Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (4): 1676-1688.doi: 10.11843/j.issn.0366-6964.2025.04.017
• Animal Genetics and Breeding • Previous Articles Next Articles
GONG Yuxuan(), HEI Wei, BAO Wu, CHEN Jiayi, LI Meng, GUO Xiaohong, LI Bugao*(
)
Received:
2024-07-24
Online:
2025-04-23
Published:
2025-04-28
Contact:
LI Bugao
E-mail:gongyuxuan0408@163.com;jinrenn@163.com
CLC Number:
GONG Yuxuan, HEI Wei, BAO Wu, CHEN Jiayi, LI Meng, GUO Xiaohong, LI Bugao. Study on the Regulation of Myogenic Differentiation of Porcine Skeletal Muscle Satellite Cells by Gene TMEM182[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1676-1688.
Table 1
Primer sequences of qRT-PCR"
基因名称Gene | 引物序列(5′→3′) Primer sequence | 产物长度/bp Product length |
TMEM182 | F: CTCCTATATTGCGGCAGGCA R: AGCCATACAGCACAGAAGGG | 143 |
Myf5 | F: GACGAGTTTGAGCCACGAGT R: CGTGCTCTTCCTCGTCTGAG | 76 |
MyHC | F: CTCCTGGGGTGATGGACAAC R: CTTTCTGCAGATGCGGATGC | 83 |
MyoG | F: GAGCTGTATGAGACATCCCCC R: GTGGACGGGCAGGTAGTTTT | 75 |
MyoD | F: GCTCCGCGACGTAGATTTGA R: GGAGTCGAAACACGGGTCAT | 91 |
GAPDH | F: TCGGAGTGAACGGATTTGGC R: TGACAAGCTTCCCGTTCTCC | 189 |
PCNA | F: GCAGAGCATGGACTCGTCTC R: TTGGACATGCTGGTGAGGTT | 120 |
CDK1 | F: GCGACGCTGACGTGGTAG R: GGATGTGGTAGATCCCAGCTTA | 69 |
CDK4 | F: TTGTCCGGCTGATGGATGTC R: GCTCAAACACCAGGGTCACT | 72 |
Ki67 | F: CCGCTCTTAACACCCCTGAG R: TTTTGCACCAGATACGGGCT | 158 |
VWC2L | F: GCATTCCAACTGTCCATGCG R: TTCGGGACAGCATCCATTGT | 115 |
CDH15 | F: GACCAGGATGCCTATGA R: GGATGAAGTCAGCGATG | 170 |
TMEM25 | F: CGACTCCAACAACCTGAA R: GATCTCATCACTGCTCACA | 253 |
HS3ST1 | F: CGCAGACCATCATCATC R: CTTGGCTGTAATGCTCCTC | 133 |
TM6SF1 | F: TGGCTCTGCTCATTATCTG R: GACAAGTGTATGGTATGCT | 195 |
SEC11A | F: CCATAGTTCACCGAGTCTT R: AGCCAGTGTTGTCCTTG | 122 |
PI3K | F: AGACCAGAGACCAATACTTG R: GAGCACCAGTTCCTTCAG | 365 |
AKT | F: CACCTTCATCGGCTACAA R: TCCATCATCTCTTCCTCCT | 258 |
mTOR | F: GCAGAAGGTTGAGGTGTT R: AGAGCGAGTGTAGTTGGT | 127 |
GSK3B | F: GCACTATGTAGCCGTCTG R: GAGGAGGAATAAGGATGGTAG | 199 |
Fig. 1
Expression patterns of TMEM182 A. Expression analysis of TMEM182 in various tissues of pigs; B. Comparison of expression of TMEM182 in longissimus muscle between Mashen pigs and Large White pigs; C, D. Temporal expression of TMEM182; E. Expression of TMEM182 during proliferation and differentiation. Different lowercase letters indicate significant difference at 0.05 level; * indicate significant difference at 0.05 level, ** indicate significant difference at 0.01 level, the same as below"
Fig. 3
Effects of TMEM182 overexpression on proliferation of porcine skeletal muscle satellite cells A. Transfection efficiency of overexpression of TMEM182; B.Western blot of TMEM182 and the gray value analysis of TMEM182, GAPDH was used as an internal control; C. Expression changes of genes related to cell proliferation; D. EdU staining result; E. Statistical analysis of EdU staining results"
Fig. 4
Effects of siRNA knockdown of TMEM182 on proliferation of porcine skeletal muscle satellite cells A. Transfection efficiency of siRNA knockdown of TMEM182; B.Western blot of TMEM182 and the gray value analysis of TMEM182, GAPDH was used as an internal control; C. Expression changes of genes related to cell proliferation; D. EdU staining result; E. Statistical analysis of EdU staining results"
Fig. 5
TMEM182 overexpression inhibits the differentiation of porcine skeletal muscle satellite cells A. Cell transfection efficiency; B. The expression changes of key myogenic factors after transfected with TMEM182 overexpression; C. Western blot of MyHC and the gray value analysis of MyHC, GAPDH was used as an internal control; D. Cell differentiation was detected by immunofluorescence; E. Fusion index analysis of cells"
Fig. 6
siRNA knockdown of TMEM182 promote the differentiation of porcine skeletal muscle satellite cells A. Cell transfection efficiency; B. The expression changes of key myogenic factors after transfected with TMEM182 interfering; C. Western blot of MyHC and the gray value analysis of MyHC, GAPDH was used as an internal control; D. Cell differentiation was detected by immunofluorescence; E. Fusion index analysis of cells"
1 | 茹文秀. METTL3通过m6A修饰调控牛成肌细胞发育的功能与机制研究[D]. 杨凌: 西北农林科技大学, 2023. |
RU W X. Function and mechanism of METTL3 regulating bovine myoblast development through m6A modification[D]. Yangling: Northwest A&F University, 2023. (in Chinese) | |
2 |
梁淑怡, 李凡, 江青艳, 等. 脯氨酸羟化酶(PHDs)对动物骨骼肌发育和脂肪沉积的调控作用及其机制[J]. 畜牧兽医学报, 2024, 55 (3): 867- 873.
doi: 10.11843/j.issn.0366-6964.2024.03.001 |
LIANG S Y , LI F , JIANG Q Y , et al. Regulation and mechanism of Proline Hydroxylases (PHDs) on skeletal muscle development and fat deposition in animals[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (3): 867- 873.
doi: 10.11843/j.issn.0366-6964.2024.03.001 |
|
3 |
PARK J Y , PARK S M , LEE T S , et al. Radiopharmaceuticals for skeletal muscle PET imaging[J]. Int J Mol Sci, 2024, 25 (9): 4860.
doi: 10.3390/ijms25094860 |
4 |
LI J L , ZHANG Z Y , BO H , et al. Exercise couples mitochondrial function with skeletal muscle fiber type via ROS-mediated epigenetic modification[J]. Free Radic Biol Med, 2024, 213, 409- 425.
doi: 10.1016/j.freeradbiomed.2024.01.036 |
5 |
IWATA T , SHIRAI T , UEMICHI K , et al. Effect of spermidine intake on skeletal muscle regeneration after chemical injury in male mice[J]. Physiol Rep, 2024, 12 (20): e70092.
doi: 10.14814/phy2.70092 |
6 |
MASSENET J , GARDNER E , CHAZAUD B , et al. Epigenetic regulation of satellite cell fate during skeletal muscle regeneration[J]. Skeletal Muscle, 2021, 11 (1): 4.
doi: 10.1186/s13395-020-00259-w |
7 |
MEHROTRA P , JABLONSKI J , TOFTEGAARD J , et al. Skeletal muscle reprogramming enhances reinnervation after peripheral nerve injury[J]. Nat Commun, 2024, 15 (1): 9218.
doi: 10.1038/s41467-024-53276-4 |
8 |
CHEN B D , YOU W J , WANG Y Z , et al. The regulatory role of Myomaker and Myomixer-Myomerger-Minion in muscle development and regeneration[J]. Cell Mol Life Sci, 2020, 77 (8): 1551- 1569.
doi: 10.1007/s00018-019-03341-9 |
9 | 于倩文, 黄可佳, 张全启, 等. 许氏平鲉Myomaker通过调控成肌细胞融合促进肌肉肥大生长的调控机制[J]. 中国海洋大学学报(自然科学版), 2024, 54 (1): 67- 78. |
YU J W , HUANG K J , ZHANG Q Q , et al. Myomaker drives hypertrophy growth of muscle in black rockfish (Sebastes schlegelii) by promoting myoblast fusion[J]. Periodical of Ocean University of China, 2024, 54 (1): 67- 78. | |
10 |
VICENTE-GARCÍA C , HERNÁNDEZ-CAMACHO J D , CARVAJAL J J . Regulation of myogenic gene expression[J]. Exp Cell Res, 2022, 419 (1): 113299.
doi: 10.1016/j.yexcr.2022.113299 |
11 |
HERRERA-QUITERIO G A , ENCARNACIÓN-GUEVARA S . The transmembrane proteins (TMEM) and their role in cell proliferation, migration, invasion, and epithelial-mesenchymal transition in cancer[J]. Front Oncol, 2023, 13, 1244740.
doi: 10.3389/fonc.2023.1244740 |
12 |
SCHMIT K , MICHIELS C . TMEM Proteins in Cancer: A Review[J]. Front Pharmacol, 2018, 9, 1345.
doi: 10.3389/fphar.2018.01345 |
13 |
ESTEVES DE LIMA J , BLAVET C , BONNIN M A , et al. TMEM8C-mediated fusion is regionalized and regulated by NOTCH signalling during foetal myogenesis[J]. Development, 2022, 149 (2): dev199928.
doi: 10.1242/dev.199928 |
14 | 杨柳, 田慧, 冀媛媛, 等. 跨膜蛋白TMEM家族在人类生殖系统中作用的研究进展[J]. 基础医学与临床, 2024, 44 (4): 568- 571. |
YANG L , TIAN H , JI Y Y , et al. Research progress on the role of the TMEM family of transmembrane proteins in the human reproductive system[J]. Basic and Clinical Medicine, 2024, 44 (4): 568- 571. | |
15 |
PAPADAKOS S , ISSA H , ALAMRI A , et al. Rapamycin as a potential alternative drug for squamous cell gingiva carcinoma (Ca9-22): a focus on cell cycle, apoptosis and autophagy genetic profile[J]. Pharmaceuticals, 2024, 17 (1): 131.
doi: 10.3390/ph17010131 |
16 |
BERLANSKY S , HUMER C , SALLINGER M , et al. More than just simple interaction between STIM and orai proteins: CRAC channel function enabled by a network of interactions with regulatory proteins[J]. Int J Mol Sci, 2021, 22 (1): 471.
doi: 10.3390/ijms22010471 |
17 |
BEASLEY H K , RODMAN T A , COLLINS G V , et al. TMEM135 is a novel regulator of mitochondrial dynamics and physiology with implications for human health conditions[J]. Cells, 2021, 10 (7): 1750.
doi: 10.3390/cells10071750 |
18 |
ZHANG L L , WU F , ZHAO J . Transmembrane protein 45A regulates the proliferation, migration, and invasion of glioma cells through nuclear factor kappa-B[J]. Anticancer Drugs, 2020, 31 (9): 900- 907.
doi: 10.1097/CAD.0000000000000890 |
19 | WU Y , SMAS C M . Expression and regulation of transcript for the novel transmembrane protein Tmem182 in the adipocyte and muscle lineage[J]. BMC Res Notes, 2008, 19 (1): 85. |
20 | HSING E W , SHIAH S G , PENG H Y , et al. TNF-α-induced miR-450a mediates TMEM182 expression to promote oral squamous cell carcinoma motility[J]. PLoS One, 2024, 14 (3): e0213463. |
21 |
MORIHARA H , YOKOE S , WAKABAYASHI S , et al. TMEM182 inhibits myocardial differentiation of human iPS cells by maintaining the activated state of Wnt/β-catenin signaling through an increase in ILK expression[J]. FASEB Bioadv, 2024, 6 (11): 565- 579.
doi: 10.1096/fba.2024-00086 |
22 |
LUO W , LIN Z T , CHEN J H , et al. TMEM182 interacts with integrin beta 1 and regulates myoblast differentiation and muscle regeneration[J]. J Cachexia Sarcopenia Muscle, 2021, 12 (6): 1704- 1723.
doi: 10.1002/jcsm.12767 |
23 |
GAO P F , CHENG Z M , LI M , et al. Selection of candidate genes affecting meat quality and preliminary exploration of related molecular mechanisms in the Mashen pig[J]. Asian-Australas J Anim Sci, 2019, 32 (8): 1084.
doi: 10.5713/ajas.18.0718 |
24 |
GUO X H , QIN B Y , YANG X F , et al. Comparison of carcass traits, meat quality and expressions of MyHCs in muscles between Mashen and Large White pigs[J]. Ital J Anim Sci, 2019, 18 (1): 1410- 1418.
doi: 10.1080/1828051X.2019.1674701 |
25 |
ZHANG N X , PAN H M , LIANG X J , et al. The roles of transmembrane family proteins in the regulation of store-operated Ca2+ entry[J]. Cell Mol Life Sci, 2022, 79 (2): 118.
doi: 10.1007/s00018-021-04034-y |
26 |
WANG H , YAO F , LUO S Y , et al. A mutual activation loop between the Ca2+-activated chloride channel TMEM16A and EGFR/STAT3 signaling promotes breast cancer tumorigenesis[J]. Cancer Lett, 2019, 455, 48- 59.
doi: 10.1016/j.canlet.2019.04.027 |
27 |
JI J J , ZHOU Z , LUO Q , et al. TMEM16A enhances the activity of the Cdc42-NWASP signaling pathway to promote invasion and metastasis in oral squamous cell carcinoma[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2024, 137 (2): 161- 171.
doi: 10.1016/j.oooo.2023.10.011 |
28 |
GUO S , BAI X , LIU Y F , et al. Inhibition of TMEM16A by natural product silibinin: potential lead compounds for treatment of lung adenocarcinoma[J]. Front Pharmacol, 2021, 12, 643489.
doi: 10.3389/fphar.2021.643489 |
29 |
CHEN J P , WANG D P , CHEN H Q , et al. TMEM196 inhibits lung cancer metastasis by regulating the Wnt/β-catenin signaling pathway[J]. J Cancer Res Clin Oncol, 2023, 149 (2): 653- 667.
doi: 10.1007/s00432-022-04363-w |
30 |
ZHANG Z L , SHANG J , DAI Z L , et al. Transmembrane Protein 170B is a prognostic biomarker and associated with immune infiltrates in pancreatic adenocarcinoma[J]. Front Genet, 2022, 13, 848391.
doi: 10.3389/fgene.2022.848391 |
31 |
MILLAY D P , O' ROURKE J R , SUTHERLAND L B , et al. Myomaker is a membrane activator of myoblast fusion and muscle formation[J]. Nature, 2013, 499 (7458): 301- 305.
doi: 10.1038/nature12343 |
32 |
邵鹏, 唐崟梅, 林亚秋, 等. PSMD9对山羊前体脂肪细胞脂质沉积的调控作用研究[J]. 畜牧兽医学报, 2023, 54 (9): 3653- 3663.
doi: 10.11843/j.issn.0366-6964.2023.09.007 |
SHAO P , TANG Y M , LIN Y Q , et al. Regulation effect of PSMD9 on lipid deposition in goat precursor adipocytes[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (9): 3653- 3663.
doi: 10.11843/j.issn.0366-6964.2023.09.007 |
|
33 |
刘珂含, 王永, 李艳艳, 等. SRSF10对山羊肌内前体脂肪细胞分化的影响[J]. 畜牧兽医学报, 2022, 53 (6): 1768- 1778.
doi: 10.11843/j.issn.0366-6964.2022.06.011 |
LIU K H , WANG Y , LI Y Y , et al. Effects of SRSF10 on the differentiation of intramuscular preadipocytes in goats[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (6): 1768- 1778.
doi: 10.11843/j.issn.0366-6964.2022.06.011 |
|
34 |
冯兰, 冯雪, 马玉林, 等. PPP5C基因调控牛脂肪细胞增殖、分化的功能研究[J]. 畜牧兽医学报, 2024, 55 (10): 4391- 4402.
doi: 10.11843/j.issn.0366-6964.2024.10.013 |
FENG L , FENG X , MA Y L , et al. Study on the Function of PPP5C gene in regulating the proliferation and differentiation of bovine adipocytes[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (10): 4391- 4402.
doi: 10.11843/j.issn.0366-6964.2024.10.013 |
|
35 |
ZHANG D H , RAN J S , LI J J , et al. miR-21-5p regulates the proliferation and differentiation of skeletal muscle satellite cells by targeting KLF3 in chicken[J]. Genes (Basel), 2021, 12 (6): 814.
doi: 10.3390/genes12060814 |
36 |
LI W P , ZHANG Y , LIU Y T , et al. CD155 is essential for skeletal muscle regeneration by regulating satellite cell proliferation and differentiation[J]. FASEB J, 2024, 38 (2): e23440.
doi: 10.1096/fj.202201779RRR |
37 |
CHARRASSE S , COMUNALE F , GRUMBACH Y , et al. RhoA GTPase regulates M-cadherin activity and myoblast fusion[J]. Mol Biol Cell, 2006, 17 (2): 749- 759.
doi: 10.1091/mbc.e05-04-0284 |
38 |
ZESCHNIGK M , KOZIAN D , KUCH C , et al. Involvement of M-cadherin in terminal differentiation of skeletal muscle cells[J]. J Cell Sci, 1995, 108 (9): 2973- 2981.
doi: 10.1242/jcs.108.9.2973 |
39 |
KRAUSS R S , JOSEPH G A , GOEL A J . Keep your friends close: cell-cell contact and skeletal myogenesis[J]. Cold Spring Harb Perspect Biol, 2017, 9 (2): a029298.
doi: 10.1101/cshperspect.a029298 |
40 |
PONNALURI V K , EHRLICH K C , ZHANG G , et al. Association of 5-hydroxymethylation and 5-methylation of DNA cytosine with tissue-specific gene expression[J]. Epigenetics, 2017, 12 (2): 123- 138.
doi: 10.1080/15592294.2016.1265713 |
41 |
EHRLICH M , EHRLICH K C , LACEY M , et al. Epigenetics of genes preferentially expressed in dissimilar cell populations: myoblasts and cerebellum[J]. Epigenomes, 2024, 8 (1): 4.
doi: 10.3390/epigenomes8010004 |
42 |
LIU J , ZUO H N , WANG Z L , et al. The m6A reader YTHDC1 regulates muscle stem cell proliferation via PI4K-Akt-mTOR signaling[J]. Cell Prolif, 2023, 56 (8): e13410.
doi: 10.1111/cpr.13410 |
43 |
ZHENG L , LIANG H , ZHANG Q L , et al. circPTEN1, a circular RNA generated from PTEN, suppresses cancer progression through inhibition of TGF-β/Smad signaling[J]. Mol Cancer, 2022, 21 (1): 41.
doi: 10.1186/s12943-022-01495-y |
44 |
DESBOIS-MOUTHON C , CADORET A , BLIVET-VAN EGGELPOEL M J , et al. Insulin and IGF-1 stimulate the beta-catenin pathway through two signaling cascades involving GSK-3beta inhibition and Ras activation[J]. Oncogene, 2001, 20, 252- 259.
doi: 10.1038/sj.onc.1204064 |
45 |
UEKIK , FRUMAND A , BRACHMANNS M , et al. Molecular balance between the regulatory and catalytic subunits of phosphoinositide 3-kinaseregulates cell signaling and survival[J]. Mol Cell Biol, 2002, 22 (3): 965- 977.
doi: 10.1128/MCB.22.3.965-977.2002 |
46 |
YUAN R Q , LUO X R , LIANG Z Y , et al. UBE2C promotes myoblast differentiation and skeletal muscle regeneration through the Akt signaling pathway[J]. Acta Biochim Biophys Sin (Shanghai), 2024, 56 (7): 1065- 1071.
doi: 10.3724/abbs.2024062 |
47 |
GLASS D J . Molecular mechanisms modulating muscle mass[J]. Trends Mol Med, 2003, 9 (8): 344- 350.
doi: 10.1016/S1471-4914(03)00138-2 |
48 |
COOLICAN S A , SAMUEL D S , EWTON D Z , et al. The mitogenic and myogenic actions of insulin-like growth factors utilize distinct signaling pathways[J]. J Biol Chem, 1997, 272 (10): 6653- 6662.
doi: 10.1074/jbc.272.10.6653 |
49 |
PANSTERS N A , SCHOLS A M , VERHEES K J , et al. Muscle-specific GSK-3beta ablation accelerates regeneration of disuse-atrophied skeletal muscle[J]. Biochim Biophys Acta, 2015, 1852 (3): 490- 506.
doi: 10.1016/j.bbadis.2014.12.006 |
[1] | GUO Yanyan, ZHANG Yuxin, LU Rui, LI Yupeng, CHEN Longbin, ZHANG Jinlong, YAO Dawei, RUAN Weibin, ZHANG Xiaosheng, GUO Xiaofei. Research Progress on the Proliferation and Differentiation of Granulosa Cells at Various Follicular Development Stages in Mammal [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1484-1493. |
[2] | YE Rungen, LIU Yuanbo, LU Lili, Collins Amponsah Asiamah, SU Ying*. Expression of miR-215-5p in Leizhou Black Duck Tissues and Its Effect on Follicular Granulosa Cells Proliferation and Apoptosis [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1722-1730. |
[3] | LIU Chenlong, JI Huayuan, LU Dan, WAN Mingchun, HU Yao, ZHOU Quanyong. Effect of FST on Proliferation, Apoptosis and Hormone Secretion of Porcine Ovarian Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1242-1251. |
[4] | ZHANG Zhengyu, YANG Peihong, GUO Hong, LI Xin, ZHANG Linlin, GUO Yiwen, HU Debao, DING Xiangbin. Effects of Sirt1 Deacetylase on Proliferation and Differentiation of Bovine Skeletal Muscle Satellite Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 603-610. |
[5] | YU Jiangwei, CHENG Huimin, LIN Jian, YANG Baolin, HUANG Cheng, YANG Zhiyuan, HU Ge. Establishment and Application of TaqMan Fluorescent Quantitative PCR Detection Method for Duck Plague Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 765-773. |
[6] | WANG Lei, BAI Shaocheng, WANG Sen, BAO Zhiyuan, CAI Jiawei, LIU Yan, ZHAO Bohao, WU Xinsheng, CHEN Yang. Effect of SRD5A2 on the Expression of Genes Related to Proliferation, Apoptosis and Steroid Hormone Synthesis in Rabbit Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 259-268. |
[7] | HUANG Xinhe, LI Haonan, ZHOU Xiao, XU Jiajing, ZHANG Yuanshu, HAN Zhengkang. Effects and Mechanism on the Synthesis of Milk Components and Cell Proliferation in Mouse Mammary Epithelial Cells by Phytoestrogen Daidzein [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 417-429. |
[8] | Yuhang JIA, Liangfu GUO, Runan ZHANG, Ayong ZHAO, Yufang LIU, Mingxing CHU. miR-127 Regulated the Proliferation and Differentiation of Sheep Skeletal Myoblasts and Its Transcription Factor PAX3 Screening [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3864-3875. |
[9] | 古丽米热·阿布都热依木, Xinru ZHANG, Yangsheng WU, Ying CHEN, Liqin WANG, Xinming XU, Juncheng HUANG, Jiapeng LIN. Effects of FKBP5 on Function of Sheep Follicular Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3947-3956. |
[10] | Yudian SUN, Ziyue SONG, Hongliang ZHANG, Zhihua QIN, Hu SHAN, Ruimei YANG. Isolation and ldentification of Duckling Short Beak and Dwarfism Syndrome Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3623-3630. |
[11] | Zuhua YU, Mengru GAO, Lei HE, Ying WEI, Jian CHEN, Songbiao CHEN, Ke DING. Effects of mdv1-miR-M4-5p Encoded by MDV on Proliferation and Apoptosis of MDCC-MSB1 Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3678-3687. |
[12] | Xiying XU, Yiheng WANG, Qianting OU, Linyuan HONG, Xujing LIU, Xianying LU, Kun JIA. Effects of Silencing PREX1 Expression on Proliferation and Invasiveness of CHMp [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3706-3713. |
[13] | Ziyan WANG, Yahui WANG, Tianyi WU, Chen GAO, Zhenwei DU, Fei GE, Xiaobei ZHANG, Wenxuan ZHAO, Lupei ZHANG, Huijiang GAO, Huansheng DONG, Junya LI. INTS11 Promotes the Proliferation of Bovine Myoblasts by Mediating the Transcription of CDK2 and CYCLIND1 [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2927-2939. |
[14] | Jinting LUO, Fafang XU, Lei WANG, Xuan LUO, Yuhong MA, Jianbo ZHANG, Weihua HUANG, Yuejun SHANG, Guofang WU. The Effect of RSP on Cell Proliferation and Apoptosis of Porcine Leydig Cells with Hypoxia [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2441-2450. |
[15] | Huijie REN, Xun MA, Jing WANG, Caixia LIU, Dongdong ZENG, Lijun KOU, Weidi SHI, Shuangfei LÜ, Ruixuan QIAN, Shengjie GAO. Construction and Partial Biological Characteristics Trial of Lm4b_02325/26 Double Gene Deletion Strain of Listeria monocytogenes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2578-2587. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||