[1] |
ESPOSITO G, IRONS P C, WEBB E C, et al. Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows[J]. Anim Reprod Sci, 2014, 144(3-4):60-71.
|
[2] |
DRUKER S A, SICSIC R, VAN STRATEN M, et al. Cytological endometritis diagnosis in primiparous versus multiparous dairy cows[J]. J Dairy Sci, 2022, 105(1):665-683.
|
[3] |
SINGH N, SETHI A. Endometritis-diagnosis, treatment and its impact on fertility-a scoping review[J]. JBRA Assist Reprod, 2022, 26(3):538-546.
|
[4] |
PUTMAN A K, GANDY J C, CONTRERAS G A, et al. Oxylipids are associated with higher disease risk in postpartum cows[J]. J Dairy Sci, 2022, 105(3):2531-2543.
|
[5] |
CONTRERAS G A, SORDILLO L M. Lipid mobilization and inflammatory responses during the transition period of dairy cows[J]. Comp Immunol Microbiol Infect Dis, 2011, 34(3):281-289.
|
[6] |
SIRIWARDHANA N, KALUPAHANA N S, MOUSTAID-MOUSSA N. Health benefits of n-3 polyunsaturated fatty acids:eicosapentaenoic acid and docosahexaenoic acid[J]. Adv Food Nutr Res, 2012, 65:211-222.
|
[7] |
LUO Z Z, SHEN L H, JIANG J, et al. Plasma metabolite changes in dairy cows during parturition identified using untargeted metabolomics[J]. J Dairy Sci, 2019, 102(5):4639-4650.
|
[8] |
缪秋韵, 高 雯, 李 杰, 等. 脂质组学分析方法进展及其在中药研究中的应用[J]. 中国中药杂志, 2019, 44(9):1760-1766.MIAO Q Y, GAO W, LI J, et al. Progress on lipidomics analytical methods and their applications in studies of traditional Chinese medicines[J]. China Journal of Chinese Materia Medica, 2019, 44(9):1760-1766. (in Chinese)
|
[9] |
OKAWA H, FUJIKURA A, WIJAYAGUNAWARDANE M M P, et al. Effect of diagnosis and treatment of clinical endometritis based on vaginal discharge score grading system in postpartum Holstein cows[J]. J Vet Med Sci, 2017, 79(9):1545-1551.
|
[10] |
KASIMANICKAM R K, KASIMANICKAM V R, OLSEN J R, et al. Associations among serum pro- and anti-inflammatory cytokines, metabolic mediators, body condition, and uterine disease in postpartum dairy cows[J]. Reprod Biol Endocrinol, 2013, 11:103.
|
[11] |
JIANG K F, YANG J, YANG C, et al. miR-148a suppresses inflammation in lipopolysaccharide-induced endometritis[J]. J Cell Mol Med, 2020, 24(1):405-417.
|
[12] |
SAKAI S, INOUE Y, TANAKA K, et al. Hyperthermia alters interleukin-6 production in response to lipopolysaccharide via endoplasmic reticulum stress in bovine endometrial cells[J]. J Cell Physiol, 2022, 237(1):1087-1099.
|
[13] |
NASRELDIN N, ALI F A Z, ABD-ELHAFEEZ H H, et al. Characterization of immunological, biochemical and inflammatory response of clinical and subclinical endometritis in ewes in the subtropics[J]. Anim Reprod Sci, 2020, 219:106541.
|
[14] |
张瑞雪, 张 博, 赵 辉, 等. 子宫内膜炎奶牛血酮与炎性细胞因子的相关性[J]. 中国兽医学报, 2021, 41(8):1570-1574.ZHANG R X, ZHANG B, ZHAO H, et al. Correlation between serum ketone and inflammatory cytokines in dairy cows with endometritis[J]. Chinese Journal of Veterinary Science, 2021, 41(8):1570-1574. (in Chinese)
|
[15] |
SANTARLASCI V, COSMI L, MAGGI L, et al. IL-1 and T helper immune responses[J]. Front Immunol, 2013, 4:182.
|
[16] |
ABOU MOSSALLAM A A, EL NAHAS S M, MAHFOUZ E R, et al. Characterization of buffalo interleukin 8 (IL-8) and its expression in endometritis[J]. J Genet Eng Biotechnol, 2015, 13(1):71-77.
|
[17] |
TIZARD I. Veterinary immunology[M]. 9th ed. Amsterdam:Elsevier, 2013.
|
[18] |
MOSSER D M, ZHANG X. Interleukin-10:new perspectives on an old cytokine[J]. Immunol Rev, 2008, 226:205-218.
|
[19] |
SIKORA J, SMYCZ-KUBAŃSKA M, MIELCZAREK-PALACZ A, et al. The involvement of multifunctional TGF-β and related cytokines in pathogenesis of endometriosis[J]. Immunol Lett, 2018, 201:31-37.
|
[20] |
ISLAM R, KUMAR H, NANDI S, et al. Determination of anti-inflammatory cytokine in periparturient cows for prediction of postpartum reproductive diseases[J]. Theriogenology, 2013, 79(6):974-979.
|
[21] |
MAVANGIRA V, SORDILLO L M. Role of lipid mediators in the regulation of oxidative stress and inflammatory responses in dairy cattle[J]. Res Vet Sci, 2018, 116:4-14.
|
[22] |
SORDILLO L M, MAVANGIRA V. The nexus between nutrient metabolism, oxidative stress and inflammation in transition cows[J]. Anim Prod Sci, 2014, 54(9):1204-1214.
|
[23] |
SALEMI A M, SADJJADI S M, ASHRAFI K. Letter to the editor[J]. Comp Immunol Microbiol Infect Dis, 2021, 75:101597.
|
[24] |
SONNWEBER T, PIZZINI A, NAIRZ M, et al. Arachidonic acid metabolites in cardiovascular and metabolic diseases[J]. Int J Mol Sci, 2018, 19(11):3285.
|
[25] |
SHAHABI P, SIEST G, VISVIKIS-SIEST S. Influence of inflammation on cardiovascular protective effects of cytochrome P450 epoxygenase-derived epoxyeicosatrienoic acids[J]. Drug Metab Rev, 2014, 46(1):33-56.
|
[26] |
YU G G, ZENG X J, WANG H X, et al. 14, 15-Epoxyeicosatrienoic acid suppresses cigarette smoke extract-induced apoptosis in lung epithelial cells by inhibiting endoplasmic reticulum stress[J]. Cell Phys Biochem, 2015, 36(2):474-486.
|
[27] |
SACERDOTI D, PESCE P, DI PASCOLI M, et al. EETs and HO-1 cross-talk[J]. Prostaglandins Other Lipid Mediat, 2016, 125:65-79.
|
[28] |
KASIMANICKAM R K, KASIMANICKAM V R, OLSEN J R, et al. Associations among serum pro- and anti-inflammatory cytokines, metabolic mediators, body condition, and uterine disease in postpartum dairy cows[J]. Reprod Biol Endocrinol, 2013, 11:103.
|
[29] |
LI R, XU X Z, CHEN C, et al. CYP2J2 attenuates metabolic dysfunction in diabetic mice by reducing hepatic inflammation via the PPARγ[J]. Am J Physiol Endocrinol Metab, 2015, 308(4):E270-E282.
|
[30] |
DHAKAL S, LEE Y. Transient receptor potential channels and metabolism[J]. Mol Cells, 2019, 42(8):569-578.
|
[31] |
MILLER B A, ZHANG W Y. TRP channels as mediators of oxidative stress[M]//ISLAM M S. Transient Receptor Potential Channels. Dordrecht:Springer, 2011:531-544.
|
[32] |
SISIGNANO M, BENNETT D L H, GEISSLINGER G, et al. TRP-channels as key integrators of lipid pathways in nociceptive neurons[J]. Prog Lipid Res, 2014, 53:93-107.
|
[33] |
DUITAMA M, VARGAS-LÓPEZ V, CASAS Z, et al. TRP channels role in pain associated with neurodegenerative diseases[J]. Front Neurosci, 2020, 14:782.
|
[34] |
NUMATA T, TAKAHASHI K, INOUE R. "TRP inflammation"relationship in cardiovascular system[J]. Semin Immunopathol, 2016, 38(3):339-356.
|
[35] |
THOMSON S J, ASKARI A, BISHOP-BAILEY D. Anti-inflammatory effects of epoxyeicosatrienoic acids[J]. Int J Vasc Med, 2012, 2012:605101.
|
[36] |
CHRISTOFIDES A, KONSTANTINIDOU E, JANI C, et al. The role of peroxisome proliferator-activated receptors (PPAR) in immune responses[J]. Metabolism, 2021, 114:154338.
|
[37] |
MIRZA A Z, ALTHAGAFI I I, SHAMSHAD H. Role of PPAR receptor in different diseases and their ligands:physiological importance and clinical implications[J]. Eur J Med Chem, 2019, 166:502-513.
|
[38] |
WAGNER N, WAGNER K D. The role of PPARs in disease[J]. Cells, 2020, 9(11):2367.
|
[39] |
VALLÉE A, LECARPENTIER Y. Crosstalk between peroxisome proliferator-activated receptor gamma and the canonical WNT/β-catenin pathway in chronic inflammation and oxidative stress during carcinogenesis[J]. Front Immunol, 2018, 9:745.
|
[40] |
BAGI Z, KOLLER A, KALEY G. PPARγ activation, by reducing oxidative stress, increases NO bioavailability in coronary arterioles of mice with Type 2 diabetes[J]. Am J Phys Heart Circ Physiol, 2004, 286(2):H742-H748.
|
[41] |
ZHANG J, YANG C, QIU H M, et al. 14, 15-EET involved in the development of diabetic cardiac hypertrophy mediated by PPARs[J]. Prostaglandins Other Lipid Mediat, 2022, 159:106620.
|
[42] |
DAI M Y, WU L J, HE Z W, et al. Epoxyeicosatrienoic acids regulate macrophage polarization and prevent LPS-induced cardiac dysfunction[J]. J Cell Physiol, 2015, 230(9):2108-2119.
|
[43] |
HUANG X, HE L M, LUO X M, et al. Breakup mode transformation of leaky dielectric droplet under direct current electric field[J]. Int Jf Multiphase Flow, 2017, 96:123-133.
|
[44] |
HE Z W, ZHANG X, CHEN C, et al. Cardiomyocyte-specific expression of CYP2J2 prevents development of cardiac remodelling induced by angiotensin II[J]. Cardiovasc Res, 2015, 105(3):304-317.
|
[45] |
帕力旦·赛买提, 姚伟娟. 血管平滑肌细胞收缩的分子机制研究进展[J]. 生理科学进展, 2021, 52(3):217-221.SAIMAITI P, YAO W J. Advances in molecular mechanisms of vascular smooth muscle cell contraction[J]. Progress in Physiological Sciences, 2021, 52(3):217-221. (in Chinese)
|
[46] |
SOROKIN V, VICKNESON K, KOFIDIS T, et al. Role of vascular smooth muscle cell plasticity and interactions in vessel wall inflammation[J]. Front Immunol, 2020, 11:599415.
|
[47] |
FANG X, WEINTRAUB N L, STOLL L L, et al. Epoxyeicosatrienoic acids increase intracellular calcium concentration in vascular smooth muscle cells[J]. Hypertension, 1999, 34(6):1242-1246.
|