Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (4): 1511-1520.doi: 10.11843/j.issn.0366-6964.2024.04.016
• REVIEW • Previous Articles Next Articles
ZHANG Yanmin1, ZHAO Dongxu2, WANG Wenlong1*
Received:
2023-08-01
Online:
2024-04-23
Published:
2024-04-26
CLC Number:
ZHANG Yanmin, ZHAO Dongxu, WANG Wenlong. Mechanism of Resistance to Ivermectin in the Haemonchus contortus[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1511-1520.
[1] FENG K L. Establishment of early diagnostic method for Haemonchus contortus[D]. Nanjing:Nanjing Agricultural University, 2020. (in Chinese) 冯伉梨. 捻转血矛线虫病早期诊断方法的建立[D]. 南京:南京农业大学, 2020. [2] HUANG Y. Preliminary research on the function and molecular mechanism of Hc-nas-33 involved in the molting process of Haemonchus contortus[D]. Hangzhou:Zhejiang University, 2021. (in Chinese) 黄艳. Hc-nas-33参与捻转血矛线虫蜕皮过程的功能及其分子机制初步研究[D]. 杭州:浙江大学, 2021. [3] WANG C Q, LI F F, ZHANG Z Z, et al. Recent research progress in China on Haemonchus contortus[J]. Front Microbiol, 2017, 8:1509. [4] ZHAO X C. Preliminary study on immune responses induced by exosomes from Haemonchus contortus in goat[D]. Beijing:Chinese Academy of Agricultural Sciences, 2018. (in Chinese) 赵小超. 辐照捻转血矛线虫外泌体诱导羊免疫应答的初步研究[D]. 北京:中国农业科学院, 2018. [5] XU S S. Epidemiology, clinical signs and control measures of Haemonchus contortus disease in sheep[J]. Modern Animal Husbandry Science and Technology, 2021(5):133-134. (in Chinese) 徐绍山. 羊捻转血矛线虫病的流行病学、临床症状及防治措施[J]. 现代畜牧科技, 2021(5):133-134. [6] MUCHIUT S M, FERNÁNDEZ A S, STEFFAN P E, et al. Anthelmintic resistance:management of parasite refugia for Haemonchus contortus through the replacement of resistant with susceptible populations[J]. Vet Parasitol, 2018, 254:43-48. [7] KOTZE A C, PRICHARD R K. Anthelmintic resistance in Haemonchus contortus:history, mechanisms and diagnosis[J]. Adv Parasitol, 2016, 93:397-428. [8] NICIURA S C M, TIZIOTO P C, MORAES C V, et al. Extreme-QTL mapping of monepantel resistance in Haemonchus contortus[J]. Parasit Vectors, 2019, 12(1):403. [9] FENG X P, HAYASHI J, BEECH R N, et al. Study of the nematode putative GABA type-A receptor subunits:evidence for modulation by ivermectin[J]. J Neurochem, 2002, 83(4):870-878. [10] RIVIERE J E, PAPICH M G. Veterinary pharmacology and therapeutics[M]. 9th ed. Ames:Wiley-Blackwell, 2009. [11] WOLSTENHOLME A J, ROGERS A T. Glutamate-gated chloride channels and the mode of action of the avermectin/milbemycin anthelmintics[J]. Parasitology, 2005, 131 Suppl:S85-S95. [12] BLACKHALL W J, PRICHARD R K, BEECH R N. Selection at a γ-aminobutyric acid receptor gene in Haemonchus contortus resistant to avermectins/milbemycins[J]. Mol Biochem Parasitol, 2003, 131(2):137-145. [13] FOSTER J, COCHRANE E, KHATAMI M H, et al. A mutational and molecular dynamics study of the cys-loop GABA receptor Hco-UNC-49 from Haemonchus contortus:agonist recognition in the nematode GABA receptor family[J]. Int J Parasitol Drugs Drug Resist, 2018, 8(3):534-539. [14] COCHRANE E, FOSTER J, KHATAMI M H, et al. Characterization of adjacent charged residues near the agonist binding site of the nematode UNC-49 GABA receptor[J]. Mol Biochem Parasitol, 2022, 252:111521. [15] SIDDIQUI S Z, BROWN D D R, RAO V T S, et al. An UNC-49 GABA receptor subunit from the parasitic nematode Haemonchus contortus is associated with enhanced GABA sensitivity in nematode heteromeric channels[J]. J Neurochem, 2010, 113(5):1113-1122. [16] BROWN D D R, SIDDIQUI S Z, KAJI M D, et al. Pharmacological characterization of the Haemonchus contortus GABA-gated chloride channel, Hco-UNC-49:modulation by macrocyclic lactone anthelmintics and a receptor for piperazine[J]. Vet Parasitol, 2012, 185(2-4):201-209. [17] HERNANDO G, BOUZAT C. Caenorhabditis elegans neuromuscular junction:GABA receptors and ivermectin action[J]. PLoS One, 2014, 9(4):e95072. [18] CULLY D F, VASSILATIS D K, LIU K K, et al. Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans[J]. Nature, 1994, 371(6499):707-711. [19] MARTIN R J, MURRAY I, ROBERTSON A P, et al. Anthelmintics and ion-channels:after a puncture, use a patch[J]. Int J Parasitol, 1998, 28(6):849-862. [20] ATIF M, SMITH J J, ESTRADA-MONDRAGON A, et al. GluClR-mediated inhibitory postsynaptic currents reveal targets for ivermectin and potential mechanisms of ivermectin resistance[J]. PLoS Pathog, 2019, 15(1):e1007570. [21] WOLSTENHOLME A J, FAIRWEATHER I, PRICHARD R, et al. Drug resistance in veterinary helminths[J]. Trends Parasitol, 2004, 20(10):469-476. [22] LI B, FENG Y L, YANG X Y, et al. Analysis of glutamtae-gated channel gbr-2 gene from Haemonchus contortus with ivermectin resistance[J]. Chinese Journal of Veterinary Medicine, 2015, 51(1):11-13. (in Chinese) 李斌, 冯伊莉, 杨晓野, 等. 耐伊维菌素捻转血矛线虫谷氨酸门控氯离子通道gbr-2基因分析[J]. 中国兽医杂志, 2015, 51(1):11-13. [23] DENT J A, SMITH M M, VASSILATIS D K, et al. The genetics of ivermectin resistance in Caenorhabditis elegans[J]. Proc Natl Acad Sci U S A, 2000, 97(6):2674-2679. [24] EVANS K S, WIT J, STEVENS L, et al. Two novel loci underlie natural differences in Caenorhabditis elegans abamectin responses[J]. PLoS Pathog, 2021, 17(3):e1009297. [25] XU Y, CHEN G F, XIONG T, et al. Research progress of P-glycoprotein induction[J]. Journal of China Pharmaceutical University, 2018, 49(1):26-33. (in Chinese) 许悦, 陈根富, 熊涛, 等. P-糖蛋白诱导作用的研究进展[J]. 中国药科大学学报, 2018, 49(1):26-33. [26] MATE L, BALLENT M, CANTÓN C, et al. ABC-transporter gene expression in ivermectin-susceptible and resistant Haemonchus contortus isolates[J]. Vet Parasitol, 2022, 302:109647. [27] XU M, MOLENTO M, BLACKHALL W, et al. Ivermectin resistance in nematodes may be caused by alteration of P-glycoprotein homolog[J]. Mol Biochem Parasitol, 1998, 91(2):327-335. [28] RAZA A, BAGNALL N H, JABBAR A, et al. Increased expression of ATP binding cassette transporter genes following exposure of Haemonchus contortus larvae to a high concentration of monepantel in vitro[J]. Parasit Vectors, 2016, 9(1):522. [29] YAN R F, URDANETA-MARQUEZ L, KELLER K, et al. The role of several ABC transporter genes in ivermectin resistance in Caenorhabditis elegans[J]. Vet Parasitol, 2012, 190(3/4):519-529. [30] SENGTHONG C, YINGKLANG M, INTUYOD K, et al. Repeated ivermectin treatment induces ivermectin resistance in Strongyloides ratti by upregulating the expression of ATP-binding cassette transporter genes[J]. Am J Trop Med Hyg, 2021, 105(4):1117-1123. [31] ARDELLI B F, GUERRIERO S B, PRICHARD R K. Ivermectin imposes selection pressure on P-glycoprotein from Onchocerca volvulus:linkage disequilibrium and genotype diversity[J]. Parasitology, 2006, 132(3):375-386. [32] JANSSEN I J I, KRÜCKEN J, DEMELER J, et al. Transgenically expressed Parascaris P-glycoprotein-11 can modulate ivermectin susceptibility in Caenorhabditis elegans[J]. Int J Parasitol Drugs Drug Resist, 2015, 5(2):44-47. [33] GODOY P, CHE H, BEECH R N, et al. Characterization of Haemonchus contortus P-glycoprotein-16 and its interaction with the macrocyclic lactone anthelmintics[J]. Mol Biochem Parasitol, 2015, 204(1):11-15. [34] RAZA A, KOPP S R, BAGNALL N H, et al. Effects of in vitro exposure to ivermectin and levamisole on the expression patterns of ABC transporters in Haemonchus contortus larvae[J]. Int J Parasitol Drugs Drug Resist, 2016, 6(2):103-115. [35] KELLEROVÁ P, MATOUŠKOVÁ P, LAMKA J, et al. Ivermectin-induced changes in the expression of cytochromes P450 and efflux transporters in Haemonchus contortus female and male adults[J]. Vet Parasitol, 2019, 273:24-31. [36] PACHECO P A, LOUVANDINI H, GIGLIOTI R, et al. Phytochemical modulation of P-Glycoprotein and its gene expression in an ivermectin-resistant Haemonchus contortus isolate in vitro[J]. Vet Parasitol, 2022, 305:109713. [37] HE F, BHUTTO Z, GUO L, et al. Effect of quercetin on P-glycoprotein expression and efflux function in liver and jejunum of rat[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49(2):422-431. (in Chinese) 何方, BHUTTO Z, 郭荔, 等. 槲皮素对大鼠肝和空肠P-糖蛋白表达及外排功能的影响[J]. 畜牧兽医学报, 2018, 49(2):422-431. [38] ALVAREZ L, SUAREZ G, CEBALLOS L, et al. Integrated assessment of ivermectin pharmacokinetics, efficacy against resistant Haemonchus contortus and P-glycoprotein expression in lambs treated at three different dosage levels[J]. Vet Parasitol, 2015, 210(1/2):53-63. [39] ÁSBJÖRNSDÓTTIR K H, MEANS A R, WERKMAN M, et al. Prospects for elimination of soil-transmitted helminths[J]. Curr Opin Infect Dis, 2017, 30(5):482-488. [40] MEECH R, HU D G, MCKINNON R A, et al. The UDP-glycosyltransferase (UGT) superfamily:new members, new functions, and novel paradigms[J]. Physiol Rev, 2019, 99(2):1153-1222. [41] MATOUŠKOVÁ P, VOKŘÁL I, LAMKA J, et al. The role of xenobiotic-metabolizing enzymes in anthelmintic deactivation and resistance in helminths[J]. Trends Parasitol, 2016, 32(6):481-491. [42] MATOUŠKOVÁ P, LECOVÁ L, LAING R, et al. UDP-glycosyltransferase family in Haemonchus contortus:phylogenetic analysis, constitutive expression, sex-differences and resistance-related differences[J]. Int J Parasitol Drugs Drug Resist, 2018, 8(3):420-429. [43] LIU Y. Analysis of transcriptomics and proteomics and functional reseach of IVM-resistant candidate genes in Haemonchus contortus[D]. Hohhot:Inner Mongolia Agricultural University, 2020. (in Chinese) 刘阳. 捻转血矛线虫转录组和蛋白组学分析及耐IVM候选基因功能研究[D]. 呼和浩特:内蒙古农业大学, 2020. [44] ALGUSBI S, KRÜCKEN J, RAMVNKE S, et al. Analysis of putative inhibitors of anthelmintic resistance mechanisms in cattle gastrointestinal nematodes[J]. Int J Parasitol, 2014, 44(9):647-658. [45] WANG W L, SU Q, ZHAO X L, et al. Bioinformation analysis and prokaryotic expression of Haemonchus contortus of P450 gene related to drug resistance[J]. Chinese Journal of Preventive Veterinary Medicine, 2020, 42(11):1181-1184. (in Chinese) 王文龙, 苏倩, 赵学亮, 等. 捻转血矛线虫耐药相关基因P450原核表达及其生物信息学分析[J]. 中国预防兽医学报, 2020, 42(11):1181-1184. [46] FREEMAN A S, NGHIEM C, LI J, et al. Amphidial structure of ivermectin-resistant and susceptible laboratory and field strains of Haemonchus contortus[J]. Vet Parasitol, 2003, 110(3/4):217-226. [47] URDANETA-MARQUEZ L, BAE S H, JANUKAVICIUS P, et al. A dyf-7 haplotype causes sensory neuron defects and is associated with macrocyclic lactone resistance worldwide in the nematode parasite Haemonchus contortus[J]. Int J Parasitol, 2014, 44(14):1063-1071. [48] MÉNEZ C, ALBERICH M, KANSOH D, et al. Acquired tolerance to ivermectin and moxidectin after drug selection pressure in the nematode Caenorhabditis elegans[J]. Antimicrob Agents Chemother, 2016, 60(8):4809-4819. [49] ELMAHALAWY S T, HALVARSSON P, SKARIN M, et al. Genetic variants in dyf-7 validated by droplet digital PCR are not drivers for ivermectin resistance in Haemonchus contortus[J]. Int J Parasitol Drugs Drug Resist, 2018, 8(2):278-286. [50] ZEMKOVA H, TVRDONOVA V, BHATTACHARYA A, et al. Allosteric modulation of ligand gated ion channels by ivermectin[J]. Physiol Res, 2014, 63 Suppl 1(Suppl 1):S215-S224. [51] HABIBI S, NAZARETH K, NICHOLS J, et al. The Haemonchus contortus LGC-39 subunit is a novel subtype of an acetylcholine-gated chloride channel[J]. Int J Parasitol Drugs Drug Resist, 2023, 22:20-26. [52] JELÍNKOVÁ I, YAN Z H, LIANG Z D, et al. Identification of P2X4 receptor-specific residues contributing to the ivermectin effects on channel deactivation[J]. Biochem Biophys Res Commun, 2006, 349(2):619-625. [53] CODDOU C, STOJILKOVIC S S, HUIDOBRO-TORO J P. Allosteric modulation of ATP-gated P2X receptor channels[J]. Rev Neurosci, 2011, 22(3):335-354. [54] DE LOURDES MOTTIER M, PRICHARD R K. Genetic analysis of a relationship between macrocyclic lactone and benzimidazole anthelmintic selection on Haemonchus contortus[J]. Pharmacogenet Genomics, 2008, 18(2):129-140. [55] LUO X P, LI J Y, GAO W. Polymorphism analysis of candidate genes for ivermectin resistance in Haemonchus contortus[J]. Chinese Journal of Parasitology and Parasitic Diseases, 2022, 40(4):536-539, 544. (in Chinese) 罗晓平, 李军燕, 高娃, 等. 捻转血矛线虫耐伊维菌素候选基因的多态性分析[J]. 中国寄生虫学与寄生虫病杂志, 2022, 40(4):536-539, 544. [56] TUERSONG W, LIU X, WANG Y F, et al. Comparative metabolome analyses of ivermectin-resistant and-susceptible strains of Haemonchus contortus[J]. Animals (Basel), 2023, 13(3):456. [57] TUERSONG W, ZHOU C X, WU S M, et al. Comparative analysis on transcriptomics of ivermectin resistant and susceptible strains of Haemonchus contortus[J]. Parasit Vectors, 2022, 15(1):159. [58] WANG J Y, YANG Y, MA Y J, et al. Potential regulatory role of lncRNA-miRNA-mRNA axis in osteosarcoma[J]. Biomed Pharmacother, 2020, 121:109627. [59] HONG S C, GUO Q, WANG W J, et al. Identification of differentially expressed microRNAs in Culex pipiens and their potential roles in pyrethroid resistance[J]. Insect Biochem Mol Biol, 2014, 55:39-50. [60] ROBINSON E K, COVARRUBIAS S, CARPENTER S. The how and why of lncRNA function:an innate immune perspective[J]. Biochim Biophys Acta Gene Regul Mech, 2020, 1863(4):194419. [61] SEBASTIAN-DELACRUZ M, GONZALEZ-MORO I, OLAZAGOITIA-GARMENDIA A, et al. The role of lncRNAs in gene expression regulation through mRNA stabilization[J]. Noncoding RNA, 2021, 7(1):3. [62] HAENISCH S, CASCORBI I. miRNAs as mediators of drug resistance[J]. Epigenomics, 2012, 4(4):369-381. [63] ETEBARI K, AFRAD M H, TANG B, et al. Involvement of microRNA miR-2b-3p in regulation of metabolic resistance to insecticides in Plutella xylostella[J]. Insect Mol Biol, 2018, 27(4):478-491. [64] GILLAN V, MAITLAND K, LAING R, et al. Increased expression of a MicroRNA correlates with anthelmintic resistance in parasitic nematodes[J]. Front Cell Infect Microbiol, 2017, 7:452. [65] WEN H F, ZHANG Y M, ZHANG H L, et al. Transcriptomic analysis of miRNAs between ivermectin sensitive and resistant strains of Haemonchus contortus[J]. Chinese Journal of Preventive Veterinary Medicine, 2023, 45(3):245-252. (in Chinese) 温海峰, 张艳敏, 张海龙, 等. 捻转血矛线虫伊维菌素敏感虫株与耐药虫株差异miRNA的转录组学分析[J]. 中国预防兽医学报, 2023, 45(3):245-252. [66] MARKS N D, WINTER A D, GU H Y, et al. Profiling microRNAs through development of the parasitic nematode Haemonchus identifies nematode-specific miRNAs that suppress larval development[J]. Sci Rep, 2019, 9(1):17594. [67] ISIK M, BLACKWELL T K, BEREZIKOV E. MicroRNA mir-34 provides robustness to environmental stress response via the DAF-16 network in C. elegans[J]. Sci Rep, 2016, 6:36766. [68] CHEN X D, WANG T Y, LIU C X, et al. Analysis of long non-coding RNAs associated with ivermectin resistance and its regulatory function in Haemonchus contortus[J]. Journal of China Agricultural University, 2023, 28(1):190-202. (in Chinese) 陈昕迪, 王腾宇, 刘春霞, 等. 捻转血矛线虫伊维菌素耐药相关长链非编码RNA及其调控功能分析[J]. 中国农业大学学报, 2023, 28(1):190-202. [69] KUMAR D, HU X L, GUO R, et al. Long noncoding RNA:disclosing new horizon in the molecular world of insects[M]//KUMAR D, GONG C L. Trends in Insect Molecular Biology and Biotechnology. Cham:Springer, 2018:85-102. [70] ETEBARI K, FURLONG M J, ASGARI S. Genome wide discovery of long intergenic non-coding RNAs in diamondback moth (Plutella xylostella) and their expression in insecticide resistant strains[J]. Sci Rep, 2015, 5:14642. [71] LIU F L, GUO D H, YUAN Z T, et al. Genome-wide identification of long non-coding RNA genes and their association with insecticide resistance and metamorphosis in diamondback moth, Plutella xylostella[J]. Sci Rep, 2017, 7(1):15870. [72] VALENZUELA-MIRANDA D, ETEBARI K, ASGARI S, et al. Long noncoding RNAs:unexplored players in the drug response of the sea louse Caligus rogercresseyi[J]. Agri Gene, 2017, 4:1-7. [73] VALENZUELA-MUÑOZ V, VALENZUELA-MIRANDA D, GALLARDO-ESCÁRATE C. Comparative analysis of long non-coding RNAs in Atlantic and Coho salmon reveals divergent transcriptome responses associated with immunity and tissue repair during sea lice infestation[J]. Dev Comp Immunol, 2018, 87:36-50. [74] NÚÑEZ-ACUÑA G, SÁEZ-VERA C, VALENZUELA-MUÑOZ V, et al. Tackling the molecular drug sensitivity in the sea louse Caligus rogercresseyi based on mRNA and lncRNA interactions[J]. Genes (Basel), 2020, 11(8):857. [75] NÚÑEZ-ACUÑA G, VALENZUELA-MUÑOZ V, VALENZUELA-MIRANDA D, et al. Comprehensive transcriptome analyses in sea louse reveal novel delousing drug responses through MicroRNA regulation[J]. Mar Biotechnol (NY), 2021, 23(5):710-723. |
[1] | ZHANG Wei, PAN Zhihao, FANG Fugui. Advances in Epigenetic Regulation of the Onset of Puberty in Female Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1875-1882. |
[2] | ZHENG Rui, LIU Zishi, ZHANG Kangyou, YAN Yong, WEI Ling, ZEREN Wengmu, DINGZE Demi, HUANG Jianjun, WANG Li, WEI Yong. Isolation, Identification and Biological Characterization of Colletotrichum jasminigenum in Stems of Peanuts [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2206-2213. |
[3] | LIU Weiye, HUANG Xuewei. Research Progress of Non-coding RNA in Infectious Bursal Disease Virus Infection [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1488-1498. |
[4] | ZHANG Shaohua, WANG Shuai, ZOU Yang, LIU Zhongli, CAI Xuepeng. Advances in Detection Approaches for Ovine Haemonchosis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1499-1510. |
[5] | LIU Xinhuan, YUN Jialei, MAO Li, LI Jizong, HAO Fei, HE Miaofeng, YANG Leilei, ZHANG Wenwen, CHENG Zilong, SUN Min, LIU Maojun, WANG Shaohui, BAI Juan, LI Wenliang. Isolation, Identification, Virulence Genes and Drug Resistance Analysis of Escherichia coli Isolated from Diarrheal Goat and Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3445-3454. |
[6] | ZHAO Feifei, LI Jie, HAN Ning, XIE Shiting, ZENG Zhenling. Antibacterial Drug Resistance Analysis of Klebsiella pneumoniae Isolated from Slaughterhouse [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 3044-3053. |
[7] | JIN Meilin, LI Taotao, SUN Dongxiao, WEI Caihong. Research Progress of Epigenetic Regulation in Fat Deposition Mechanism of Livestock and Poultry [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 855-867. |
[8] | Lü Ruoyi, SI Xiaohui, SUN Zhigang, SHI Xiaomin, LIU Xiaoye. Drug Resistance Situation of Streptococcus suis and Prevention Measures of Infections [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 4920-4933. |
[9] | WANG Jianing, ZHANG Ziqiang, KONG Dejing, FENG Caicai, ZHANG Feike, LIU Yumei. Isolation and Identification of Klebsiella pneumoniae in Rabbits [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 5198-5206. |
[10] | MA Ziming, GUO Xingru, DAI Tianshu, WEI Shihao, SHI Yuangang, DAN Xingang. Research Progress on Regulatory Mechanism of Cattle Uterine Involution and Methods of Promoting Uterine Involution [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 58-68. |
[11] | XIE Xinran, ZHANG Yue, LU Mingmin, XU Lixin, SONG Xiaokai, LI Xiangrui, YAN Ruofeng. Effects of Recombinant Phosphatidylinositol Transfer Protein from Haemonchus contortus on the Transcription of Pattern Recognition Receptors and Cytokines in Goat Peripheral Blood Mononuclear Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 252-262. |
[12] | ZHANG Kaichuan, WANG Jinyu, LI Shoujun, JIA Kun. Isolation, Identification and Biological Characteristics of Klebsiella pneumoniae from Sheep in Guangdong Province [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 328-337. |
[13] | TONG Panpan, HUANG Shunmin, WANG Yudan, SHI Xuhui, CHEN Wenxia, SONG Xinlong, ZHANG Yi, SU Zhanqiang, XIE Jinxin. Phylogenetic Clustering, Serotype and Drug Resistance Analysis of Escherichia coli from Diarrhea with Piglets in Xinjiang [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 414-420. |
[14] | LIANG Gaoxing, RONG Shiqi, WANG Junwei, LI Yuan, YANG Xin, ZHAO Guanghui, SONG Junke. Multi-locus Gene Sequence Analysis of Female Haemonchus contortus with Morphological Differences in Vulval Flap from Goat [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 3140-3148. |
[15] | YU Yongfeng, QUAN Heng, DONG Wenhao, ZOU Ronghua, WU Xiaoni, GONG Xiaowei, CHEN Qiwei. The Mechanism of Two-component Regulatory System Mediating Drug Resistance of Gram-negative Bacteria [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(6): 1689-1701. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||