Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (12): 5672-5683.doi: 10.11843/j.issn.0366-6964.2024.12.030
• Preventive Veterinary Medicine • Previous Articles Next Articles
ZHANG Duo1,2,3(), TENG Man2,3, ZHANG Zhuo2,3,4, LIU Jinling2,3, ZHENG Luping2,3, GE Siyu2,3,4, HAN Fang1,2,3, LUO Qin5, CHAI Shujun2,3, ZHAO Dong2,3, YU Zuhua1,*(
), LUO Jun2,3,4,*(
)
Received:
2024-01-21
Online:
2024-12-23
Published:
2024-12-27
Contact:
YU Zuhua, LUO Jun
E-mail:16696657142@163.com;yzhd05@163.com;luojun593@aliyun.com
CLC Number:
ZHANG Duo, TENG Man, ZHANG Zhuo, LIU Jinling, ZHENG Luping, GE Siyu, HAN Fang, LUO Qin, CHAI Shujun, ZHAO Dong, YU Zuhua, LUO Jun. Development and Pathogenicity Analysis of a meq-gene-edited Candidate Marek's Disease Vaccine Strain Generated from a Hypervirulent MDV Variant[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12): 5672-5683.
Table 1
Primer and oligo sequences used for PCR or qPCR analysis"
引物名称 Primer name | 序列(5’→3’) Sequence | 扩增长度/bp Amplicon/bp |
meq-9F | TGCTGGAATGTTAAGAATAAATTCCGCAC | 1 121 |
meq-2R | TCAGGGTCTCCCGTCACCTGGAAACCACCA | |
yg-gB-F | TCTAGGGCATGGCACACGAC | 125 |
yg-gB-R | GAATACGGAAACACAGAGCGG | |
yg-pp38-F | CCGAAAGACAAAACCCAAAT | 129 |
yg-pp38-R | ATGTAACCAGCATATAAGAACGC | |
yg-Meq-F | CGCAGGAAGCAGACGGACTA | 157 |
yg-Meq-R | CCATAGGGCAAACTGGCTCAT | |
yg-ICP4-F | GCACTGCATTCCGAGAGTCAT | 161 |
yg-ICP4-R | TTGGGAATTTGGAGGGCG | |
yg-OVO-F | AAGCAAGAGAAATGGGCTGAT | 133 |
yg-OVO-R | AGGAGGGGAAGACATCCAGTA | |
yg-RLORF4-F | TGCTTGTTTTGGGTAATTGGTC | 275 |
yg-RLORF4-R | TACTGGAACACAAGACTATGAGGAC | |
yg-RLORF5a-F | AATACCTCATCGCAGAGACGC | 162 |
yg-RLORF5a-R | CTCGTTCCGTTCGCTCTTTC |
Fig. 3
Relative gene expressions and in vitro proliferation curves of HNSQ01 and SQ01Δmeq viruses A. The relative transcription levels of five MDV viral genes in HNSQ01or SQ01Δmeq-infected CEFs (*. P < 0.05); B. Growth kinetics of HNSQ01 and SQ01Δmeq viruses in CEFs detected by qPCR; C. Growth kinetics of HNSQ01 and SQ01Δmeq viruses in CEFs determined by PFU titration"
Fig. 4
Body weights and immune organ indices of HNSQ01 or SQ01Δmeq-challenged chickens A. Body weights of MDV-infected birds; B, C & D. Ratios of bursa of Fabricius, thymus and spleen to body weight of virus-challenged chickens. *.P < 0.05:Black star indicates the significant difference of HNSQ01 and SQ01Δmeq compared to CEF; Red star indicates the significant difference of SQ01Δmeq compared to HNSQ01"
1 | NAIR V, GIMENO I, DUNN J. Marek's disease[M]//SWAYNE D E, BOULIANNE M, LOGUE C M, et al. Disease of Poultry. Hoboken: John Wiley & Sons, 2020: 550-587. |
2 | GATHERER D , DEPLEDGE D P , HARTLEY C A , et al. ICTV virus taxonomy profile: Herpesviridae 2021[J]. J Gen Virol, 2021, 102 (10): 001673. |
3 |
WITTER R L . Increased virulence of Marek's disease virus field isolates[J]. Avian Dis, 1997, 41 (1): 149- 163.
doi: 10.2307/1592455 |
4 |
TENG M , ZHENG L P , LI H Z , et al. Pathogenicity and pathotype analysis of Henan isolates of Marek's disease virus reveal long-term circulation of highly virulent MDV variant in China[J]. Viruses, 2022, 14 (8): 1651.
doi: 10.3390/v14081651 |
5 |
LIU J L , TENG M , ZHENG L P , et al. Emerging hypervirulent Marek's disease virus variants significantly overcome protection conferred by commercial vaccines[J]. Viruses, 2023, 15 (7): 1434.
doi: 10.3390/v15071434 |
6 |
ZHENG L P , TENG M , LI G X , et al. Current epidemiology and co-infections of avian immunosuppressive and neoplastic diseases in chicken flocks in central China[J]. Viruses, 2022, 14 (12): 2599.
doi: 10.3390/v14122599 |
7 |
LUPIANI B , LEE L F , CUI X P , et al. Marek's disease virus-encoded Meq gene is involved in transformation of lymphocytes but is dispensable for replication[J]. Proc Natl Acad Sci U S A, 2004, 101 (32): 11815- 11820.
doi: 10.1073/pnas.0404508101 |
8 |
BROWN A C , SMITH L P , KGOSANA L , et al. Homodimerization of the Meq viral oncoprotein is necessary for induction of T-cell lymphoma by Marek's disease virus[J]. J Virol, 2009, 83 (21): 11142- 11151.
doi: 10.1128/JVI.01393-09 |
9 |
LEE L F , HEIDARI M , ZHANG H M , et al. Cell culture attenuation eliminates rMd5ΔMeq-induced bursal and thymic atrophy and renders the mutant virus as an effective and safe vaccine against Marek's disease[J]. Vaccine, 2012, 30 (34): 5151- 5158.
doi: 10.1016/j.vaccine.2012.05.043 |
10 |
SUN A J , LUO J , WAN B , et al. Lorf9 deletion significantly eliminated lymphoid organ atrophy induced by meq-deleted very virulent Marek's disease virus[J]. Vet Microbiol, 2019, 235, 164- 169.
doi: 10.1016/j.vetmic.2019.06.020 |
11 |
LIAO Y F , REDDY S M , KHAN Q A , et al. A novel effective and safe vaccine for prevention of Marek's disease caused by infection with a very virulent plus (vv+) Marek's disease virus[J]. Vaccines, 2021, 9 (2): 159.
doi: 10.3390/vaccines9020159 |
12 |
CONRAD S J , OLUWAYINKA E B , HEIDARI M , et al. Deletion of the viral thymidine kinase in a meq-deleted recombinant Marek's disease virus reduces lymphoid atrophy but is less protective[J]. Microorganisms, 2021, 10 (1): 7.
doi: 10.3390/microorganisms10010007 |
13 |
LI Y P , SUN A J , SU S , et al. Deletion of the meq gene significantly decreases immunosuppression in chickens caused by pathogenic Marek's disease virus[J]. Virol J, 2011, 8, 2.
doi: 10.1186/1743-422X-8-2 |
14 |
SU S , CUI N , ZHOU Y , et al. A recombinant field strain of Marek's disease (MD) virus with reticuloendotheliosis virus long terminal repeat insert lacking the meq gene as a vaccine against MD[J]. Vaccine, 2015, 33 (5): 596- 603.
doi: 10.1016/j.vaccine.2014.12.057 |
15 | 张言坤, 韩妮, 孙鹏, 等. 马立克氏病毒meq基因缺失株SC9-1通过自然重组获得meq能力的分析[J]. 病毒学报, 2017, 33 (1): 89- 95. |
ZHANG Y K , HAN N , SUN P , et al. Capacity of the meq-deleted strain Marek's virus SC9-1 to acquire the meq gene by natural recombination[J]. Chinese Journal of Virology, 2017, 33 (1): 89- 95. | |
16 |
SU S , CUI N , LI J , et al. Deletion of the BAC sequences from recombinant meq-null Marek's disease (MD) virus increases immunosuppression while maintaining protective efficacy against MD[J]. Poultry Sci, 2016, 95 (7): 1504- 1512.
doi: 10.3382/ps/pew067 |
17 |
SUN P , CUI N , LIU L Q , et al. Attenuation of a recombinant Marek's disease virus lacking the meq oncogene and evaluation on its immune efficacy against Marek's disease virus[J]. Poultry Sci, 2020, 99 (4): 1939- 1945.
doi: 10.1016/j.psj.2019.11.059 |
18 | LEE L F , KREAGER K , HEIDARI M , et al. Properties of a meq-deleted rMd5 Marek's disease vaccine: protection against virulent MDV challenge and induction of lymphoid organ atrophy are simultaneously attenuated by serial passage in vitro[J]. Avian Dis, 2013, 57 (2 Suppl): 491- 497. |
19 |
ZHANG Y P , LIU C J , YAN F H , et al. Recombinant Gallid herpesvirus 2 with interrupted meq genes confers safe and efficacious protection against virulent field strains[J]. Vaccine, 2017, 35 (36): 4695- 4701.
doi: 10.1016/j.vaccine.2017.07.048 |
20 | 张志会, 滕蔓, 郑鹿平, 等. 马立克病基因工程疫苗研究进展[J]. 畜牧与兽医, 2023, 55 (10): 138- 150. |
ZHANG Z H , TENG M , ZHENG L P , et al. Advances in novel genetically engineered vaccines against Marek's disease[J]. Animal Husbandry & Veterinary Medicine, 2023, 55 (10): 138- 150. | |
21 |
TENG M , YAO Y X , NAIR V , et al. Latest advances of virology research using CRISPR/Cas9-based gene-editing technology and its application to vaccine development[J]. Viruses, 2021, 13 (5): 779.
doi: 10.3390/v13050779 |
22 |
罗俊, 刘金玲, 郑鹿平, 等. 家禽疱疹病毒CRISPR/Cas9基因编辑最新研究进展[J]. 畜牧兽医学报, 2022, 53 (10): 3335- 3344.
doi: 10.11843/j.issn.0366-6964.2022.10.007 |
LUO J , LIU J L , ZHENG L P , et al. Recent advances in engineering avian herpesviruses by CRISPR/Cas9-based gene editing technology[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (10): 3335- 3344.
doi: 10.11843/j.issn.0366-6964.2022.10.007 |
|
23 | 滕蔓, 刘金玲, 郑鹿平, 等. CRISPR/Cas9基因编辑技术在病毒学研究中的应用及进展[J]. 病毒学报, 2020, 36 (5): 946- 954. |
TENG M , LIU J L , ZHENG L P , et al. Research progress in application of the CRISPR/Cas9 gene editing system in virology[J]. Chinese Journal of Virology, 2020, 36 (5): 946- 954. | |
24 |
LUO J , TENG M , ZAI X S , et al. Efficient mutagenesis of Marek's disease virus-encoded microRNAs using a CRISPR/Cas9-based gene editing system[J]. Viruses, 2020, 12 (4): 466.
doi: 10.3390/v12040466 |
25 | 滕蔓, 郑鹿平, 刘金玲, 等. 利用CRISPR/Cas9基因编辑技术构建马立克病病毒超强毒株原癌基因meq缺失株及其鉴定[J]. 病毒学报, 2020, 36 (4): 675- 684. |
TENG M , ZHENG L P , LIU J L , et al. Editing of oncogenic meq of very-virulent Marek's disease virus by the CRISPR/Cas9 system[J]. Chinese Journal of Virology, 2020, 36 (4): 675- 684. | |
26 | 王伟东, 滕蔓, 郑鹿平, 等. miR-M11基因编辑对马立克病病毒体外复制的影响[J]. 河南农业科学, 2023, 52 (1): 134- 143. |
WANG W D , TENG M , ZHENG L P , et al. Effect of miR-M11 gene editing on replication of Marek's disease virus in vitro[J]. Journal of Henan Agricultural Sciences, 2023, 52 (1): 134- 143. | |
27 | 楚钰淑, 滕蔓, 周子誉, 等. LAT基因簇miRNA的CRISPR/Cas9基因编辑对马立克病病毒体外复制的影响分析[J]. 病毒学报, 2021, 37 (6): 1428- 1439. |
CHU Y S , TENG M , ZHOU Z Y , et al. CRISPR/Cas9 system-based gene editing of the LAT-clustered MicroRNAs and its influence on in vitro replication of Marek's disease virus[J]. Chinese Journal of Virology, 2021, 37 (6): 1428- 1439. | |
28 |
杨森, 滕蔓, 刘金玲, 等. 鸡马立克病疫苗株CVI988/Rispens meq基因编辑及缺失毒株的构建与鉴定[J]. 畜牧兽医学报, 2020, 51 (8): 1970- 1976.
doi: 10.11843/j.issn.0366-6964.2020.08.021 |
YANG S , TENG M , LIU J L , et al. Construction of meq deleted strain by gene editing of Marek's disease vaccine strain CVI988/Rispens via the CRISPR/Cas9 system and identification[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51 (8): 1970- 1976.
doi: 10.11843/j.issn.0366-6964.2020.08.021 |
|
29 |
TENG M , ZHOU Z Y , YAO Y X , et al. A new strategy for efficient screening and identification of monoclonal antibodies against oncogenic avian Herpesvirus utilizing CRISPR/Cas9-based gene-editing technology[J]. Viruses, 2022, 14 (9): 2045.
doi: 10.3390/v14092045 |
30 |
TENG M , LIU J L , LUO Q , et al. Efficient cross-screening and characterization of monoclonal Antibodies against Marek's disease specific Meq Oncoprotein using CRISPR/Cas9-gene-edited viruses[J]. Viruses, 2023, 15 (4): 817.
doi: 10.3390/v15040817 |
31 |
TENG M , YU Z H , ZHAO P , et al. Putative roles as oncogene or tumour suppressor of the Mid-clustered microRNAs in Gallid alphaherpesvirus 2 (GaHV2) induced Marek's disease lymphomagenesis[J]. J Gen Virol, 2017, 98 (5): 1097- 1112.
doi: 10.1099/jgv.0.000786 |
32 |
马圣明, 滕蔓, 余祖华, 等. 马立克病病毒超强毒株GX0101感染宿主部分病毒基因表达水平及致病阶段分析[J]. 畜牧兽医学报, 2016, 47 (8): 1635- 1644.
doi: 10.11843/j.issn.0366-6964.2016.08.014 |
MA S M , TENG M , YU Z H , et al. The viral gene expression profiles and pathogenic phases of the disease caused by very virulent Mdv Strain GX0101[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47 (8): 1635- 1644.
doi: 10.11843/j.issn.0366-6964.2016.08.014 |
|
33 | 张志会. 基于CRISPR/Cas9系统的马立克病病毒meq基因缺失毒株的构建和鉴定[D]. 郑州: 郑州大学, 2023. |
ZHANG Z H. Construction and characterization of a meq-deleted mutant strain of Marek's disease virus utilizing CRISPR/Cas9-based system[D]. Zhengzhou: Zhengzhou University, 2023. (in Chinese) | |
34 |
DENG Q M , SHI M Y , LI Q H , et al. Analysis of the evolution and transmission dynamics of the field MDV in China during the years 1995-2020, indicating the emergence of a unique cluster with the molecular characteristics of vv+ MDV that has become endemic in southern China[J]. Transbound Emerg Dis, 2021, 68 (6): 3574- 3587.
doi: 10.1111/tbed.13965 |
35 | SONG B L , ZEB J , HUSSAIN S , et al. A review on the Marek's disease outbreak and its virulence-related meq genovariation in Asia between 2011 and 2021[J]. Animals (Basel), 2022, 12 (5): 540. |
[1] | Wenwen LIU, Faming DONG, Yanzhen BI. The Development of Multi-Gene Editing Technology and Its Application in Agricultural Biological Germplasm Innovation [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3267-3275. |
[2] | Ruiying LIANG, Jingxia SUO, Lin LIANG, Xianyong LIU, Jiabo DING, Xun SUO, Xinming TANG. Genetic Manipulation of Eimeria: Platform Development, Application, and Perspective [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3362-3373. |
[3] | Zuhua YU, Mengru GAO, Lei HE, Ying WEI, Jian CHEN, Songbiao CHEN, Ke DING. Effects of mdv1-miR-M4-5p Encoded by MDV on Proliferation and Apoptosis of MDCC-MSB1 Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3678-3687. |
[4] | QIU Meiyu, ZHANG Xuemei, ZHANG Ning, LIU Mingjun. Approach and Application of Prime Editing System [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1345-1355. |
[5] | WANG Jiali, YANG Fan, SHAO Wenhua, HUANG Mengyao, CAO Weijun, PU Xiuying, ZHANG Wei, ZHENG Haixue. Construction of Tollip Knockout Pig Kidney Cell Line [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1810-1818. |
[6] | QIN Yi, HU Wenjie, FANG Xiaowei, GUO Qian, TIAN Lanxin, LIU Fang, FANG Chun. Effect of Deletion of the Lipoteichoic Acid Synthase ltaS Gene on the Pathogenicity of Listeria monocytogenes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 670-679. |
[7] | Ting YOU, Shanhui REN, Meng WANG, Hongqiang ZHANG, Xiaolong GAO, Wei YAO, Hui WANG, Xue YANG, Chunling MA, Minyi LIU, Yuzhe ZHANG, Jinlong WANG, Yuefeng SUN, Haotai CHEN, Guirong WANG. Construction and Replication Ability of the ORF112 Gene Deleted Orf Virus Strain [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 5200-5210. |
[8] | Xuefu ZHANG, Yuntong CHEN, Wenrui FAN, Zibo ZHANG, Mengmeng YU, Suyan WANG, Xiaole QI, Liuan LI, Yulong GAO. Construction of Chicken chNHE1 Gene Editing Cell Line and Analysis of Its Resistance to ALV-J Infection [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 5238-5246. |
[9] | Xiuhu DING, Zhiping LIN, Fang ZHAO, Kunlin CHEN, Jifeng ZHONG, Yan ZHANG, Yundong GAO, Huixia LI, Huili WANG, Jianli ZHANG, Qiang DING. Highly Efficient BLG Knockout in Bovine Mammary Epithelial Cells by Using CRISPR/Cas9 [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4475-4488. |
[10] | ZHANG Chenjian, LI Yinxia, DING Qiang, LIU Weijia, WANG Huili, HE Nan, WU Jiashun, CAO Shaoxian. Efficient Preparation of CRISPR/Cas9-mediated Goat SOCS2 Gene Edited Embryos [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 129-141. |
[11] | FEI Xiaoyu, SHI Chaoqun, LIU Xueming, SU Feng, JIANG Yunliang. CRISPR/Cas9 System Mediated Gene Modificated MRC1 in PK15 Cells Reduce PCV2 Replication [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 934-946. |
[12] | HE Shufan, ZOU Yuantong, HUANG Zhilan, LI Qian, JIANGCUO Wengxi, YUE Hua, TANG Cheng, LIU Jie. Detection of Bovine Adenovirus Type 3 Infection Status and Its Fiber Shaft Gene [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1333-1340. |
[13] | LIU Ling, WANG Dandan, CUI Kai, MA Yuehui, JIANG Lin. Advances of Disease-Resistant Breeding on Porcine Reproductive and Respiratory Syndrome [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 434-442. |
[14] | CHEN Junzhen, QUAN Ran, FU Qiang, GE Lijuan, YUAN Yuanyuan, ZHANG Chengyuan, LI Jianlin, SHI Huijun. Study on the Effect of Heat Shock Protein HSP90B1 on the Replication of Bovine Viral Diarrhea Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 683-693. |
[15] | ZHANG Shuo, ZHOU Yuxiao, WU Haibo, SUO Lun. Dynamics of Gene Editing Consequence Mediated by Long-term CRISPR/Cas9 System [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4196-4208. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||