, 269(5):3283-3289.
|
[30] |
NVESCH J P F, ROMMELAERE J. Tumor suppressing properties of rodent parvovirus NS1 proteins and their derivatives[M]//GRIMM S. Anticancer Genes. London:Springer, 2014:99-124.
|
[31] |
MARCHINI A, BONIFATI S, SCOTT E M, et al. Oncolytic parvoviruses:from basic virology to clinical applications[J]. Virol J, 2015, 12(1):6.
|
[32] |
GUPTA S K, YADAV P K, GANDHAM R K, et al. Canine parvovirus NS1 protein exhibits anti-tumor activity in a mouse mammary tumor model[J]. Virus Res, 2016, 213:289-298.
|
[33] |
LIU P, CHEN S, WANG M S, et al. The role of nuclear localization signal in parvovirus life cycle[J]. Virol J, 2017, 14(1):80.
|
[34] |
ARORA R, MALLA W A, TYAGI A, et al. Canine parvovirus and its non-structural gene 1 as oncolytic agents:mechanism of action and induction of anti-tumor immune response[J]. Front Oncol, 2021, 11:648873.
|
[35] |
NVESCH J P F, LACROIX J, MARCHINI A, et al. Molecular pathways:rodent parvoviruses—mechanisms of oncolysis and prospects for clinical cancer treatment[J]. Clin Cancer Res, 2012, 18(13):3516-3523.
|
[36] |
XU M, JIN X, ZHANG C, et al. TLR2-mediated NF-κB signaling pathway is involved in PPV1-induced apoptosis in PK-15 cells[J]. Vet Res Commun, 2023, 47(2):397-407.
|
[37] |
JIN X H, YUAN Y X, ZHANG C, et al. Porcine parvovirus nonstructural protein NS1 activates NF-κB and it involves TLR2 signaling pathway[J]. J Vet Sci, 2020, 21(3):e50.
|
[38] |
LI J W, BONIFATI S, HRISTOV G, et al. Synergistic combination of valproic acid and oncolytic parvovirus H-1PV as a potential therapy against cervical and pancreatic carcinomas[J]. EMBO Mol Med, 2013, 5(10):1537-1555.
|
[39] |
HAUSWIRTH P, GRABER P, BUCZAK K, et al. Design and characterization of mutated variants of the oncotoxic parvoviral protein NS1[J]. Viruses, 2023, 15(1):209.
|
[40] |
ANGELOVA A, ROMMELAERE J. Immune system stimulation by oncolytic rodent protoparvoviruses[J]. Viruses, 2019, 11(5):415.
|
[41] |
RAIMONDI C, FALASCA M. Targeting PDK1 in cancer[J]. Curr Med Chem, 2011, 18(18):2763-2769.
|
[42] |
GELETNEKY K, HAJDA J, ANGELOVA A L, et al. Oncolytic H-1 parvovirus shows safety and signs of immunogenic activity in a first phase I/IIa glioblastoma trial[J]. Mol Ther, 2017, 25(12):2620-2634.
|
[43] |
DI PIAZZA M, MADER C, GELETNEKY K, et al. Cytosolic activation of cathepsins mediates parvovirus H-1-induced killing of cisplatin and TRAIL-resistant glioma cells[J]. J Virol, 2007, 81(8):4186-4198.
|
[44] |
HAJDA J, LEHMANN M, KREBS O, et al. A non-controlled, single arm, open label, phase II study of intravenous and intratumoral administration of ParvOryx in patients with metastatic, inoperable pancreatic cancer:ParvOryx02 protocol[J]. BMC Cancer, 2017, 17(1):576.
|
[45] |
HAJDA J, LEUCHS B, ANGELOVA A L, et al. Phase 2 trial of oncolytic H-1 parvovirus therapy shows safety and signs of immune system activation in patients with metastatic pancreatic ductal adenocarcinoma[J]. Clin Cancer Res, 2021, 27(20):5546-5556.
|
[46] |
LANG S I, GIESE N A, ROMMELAERE J, et al. Humoral immune responses against minute virus of mice vectors[J]. J Gene Med, 2006, 8(9):1141-1150.
|
[47] |
ALLISON A B, KOHLER D J, ORTEGA A, et al. Host-specific parvovirus evolution in nature is recapitulated by in vitro adaptation to different carnivore species[J]. PLoS Pathog, 2014, 10(11):e1004475.
|
[48] |
BATTILANI M, BALBONI A, GIUNTI M, et al. Co-infection with feline and canine parvovirus in a cat[J]. Vet Ital, 2013, 49(1):127-129.
|
[49] |
WANG X W, CARRAI M, VAN BRUSSEL K, et al. Low intrahost and interhost genetic diversity of Carnivore Protoparvovirus 1 in domestic cats during a feline panleukopenia outbreak[J]. Viruses, 2022, 14(7):1412.
|
[50] |
程宝钰, 李子荷, 崔燕蕾, 等. 猫细小病毒的遗传演化及分离毒株的致病性分析[J]. 畜牧兽医学报, 2022, 53(9): 3121-3131.CHENG B Y, LI Z H, CUI Y L, et al. Genetic evolution of feline parvovirus and pathogenicity of an isolated strains[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 3121-3131. (in Chinese)
|
[51] |
WITZIGMANN D, GROSSEN P, QUINTAVALLE C, et al. Non-viral gene delivery of the oncotoxic protein NS1 for treatment of hepatocellular carcinoma[J]. J Control Release, 2021, 334:138-152.
|