

Acta Veterinaria et Zootechnica Sinica ›› 2022, Vol. 53 ›› Issue (6): 1877-1885.doi: 10.11843/j.issn.0366-6964.2022.06.021
• PREVENTIVE VETERINARY MEDICINE • Previous Articles Next Articles
ZHANG Ting, YANG Bo, CUI Huimei, YUAN Xingguo, ZHAO Dengshuai, YANG Jinke, HAO Yu, CHEN Xuehui, YAN Wenqian, SHEN Chaochao, SHI Xijuan, ZHANG Dajun, YANG Xing, LIU Xiangtao, ZHENG Haixue*, ZHANG Keshan*
Received:2021-08-26
Online:2022-06-23
Published:2022-06-25
CLC Number:
ZHANG Ting, YANG Bo, CUI Huimei, YUAN Xingguo, ZHAO Dengshuai, YANG Jinke, HAO Yu, CHEN Xuehui, YAN Wenqian, SHEN Chaochao, SHI Xijuan, ZHANG Dajun, YANG Xing, LIU Xiangtao, ZHENG Haixue, ZHANG Keshan. Establishment and Preliminary Application of MA-104 Cell Line Overexpressing African Swine Fever Virus D1133L Protein[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(6): 1877-1885.
| [1] | TULMAN E R, DELHON G A, KU B K, et al. African swine fever virus[M]//VAN ETTEN J L. Lesser Known Large dsDNA Viruses. Berlin: Springer, 2009: 43-87. |
| [2] | TEKLUE T, SUN Y, ABID M, et al. Current status and evolving approaches to African swine fever vaccine development[J]. Transbound Emerg Dis, 2020, 67(2): 529-542. |
| [3] | WU K K, LIU J M, WANG L X, et al. Current State of Global African swine fever vaccine development under the prevalence and transmission of ASF in China[J]. Vaccines, 2020, 8(3): 531. |
| [4] | SÁNCHEZ E G, RIERA E, NOGAL M, et al. Phenotyping and susceptibility of established porcine cells lines to African Swine Fever Virus infection and viral production[J]. Sci Rep, 2017, 7(1): 10369. |
| [5] | GÓMEZ-VILLAMANDOS J C, BAUTISTA M J, SÁNCHEZ-CORDÓN P J, et al. Pathology of African swine fever: the role of monocyte-macrophage[J]. Virus Res, 2013, 173(1): 140-149. |
| [6] | RAI A, PRUITT S, RAMIREZ-MEDINA E, et al. Identification of a continuously stable and commercially available cell line for the identification of infectious African swine fever virus in clinical samples[J]. Viruses, 2020, 12(8): 820. |
| [7] | IYER L M, ARAVIND L, KOONIN E V. Common origin of four diverse families of large eukaryotic DNA viruses[J]. J Virol, 2001, 75(23): 11720-11734. |
| [8] | DIXON L K, ISLAM M, NASH R, et al. African swine fever virus evasion of host defences[J]. Virus Res, 2019, 266: 25-33. |
| [9] | YÁÑEZ R J, RODRÍGUEZ J M, BOURSNELL M, et al. Two putative African swine fever virus helicases similar to yeast 'DEAH' pre-mRNA processing proteins and vaccinia virus ATPases D11L and D6R[J]. Gene, 1993, 134(2): 161-174. |
| [10] | CACKETT G, SYKORA M, WERNER F. Transcriptome view of a killer: African swine fever virus[J]. Biochem Soc Trans, 2020, 48(4): 1569-1581. |
| [11] | ALEJO A, MATAMOROS T, GUERRA M, et al. A proteomic atlas of the African swine fever virus particle[J]. J Virol, 2018, 92(23): e01293-18. |
| [12] | DIXON L K, CHAPMAN D A G, NETHERTON C L, et al. African swine fever virus replication and genomics[J]. Virus Res, 2013, 173(1): 3-14. |
| [13] | JIA X X, LIU Y, MENG D M, et al. Screening and identification of Vero cell line to stably express capsid protein of peste des petits ruminants virus[J/OL]. Chinese Journal of Animal Infectious Diseases. (2020-02-12). S.20200211.1624.044.html." target="_blank">http://kns.cnki.net/kcms/detail/31.2031.S.20200211.1624.044.html. (in Chinese)贾雪霞, 刘莹, 孟德梅, 等. 稳定表达小反刍兽疫病毒衣壳蛋白的Vero细胞系的筛选和鉴定[J/OL]. 中国动物传染病学报. (2020-02-12). S.20200211.1624.044.html" target="_blank">http://kns.cnki.net/kcms/detail/31.2031.S.20200211.1624.044.html. |
| [14] | LI Z H, SONG Z A, YANG Z X, et al. Construction of BHK-21 cell line stably expressing VP6 protein of Bluetongue virus[J]. Journal of Agricultural Biotechnology, 2021, 29(4): 780-788. (in Chinese)李占鸿, 宋子昂, 杨振兴, 等. 稳定表达蓝舌病病毒VP6蛋白的BHK-21细胞系构建[J]. 农业生物技术学报, 2021, 29(4): 780-788. |
| [15] | WUDONG G W, WEN Y S, GUO H, et al. Construction of a Marc-145 cell line stably expressing PRRSV GP2 protein[J/OL]. Chinese Journal of Animal Infectious Diseases. (2021-04-27). S.20210427.1447.055.html" target="_blank">http://kns.cnki.net/kcms/detail/31.2031.S.20210427.1447.055.html. (in Chinese)乌东高娃, 温永胜, 郭昊, 等. 稳定表达PRRSV GP2蛋白的Marc-145细胞系的构建[J/OL]. 中国动物传染病学报. (2021-04-27). S.20210427.1447.055.html" target="_blank">http://kns.cnki.net/kcms/detail/31.2031.S.20210427.1447.055.html. |
| [16] | REN T W, QIN N, QUAN D Q, et al. Construction of a Marc-145 cell line stably expressing PRRSV N protein[J]. Chinese Journal of Veterinary Parasitology, 2022, 30(1): 15-19. (in Chinese)任同伟, 覃念, 全东群, 等. 稳定表达PRRSV N蛋白的Marc-145细胞系的构建[J]. 中国动物传染病学报, 2022, 30(1): 15-19. |
| [17] | JIA Y H, LIU W, XU Z K, et al. Construction of BHK-21 cell line stably expressing TIGAR gene and evaluation of its proliferation effect on Newcastle disease virus[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(2): 440-449. (in Chinese)栗永华, 刘伟, 徐智凯, 等. 稳定表达TIGAR基因的BHK-21细胞系的构建及其对新城疫病毒增殖效果的评价[J]. 畜牧兽医学报, 2021, 52(2): 440-449. |
| [18] | HOU J, SHEN C C, ZHANG D J, et al. Gene sequence analysis, protein structure prediction and subcellular localization of African swine fever virus helicase D1133L[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(7): 1953-1962. (in Chinese)侯景, 申超超, 张大俊, 等. 非洲猪瘟病毒解旋酶D1133L基因序列分析、蛋白结构预测及亚细胞定位[J]. 畜牧兽医学报, 2021, 52(7): 1953-1962. |
| [19] | BORCA M V, RAMIREZ-MEDINA E, SILVA E, et al. Development of a highly effective African swine fever virus vaccine by deletion of the I177L gene results in sterile immunity against the current epidemic Eurasia strain[J]. J Virol, 2020, 94(7): e02017-19. |
| [20] | YANG B, ZHANG D J, SHI X J, et al. Construction, identification and analysis of the interaction network of African swine fever virus MGF360-9L with host proteins[J]. Viruses, 2021, 13(9): 1804. |
| [21] | KING D P, REID S M, HUTCHINGS G H, et al. Development of a TaqMan® PCR assay with internal amplification control for the detection of African swine fever virus[J]. J Virol Methods, 2003, 107(1): 53-61. |
| [22] | TEKLUE T, WANG T, LUO Y Z, et al. Generation and evaluation of an African swine fever virus mutant with deletion of the CD2v and UK genes[J]. Vaccines, 2020, 8(4): 763. |
| [23] | PORTUGAL R, GOATLEY L C, HUSMANN R, et al. A porcine macrophage cell line that supports high levels of replication of OURT88/3, an attenuated strain of African swine fever virus[J]. Emerg Microbes Infect, 2020, 9(1): 1245-1253. |
| [24] | RAI A, PRUITT S, RAMIREZ-MEDINA E, et al. Detection and quantification of African swine fever virus in MA-104 cells[J]. Bio-protocol, 2021, 11(6): e3955. |
| [25] | WANG T, WANG L, HAN Y, et al. Adaptation of African swine fever virus to HEK293T cells[J]. Transbound Emerg Dis, 2021, 68(5): 2853-2866. |
| [26] | RODRIGUEZ J M, SALAS M L, SANTARÉN J F. African swine fever virus-induced polypeptides in porcine alveolar macrophages and in Vero cells: two-dimensional gel analysis[J]. Proteomics, 2001, 1(11): 1447-1456. |
| [27] | ZHAO D M, LIU R Q, ZHANG X F, et al. Replication and virulence in pigs of the first African swine fever virus isolated in China[J]. Emerg Microbes Infect, 2019, 8(1): 438-447. |
| [28] | TABARÉS E, OLIVARES I, SANTURDE G, et al. African swine fever virus DNA: deletions and additions during adaptation to growth in monkey kidney cells[J]. Arch Virol, 1987, 97(3-4): 333-346. |
| [29] | MONTEAGUDO P L, LACASTA A, LÓPEZ E, et al. BA71ΔCD2: a new recombinant live attenuated African swine fever virus with cross-protective capabilities[J]. J Virol, 2017, 91(21): e01058-17. |
| [30] | KRUG P W, HOLINKA L G, O'DONNELL V, et al. The progressive adaptation of a Georgian isolate of African swine fever virus to Vero cells leads to a gradual attenuation of virulence in swine corresponding to major modifications of the viral genome[J]. J Virol, 2015, 89(4): 2324-2332. |
| [31] | BORCA M V, RAI A, RAMIREZ-MEDINA E, et al. A cell culture-adapted vaccine virus against the current African swine fever virus pandemic strain[J]. J Virol, 2021, 95(14): e0012321. |
| [1] | ZHOU Yang, WU Weizi, CAO Weisheng, WANG Fuguang, XU Xiuqiong, ZHONG Wenxia, WU Liyang, YE Jian, LU Shousheng. A Whole Genome Sequencing Method for African Swine Fever Virus based on Nanopore Sequencing Technology was Established [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2080-2089. |
| [2] | LUO Ting, HAN Zhu, XU Yefen, CAI Lin, SUOLANG Sizhu, XU Jinhua, NIU Jiaqiang. Whole Genome Sequencing and Sequence Analysis on T10 of Mycoplasma bovis Strain from Yaks in Xizang [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2154-2167. |
| [3] | JING Yang, WANG Yumiao, LI Yang, CHANG Hui, MA Zhiqian, LI Zhiwei, XIAO Shuqi. Construction of MARC-145ORF6 Cell Line Stably Overexpressing PRRSV M Protein and Its Effect on PRRSV Proliferation [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1159-1169. |
| [4] | YAN Wenqian, HOU Jing, YANG Jinke, HAO Yu, YANG Xing, SHI Xijuan, ZHANG Dajun, BIE Xintian, CHEN Guohui, CHEN Lingling, HE Lu, ZHAO Meiyu, ZHAO Siyue, ZHENG Haixue, ZHANG Keshan. Monoclonal Antibody against D1133 L Protein of African Swine Fever Virus Inhibits Its Replication [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 854-859. |
| [5] | LIU Chuanxia, WANG Xiao, LI Xuewen, BAO Miaofei, LI Tingting, CHEN Xin, WENG Changjiang, ZHENG Jun. Preparation of Monoclonal Antibody of African Swine Fever Virus pE120R [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 388-394. |
| [6] | FENG Yongzhi, GONG Ting, WU Dongdong, GAO Qi, ZHENG Xiaoyu, ZHANG Guihong, SUN Yankuo. Analysis of Factors Affecting the Infectivity of African Swine Fever Virus on Cultured Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3406-3414. |
| [7] | LIU Taoxue, SU Bingqian, QI Yanli, GUO Jiangtao, LIU Zhonghu, CHU Beibei, WANG Jiang, ZENG Lei. Preparation of the Monoclonal Antibody against the African Swine Fever Virus p30 Protein and Identification of the Antigenic Epitope [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3415-3423. |
| [8] | DING Xiaoyan, HE Jiuxiang, ZHOU Xiaoyang, ZHOU Yuxin, LI Jintao. Preliminary Identification of Host Regulatory Genes and Virulence Genes during African Swine Fever Virus Infection [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2964-2971. |
| [9] | WANG Ying, ZHU Jiahong, ZHAO Jiakai, JI Pinpin, CHEN Xu, ZHANG Lu, LIU Baoyuan, SUN Yani, ZHAO Qin. Screening and Identification of Nanobodies against NP419L Protein of African Swine Fever Virus and Its Preliminary Application of Antibody Detection [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2509-2520. |
| [10] | LIU Wenhao, ZHU Yance, ZHANG Dongxuan, WANG Zhihao, ZHANG Chao. Construction of PK 15 Cell Line Stably Expressing African Swine Fever Virus E165R Protein [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2662-2666. |
| [11] | WANG Guochao, ZHAO Yaru, ZHANG Zhonghui, ZHANG Yulong, BAI Ge, GENG Shuxian, FAN Jie, YANG Jifei, GUAN Guiquan, YIN Hong, LUO Jianxun, NIU Qingli. Bioinformatics Analysis of RNA Polymerase Subunit D205R Gene of African Swine Fever Virus and Polyclonal Antibody Preparation [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 2042-2049. |
| [12] | ZHANG Ting, FENG Tao, YANG Jinke, HAO Yu, YANG Xing, ZHANG Dajun, SHI Xijuan, YAN Wenqian, CHEN Lingling, LIU Xiangtao, ZHENG Haixue, ZHANG Keshan. Construction and Growth Characteristics of Recombinant African Swine Fever Virus with Conditional Deletion of D1133L Gene [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 706-714. |
| [13] | ZHANG Fangyuan, YANG Dawei, QIU Deyang, JIANG Guoqian, LI Guimei, SHAN Hu. Expression of ASFV P30 Protein and Development of ASFV Antibody Detection Method Based on x-MAP Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4300-4310. |
| [14] | QI Yanli, LIU Taoxue, YU Haishen, ZHANG Chao, LU Weifei, WANG Jiang, CHU Beibei, ZHANG Gaiping. Preparation of the Monoclonal Antibody against the African Swine Fever Virus p54 Protein and Identification of the Antigenic Epitope [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 281-292. |
| [15] | WANG Yang, CUI Shuai, XIN Ting, WANG Xixi, YU Hainan, CHEN Shiyu, JIANG Yajun, GAO Xintao, PANG Zhongbao, JIANG Yitong, GUO Xiaoyu, JIA Hong, ZHU Hongfei. ASFV MGF360-14L Interacts with MAVS and Inhibit the Expression of Type Ⅰ Interferon [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 3272-3278. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||