畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (4): 1401-1411.doi: 10.11843/j.issn.0366-6964.2024.04.006
黄杰, 阮子豪, 蔡瑞*
收稿日期:
2023-10-19
出版日期:
2024-04-23
发布日期:
2024-04-26
通讯作者:
蔡瑞,主要从事生猪遗传改良和繁殖技术研究,E-mail:cairui1663@nwafu.edu.cn
作者简介:
黄杰(2004-),男,湖南怀化人,本科生,主要从事智慧牧业与动物科学研究,E-mail:huangjie2025@163.com
基金资助:
HUANG Jie, RUAN Zihao, CAI Rui*
Received:
2023-10-19
Online:
2024-04-23
Published:
2024-04-26
摘要: 人工授精(AI)是畜牧业加速发展的核心技术之一,精液保存为其中的一个关键环节。猪精液在保存过程中容易受到细菌污染而导致精子质量下降,随着全面禁抗时代的到来,迫切需要开发具有不同活性的抗菌替代品,以提高精液保存效果。抗菌肽(AMPs)因具有广谱抗菌活性和较低耐药性,通过细胞膜损伤和非膜损伤机制在猪精液保存过程中发挥抗菌作用,目前已成为抗生素的重要替代品。本文综述了AMPs的抑菌机制及其在猪精液保存技术中应用的研究进展,旨在为猪精液常温保存抗菌肽产品的开发提供科学依据。
中图分类号:
黄杰, 阮子豪, 蔡瑞. 抗菌肽在猪精液常温保存中的应用研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1401-1411.
HUANG Jie, RUAN Zihao, CAI Rui. Advances of the Application of Antimicrobial Peptides in the Preservation of Porcine Semen at Room Temperature[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1401-1411.
[1] WANG L J, CHANG C. Discussion on the development and prospect of pig semen preservation in artificial insemination[J]. Swine Industry Science, 2020, 37(6):102-104. (in Chinese) 王利娟, 常枨. 浅谈猪精液保存在人工授精中的发展与展望[J]. 猪业科学, 2020, 37(6):102-104. [2] SCHULZE M, DATHE M, WABERSKI D, et al. Liquid storage of boar semen:current and future perspectives on the use of cationic antimicrobial peptides to replace antibiotics in semen extenders[J]. Theriogenology, 2016, 85(1):39-46. [3] MENG Y P, LIU H, XIANG Y Y, et al. Study on mechanism of action, slow release research, and improvement strategies of antimicrobial peptides[J]. China Medical Herald, 2023, 20(6):37-41. (in Chinese) 孟宇鹏, 刘红, 项闫颜, 等. 抗菌肽的作用机制、缓释研究及改良策略[J]. 中国医药导报, 2023, 20(6):37-41. [4] WANG X G, WANG R, SUN J N, et al. Research progress of antimicrobial peptides in poultry production[J]. Feed Research, 2023, 46(4):148-151. (in Chinese) 王许刚, 王瑞, 孙嘉咛, 等. 抗菌肽在家禽生产中的研究进展[J]. 饲料研究, 2023, 46(4):148-151. [5] SUN C, LI Q, LI J C, et al. Analysis on the influencing factors of pig semen preservation at room temperature[J]. Animal Husbandry and Feed Science, 2018, 39(11):58-61. (in Chinese) 孙超, 李琦, 李井春, 等. 猪精液常温保存的影响因素分析[J]. 畜牧与饲料科学, 2018, 39(11):58-61. [6] WANG S, XU C, LI Y B, et al. Research progress and technical measures on the cryopreservation of pig semen at 4℃[J]. Heilongjiang Animal Science and Veterinary Medicine, 2020(1):45-47. (in Chinese) 王硕, 徐超, 李雁冰, 等. 猪精液4℃保存的研究进展及技术措施[J]. 黑龙江畜牧兽医, 2020(1):45-47. [7] FENG H Z, SONG Y L, LI J C. Research progress on the effect of four antioxidants on the cryopreservation of pig semen[J]. Swine Industry Science, 2023, 40(2):102-104. (in Chinese) 冯赫泽, 宋宇伦, 李井春. 四种抗氧化剂对猪精液冷冻保存影响研究进展[J]. 猪业科学, 2023, 40(2):102-104. [8] ZHANG K, LI Y H, YU X L, et al. Current status of artificial insemination with frozen semen in pigs[J]. Heilongjiang Journal of Animal Reproduction, 2023, 31(2):13-18. (in Chinese) 张珂, 栗颖华, 禹学礼, 等. 猪冷冻精液在人工授精中的研究进展[J]. 黑龙江动物繁殖, 2023, 31(2):13-18. [9] BAILEY J L, LESSARD C, JACQUES J, et al. Cryopreservation of boar semen and its future importance to the industry[J]. Theriogenology, 2008, 70(8):1251-1259. [10] SUN F K, RAN B K, JIA Y H, et al. Factors affecting the preservation of boar semen at room temperature[J]. Journal of Animal Science and Veterinary Medicine, 2021, 40(4):99-101, 103. (in Chinese) 孙福魁, 冉本康, 贾永宏, 等. 影响猪精液常温保存效果的因素[J]. 畜牧兽医杂志, 2021, 40(4):99-101, 103. [11] HUANG Q S. Effect of cryopreservation on sperm quality in pigs[D]. Hohhot:Inner Mongolia Agricultural University, 2022. (in Chinese) 黄清松. 冷冻保存对猪精子品质的影响[D]. 呼和浩特:内蒙古农业大学, 2022. [12] LIAO H K, HUANG J J, CHEN Q. Application progress of antioxidants in storing pig semen at room temperature[J]. Shandong Journal of Animal Science and Veterinary Medicine, 2023, 44(8):92-93, 97. (in Chinese) 廖欢科, 黄建锦, 陈乾. 猪精液常温保存抗氧化剂应用进展[J]. 山东畜牧兽医, 2023, 44(8):92-93, 97. [13] HE J J, NIU T J, LI Y, et al. Research progress on dilution powder of boar semen stored in room temperature[J]. Journal of Domestic Animal Ecology, 2021, 42(11):87-91. (in Chinese) 贺巾津, 牛统娟, 李宇, 等. 猪精液常温保存稀释粉研究进展[J]. 家畜生态学报, 2021, 42(11):87-91. [14] ÚBEDA J L, AUSEJO R, DAHMANI Y, et al. Adverse effects of members of the Enterobacteriaceae family on boar sperm quality[J]. Theriogenology, 2013, 80(6):565-570. [15] ALTHOUSE G C, KUSTER C E, CLARK S G, et al. Field investigations of bacterial contaminants and their effects on extended porcine semen[J]. Theriogenology, 2000, 53(5):1167-1176. [16] KUSTER C E, ALTHOUSE G C. The impact of bacteriospermia on boar sperm storage andreproductive performance[J]. Theriogenology, 2016, 85(1):21-26. [17] SERGIO SANTOS C, RODRIGUES SILVA A. Current and alternative trends in antibacterial agents used in mammalian semen technology[J]. Anim Reprod, 2020, 17(1):e20190111. [18] COSTINAR L, HERMAN V, PITOIU E, et al. Boar semen contamination:identification of gram-negative bacteria and antimicrobial resistance profile[J]. Animals, 2021, 12(1):43. [19] MAROTO MARTÍN L O, MUÑOZ E C, DE CUPERE F, et al. Bacterial contamination of boar semen affects the litter size[J]. Anim Reprod Sci, 2010, 120(1-4):95-104. [20] TVRDÁ E, BUČKO O, ROJKOVÁ K, et al. The efficiency of selected extenders against bacterial contamination of boar semen in a swine breeding facility in Western Slovakia[J]. Animals, 2021, 11(11):3320. [21] NITSCHE-MELKUS E, BORTFELDT R, JUNG M, et al. Impact of hygiene on bacterial contamination in extended boar semen:an eight-year retrospective study of 28 European AI centers[J]. Theriogenology, 2020, 146:133-139. [22] GOLDBERG A M G, ARGENTI L E, FACCIN J E, et al. Risk factors for bacterial contamination during boar semen collection[J]. Res Vet Sci, 2013, 95(2):362-367. [23] SCHULZE M, JUNG M, HENSEL B. Science-based quality control in boar semen production[J]. Mol Reprod Dev, 2023, 90(7):612-620. [24] ZHAO T T, KOU Z Y, PANG W J. Research progress in the application of Chinese herbal extracts as an alternative to antibiotics during liquid perservation at 17℃[J]. Swine Production, 2021(5):38-42. (in Chinese) 赵甜甜, 寇忠云, 庞卫军. 中草药提取物替代抗生素在猪精液常温保存中的应用研究进展[J]. 养猪, 2021(5):38-42. [25] WIEBKE M, HENSEL B, NITSCHE-MELKUS E, et al. Cooled storage of semen from livestock animals (part Ⅰ):boar, bull, and stallion[J]. Anim Reprod Sci, 2022, 246:106822. [26] PÉREZ-DURAN F, ACOSTA-TORRES L S, SERRANO-DÍAZ P N, et al. Toxicity and antimicrobial effect of silver nanoparticles in swine sperms[J]. Syst Biol Reprod Med, 2020, 66(4):281-289. [27] FEUGANG J M, RHOADS C E, MUSTAPHA P A, et al. Treatment of boar sperm with nanoparticles for improved fertility[J]. Theriogenology, 2019, 137:75-81. [28] SCHULZE M, NITSCHE-MELKUS E, HENSEL B, et al. Antibiotics and their alternatives in artificial breeding in livestock[J]. Anim Reprod Sci, 2020, 220:106284. [29] WANG J J, DOU X J, SONG J, et al. Antimicrobial peptides:promising alternatives in the post feeding antibiotic era[J]. Med Res Rev, 2019, 39(3):831-859. [30] STEINER H, HULTMARK D, ENGSTRÖM Å, et al. Sequence and specificity of two antibacterial proteins involved in insect immunity[J]. Nature, 1981, 292(5820):246-248. [31] REN J M, WEN S. Antibacterial mechanisms of antimicrobial peptides and their application in aquaculture[J]. Feed Research, 2023, 46(19):164-169. (in Chinese) 任金美, 温赛. 抗菌肽的抗菌机制及在水产中的应用[J]. 饲料研究, 2023, 46(19):164-169. [32] WEI D X, GONG H L, ZHANG X W. Biosynthesis of antimicrobial peptides and its medical application[J]. Synthetic Biology Journal, 2022, 3(4):709-727. (in Chinese) 魏岱旭, 龚海伦, 张旭维. 抗菌肽的生物合成及医学应用[J]. 合成生物学, 2022, 3(4):709-727. [33] ZONG R, HU Z Z, ZHANG N F, et al. Antimicrobial mechanisms of antimicrobial peptides and its application progress in ruminants[J]. Feed Industry, 2021, 42(9):30-35. (in Chinese) 纵瑞, 胡忠泽, 张乃锋, 等. 抗菌肽的抗菌机制及其在反刍动物中应用的研究进展[J]. 饲料工业, 2021, 42(9):30-35. [34] ZHANG Y, CHEN P. Research progress of antimicrobial peptides produced by genetically engineered[J]. Feed Research, 2021, 44(13):150-152. (in Chinese) 张雨, 陈鹏. 抗菌肽在动物养殖中的研究进展[J]. 饲料研究, 2021, 44(13):150-152. [35] ARIAS M, PIGA K B, HYNDMAN M E, et al. Improving the activity of Trp-rich antimicrobial peptides by Arg/Lys substitutions and changing the length of cationic residues[J]. Biomolecules, 2018, 8(2):19. [36] SHEN H F, HUANG J, SONG X P. Research progress on the application of antibacterial peptides in multi-field[J]. Biological Chemical Engineering, 2022, 8(4):173-177. (in Chinese) 沈何放, 黄静, 宋小平. 抗菌肽在多领域的应用研究进展[J]. 生物化工, 2022, 8(4):173-177. [37] ZONG Y F, LIU C X. Application of antimicrobial peptides in swine disease control[J]. Graziery Veterinary Sciences (Electronic Version), 2022(20):157-159. (in Chinese) 宗玉凤, 刘春霞. 抗菌肽在猪病防治中应用[J]. 畜牧兽医科学(电子版), 2022(20):157-159. [38] NIU Q H, RONG Z W. Research on the application of antimicrobial peptides in cosmetics[J]. Detergent & Cosmetics, 2023, 46(2):58-60. (in Chinese) 牛庆华, 荣志伟. 抗菌肽在化妆品中的应用研究[J]. 日用化学品科学, 2023, 46(2):58-60. [39] TAN P, FU H Y, MA X. Design, optimization, and nanotechnology of antimicrobial peptides:from exploration to applications[J]. Nano Today, 2021, 39:101229. [40] ERDEM BVYVKKIRAZ M, KESMEN Z. Antimicrobial peptides (AMPs):a promising class of antimicrobial compounds[J]. J Appl Microbiol, 2022, 132(3):1573-1596. [41] KUMARI S, BOOTH V. Antimicrobial peptide mechanisms studied by whole-Cell deuterium NMR[J]. Int J Mol Sci, 2022, 23(5):2740. [42] YEAMAN M R, YOUNT N Y. Mechanisms of antimicrobial peptide action and resistance[J]. Pharmacol Rev, 2003, 55(1):27-55. [43] ANDRÈS E. Cationic antimicrobial peptides in clinical development, with special focus on thanatin and heliomicin[J]. Eur J Clin Microbiol Infect Dis, 2012, 31(6):881-888. [44] ZHANG W, HOU L, YU H M. Research progress of the antimicrobial peptides with dualfunctionality of spermicide and microbicide[J]. Journal of International Reproductive Health/Family Planning, 2013, 32(4):261-263, 266. (in Chinese) 张尉, 侯丽, 于和鸣. 杀精抗菌双功能抗菌肽的研究进展[J]. 国际生殖健康/计划生育杂志, 2013, 32(4):261-263, 266. [45] XU L, SHAN A S, SHAO C X, et al. Advances in biological functions and mechanisms of antimicrobial peptides[J]. Feed Review, 2023(3):9-13. (in Chinese) 徐林, 单安山, 邵长轩, 等. 抗菌肽的生物学功能与作用机制研究进展[J]. 饲料博览, 2023(3):9-13. [46] POWERS J P S, HANCOCK R E W. The relationship between peptide structure and antibacterial activity[J]. Peptides, 2003, 24(11):1681-1691. [47] WU X, ZHANG S Q. Molecular mechanisms of antibacterial peptides against bacterium[J]. Progress in Biochemistry and Biophysics, 2005, 32(12):1109-1113. (in Chinese) 吴希, 张双全. 抗菌肽对细菌杀伤作用的分子机制[J]. 生物化学与生物物理进展, 2005, 32(12):1109-1113. [48] MURZYN K, PASENKIEWICZ-GIERULA M. Construction of a toroidal model for the magainin pore[J]. J Mol Model, 2003, 9(4):217-224. [49] DEAN R E, O'BRIEN L M, THWAITE J E, et al. A carpet-based mechanism for direct antimicrobial peptide activity against vaccinia virus membranes[J]. Peptides, 2010, 31(11):1966-1972. [50] MALINA A, SHAI Y. Conjugation of fatty acids with different lengths modulates the antibacterial and antifungal activity of a cationic biologically inactive peptide[J]. Biochem J, 2005, 390(Pt 3):695-702. [51] MIGOŃ D, NEUBAUER D, KAMYSZ W. Hydrocarbon stapled antimicrobial peptides[J]. Protein J, 2018, 37(1):2-12. [52] BROGDEN K A. Antimicrobial peptides:pore formers or metabolic inhibitors in bacteria?[J]. Nat Rev Microbiol, 2005, 3(3):238-250. [53] OMARDIEN S, BRUL S, ZAAT S A J. Antimicrobial activity of cationic antimicrobial peptides against gram-positives:current progress made in understanding the mode of action and the response of bacteria[J]. Front Cell Dev Biol, 2016, 4:111. [54] CARDOSO M H, MENEGUETTI B T, COSTA B O, et al. Non-lytic antibacterial peptides that translocate through bacterial membranes to act on intracellular targets[J]. Int J Mol Sci, 2019, 20(19):4877. [55] PATRZYKAT A, FRIEDRICH C L, ZHANG L J, et al. Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli[J]. Antimicrob Agents Chemother, 2002, 46(3):605-614. [56] UPERT G, LUTHER A, OBRECHT D, et al. Emerging peptide antibiotics with therapeutic potential[J]. Med Drug Discovery, 2021, 9:100078. [57] SCOCCHI M, MARDIROSSIAN M, RUNTI G, et al. Non-membrane permeabilizing modes of action of antimicrobial peptides on bacteria[J]. Curr Top Med Chem, 2016, 16(1):76-88. [58] GAGNON M G, ROY R N, LOMAKIN I B, et al. Structures of proline-rich peptides bound to the ribosome reveal a common mechanism of protein synthesis inhibition[J]. Nucleic Acids Res, 2016, 44(5):2439-2450. [59] MARDIROSSIAN M, PÉRÉBASKINE N, BENINCASA M, et al. The dolphin proline-rich antimicrobial peptide Tur1A inhibits protein synthesis by targeting the bacterial ribosome[J]. Cell Chem Biol, 2018, 25(5):530-539.e7. [60] YASIR M, DUTTA D, WILLCOX M D P. Mode of action of the antimicrobial peptide Mel4 is independent of Staphylococcus aureus cell membrane permeability[J]. PLoS One, 2019, 14(7):e0215703. [61] OTVOS L Jr, SNYDER C, CONDIE B, et al. Chimeric antimicrobial peptides exhibit multiple modes of action[J]. Int J Pept Res Ther, 2005, 11(1):29-42. [62] CAMPBELL Y, FANTACONE M L, GOMBART A F. Regulation of antimicrobial peptide gene expression by nutrients and by-products of microbial metabolism[J]. Eur J Nutr, 2012, 51(8):899-907. [63] DENNISON S R, MURA M, HARRIS F, et al. The role of C-terminal amidation in the membrane interactions of the anionic antimicrobial peptide, maximin H5[J]. Biochim Biophys Acta (BBA)-Biomembr, 2015, 1848(5):1111-1118. [64] SCHULZE M, JUNKES C, MUELLER P, et al. Effects of cationic antimicrobial peptides on liquid-preserved boar spermatozoa[J]. PLoS One, 2014, 9(6):e100490. [65] LI J C, LI Q, WANG S, et al. Analysis on the research status of boar semen preservation technique at room temperature[J]. Swine Industry Science, 2020, 37(6):50-53. (in Chinese) 李井春, 李琦, 王硕, 等. 浅析猪精液常温保存技术的研究现状[J]. 猪业科学, 2020, 37(6):50-53. [66] JUNKES C, HARVEY R D, BRUCE K D, et al. Cyclic antimicrobial R-, W-rich peptides:the role of peptide structure and E. coli outer and inner membranes in activity and the mode of action[J]. Eur Biophys J, 2011, 40(4):515-528. [67] SPECK S, COURTIOL A, JUNKES C, et al. Cationic synthetic peptides:assessment of their antimicrobial potency in liquid preserved boar semen[J]. PLoS One, 2014, 9(8):e105949. [68] HENSEL B, JAKOP U, SCHEINPFLUG K, et al. Low temperature preservation of porcine semen:influence of short antimicrobial lipopeptides on sperm quality and bacterial load[J]. Sci Rep, 2020, 10(1):13225. [69] WANG J, SONG B Y, MEI J S, et al. Effect of methionine iodine on the quality of porcine sperm preserving at room temperature[J]. Animal Husbandry & Veterinary Medicine, 2016, 48(9):45-50. (in Chinese) 王健, 宋博宇, 梅军四, 等. 蛋氨酸碘对常温保存猪精液品质的影响[J]. 畜牧与兽医, 2016, 48(9):45-50. [70] FANG Q, WANG J, HAO Y Y, et al. Effects of iodine methionine on boar sperm quality during liquid storage at 17℃[J]. Reprod Domest Anim, 2017, 52(6):1061-1066. [71] WEI N, HOU Z K, XIE J X, et al. Study on the effect of ε-polylysine on the preservation of semen of black pig in Guanzhong at room temperature[J]. Swine Industry Science, 2017, 34(9):114-117. (in Chinese) 魏宁, 候震坤, 谢景兴, 等. ε-聚赖氨酸对关中黑猪精液常温保存效果研究[J]. 猪业科学, 2017, 34(9):114-117. [72] KEERATIKUNAKORN K, KAEWCHOMPHUN-UCH T, KAEOKET K, et al. Antimicrobial activity of cell free supernatants from probiotics inhibits against pathogenic bacteria isolated from fresh boar semen[J]. Sci Rep, 2023, 13(1):5995. [73] ZHAO Y, SHEN W, ZHANG H F. Boar nutrition and fertility[J]. Swine Industry Science, 2021, 38(5):32-36. (in Chinese) 赵勇, 沈伟, 张宏福. 公猪营养与繁殖[J]. 猪业科学, 2021, 38(5):32-36. [74] REDDY K V R, SHAHANI S K, MEHERJI P K. Spermicidal activity of Magainins:in vitro and in vivo studies[J]. Contraception, 1996, 53(4):205-210. [75] BUSSALLEU E, SANCHO S, BRIZ M D, et al. Do antimicrobial peptides PR-39, PMAP-36 and PMAP-37 have any effect on bacterial growth and quality of liquid-stored boar semen?[J]. Theriogenology, 2017, 89:235-243. [76] SANCHO S, BRIZ M, YESTE M, et al. Effects of the antimicrobial peptide protegrine 1 on sperm viability and bacterial load of boar seminal doses[J]. Reprod Domest Anim, 2017, 52(S4):69-71. [77] PUIG-TIMONET A, CASTILLO-MARTÍN M, PEREIRA B A, et al. Evaluation of porcine beta defensins-1 and-2 as antimicrobial peptides for liquid-stored boar semen:effects on bacterial growth and sperm quality[J]. Theriogenology, 2018, 111:9-18. [78] SHAOYONG W K, LI Q, REN Z Q, et al. Evaluation of ε-polylysine as antimicrobial alternative for liquid-stored boar semen[J]. Theriogenology, 2019, 130:146-156. [79] KOBAYASHI S, HIRAKURA Y, MATSUZAKI K. Bacteria-selective synergism between the antimicrobial peptides α-helical magainin 2 and cyclic β-sheet tachyplesin Ⅰ:toward cocktail therapy[J]. Biochemistry, 2001, 40(48):14330-14335. [80] HENSEL B, JAKOP U, SCHEINPFLUG K, et al. Low temperature preservation:influence of putative bioactive microalgae and hop extracts on sperm quality and bacterial load in porcine semen[J]. Sustain Chem Pharm, 2021, 19:100359. [81] TANPHAICHITR N, SRAKAEW N, ALONZI R, et al. Potential use of antimicrobial peptides as vaginal spermicides/microbicides[J]. Pharmaceuticals (Basel), 2016, 9(1):13. [82] ZHAO Y, JIN M C, TANG X F. Function of antibacterial peptide and its research progress in animals[J]. Guangdong Feed, 2023, 32(4):39-40. (in Chinese) 赵颖, 金明昌, 唐谢芳. 抗菌肽的作用功能及其在动物上的研究进展[J]. 广东饲料, 2023, 32(4):39-40. [83] SHAO C X, DANG A K, ZHAN Z H, et al. Development and application strategy of beta sheet antimicrobial peptides[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8):2490-2501. (in Chinese) 邵长轩, 党安凯, 战昭含, 等. β-折叠抗菌肽的研发及应用策略[J]. 畜牧兽医学报, 2022, 53(8):2490-2501. [84] ZHANG L, HUA S. Application of antimicrobial peptides as new antibiotic substitutes in livestock and poultry breeding[J]. Journal of Animal Science and Veterinary Medicine, 2023, 42(3):120-122. (in Chinese) 张利, 华松. 新型抗生素替代品抗菌肽在畜禽养殖上的应用[J]. 畜牧兽医杂志, 2023, 42(3):120-122. [85] LI Q K, LI J Z, WU H, et al. Design strategy and application on targeted antimicrobial peptides[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(2):243-251. (in Chinese) 李丘轲, 李金泽, 吴华, 等. 靶向抗菌肽的设计策略与应用[J]. 畜牧兽医学报, 2020, 51(2):243-251. |
[1] | 康佳威, 黄宣凯, 王志鹏, 张爱珍, 孟芳荣, 盖鹏, 包军付, 孙可心, 宋少康, 孙攀, 陈一川, 张蕾, 高圣玥, 常铭航. 大白猪生长、繁殖和体尺性状遗传参数估计[J]. 畜牧兽医学报, 2024, 55(5): 1936-1944. |
[2] | 孙雯莉, 王浩奇, 泽里磋, 高雨樊, 张非凡, 张健, 段梦琪, 商鹏, 强巴央宗. 藏猪促炎因子(IL-1β、IL-6、TNF-α)多态性及其表达与免疫性状的关联分析[J]. 畜牧兽医学报, 2024, 55(5): 1958-1969. |
[3] | 李婉君, 徐皆欢, 何孟纤, 孔钰婷, 张德福, 戴建军. 细胞松弛素B改善冷冻引起的猪卵母细胞皮质颗粒迁移障碍[J]. 畜牧兽医学报, 2024, 55(5): 1999-2010. |
[4] | 韩阳, 关帅印, 李振, 周赛赛, 袁红根, 宋云峰. 猪圆环病毒3型Rep蛋白的原核表达及酶活性分析[J]. 畜牧兽医学报, 2024, 55(5): 2061-2071. |
[5] | 宋晓晴, 邓瑞德, 李欣, 李姣, 李润成, 杜丽飞, 董伟, 葛猛. PCV4 Cap抗体ELISA检测方法的建立及血清流行病学调查[J]. 畜牧兽医学报, 2024, 55(5): 2072-2079. |
[6] | 周扬, 吴炜姿, 曹伟胜, 王福广, 许秀琼, 钟文霞, 吴立炀, 叶健, 卢受昇. 基于Nanopore测序技术的非洲猪瘟病毒全基因组测序方法建立[J]. 畜牧兽医学报, 2024, 55(5): 2080-2089. |
[7] | 马茹梦, 赵玉梁, 马明爽, 国桂海, 刘芯孜, 李佳璇, 崔文, 姜艳平, 单智夫, 周晗, 王丽, 乔薪瑗, 唐丽杰, 王晓娜, 李一经. 不同猪源受体菌表达猪流行性腹泻病毒保护性抗原S1诱导免疫应答的比较研究[J]. 畜牧兽医学报, 2024, 55(5): 2090-2099. |
[8] | 徐红, 商红旗, 张雪, 钱嘉莉, 王传红, 宋旭, 宝梅英, 刘诗雨, 张格格, 郭容利, 赵永祥, 范宝超, 李彬. C8orf4基因编码蛋白对猪流行性腹泻病毒体外复制的抑制效应[J]. 畜牧兽医学报, 2024, 55(5): 2100-2108. |
[9] | 王静, 张淑娟, 胡霞, 刘向阳, 张兴翠, 宋振辉. CD44通过影响猪流行性腹泻病毒复制调节钠氢交换体3活性[J]. 畜牧兽医学报, 2024, 55(5): 2176-2185. |
[10] | 王吉英, 尹蕊如, 谢星, 王海燕, 刘胡栋, 胡辉, 熊祺琰, 冯志新, 邵国青, 于岩飞. 猪肺炎支原体乳酸脱氢酶在诱导猪支气管上皮细胞凋亡中的作用[J]. 畜牧兽医学报, 2024, 55(5): 2195-2205. |
[11] | 胡泽奇, 李润成, 谭祖明, 谢秀艳, 王江平, 秦乐娟, 李荣, 葛猛. PEDV、PoRVA和PDCoV TaqMan三重RT-qPCR检测方法的建立与初步应用[J]. 畜牧兽医学报, 2024, 55(5): 2267-2272. |
[12] | 彭佩雅, 陈钰焓, 杨龙, 王铭, 赵芮葶, 何俊, 印遇龙, 刘梅. 家畜基因组拷贝数变异研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1356-1369. |
[13] | 徐俊杰, 张璐通, 王津洁, 陈晓晨, 何伟先, 蔡传江, 褚瑰燕, 杨公社. 基于多组学与网络药理学探究淫羊藿对后备母猪发情的作用[J]. 畜牧兽医学报, 2024, 55(4): 1615-1628. |
[14] | 蓝昕蕊, 赵宝宝, 张碧菡, 林晓语, 马会明, 王勇胜. β-谷甾醇对猪卵母细胞体外成熟和胚胎发育的影响[J]. 畜牧兽医学报, 2024, 55(4): 1629-1637. |
[15] | 林莉莉, 张梦迪, 朱琳琳, 马海龙, 孙琪, 何启盖, 张梦佳, 李文涛. 基于猪流行性腹泻病毒GⅡb亚型重组荧光病毒中和抗体检测方法的建立[J]. 畜牧兽医学报, 2024, 55(4): 1649-1660. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||