Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (8): 3773-3786.doi: 10.11843/j.issn.0366-6964.2025.08.019
• Animal Genetics and Breeding • Previous Articles Next Articles
FAN Jing1, LI Wei1, ZHU Yan2, Wudubala 1, SHI Jiahui2, Husile 2,*, WU Jianghong1,*
Received:
2025-01-16
Online:
2025-08-23
Published:
2025-08-28
Contact:
Husile , WU Jianghong
CLC Number:
FAN Jing, LI Wei, ZHU Yan, Wudubala , SHI Jiahui, Husile , WU Jianghong. Study on Rumen Morphological Changes and Gene Expression Differences in Hu Sheep at Different Developmental Stages[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3773-3786.
Table 2
qRT-PCR primers information"
基因 Gene | 登录号 Accession number | 引物序列(5′→3′) Primer sequence | 产物大小/bp Size | 退火温度/℃ Annealing temperature |
PRDM1 | XM_004011238.5 | F: CACCACTTCATTGATGGCTTTA | 146 | 60 |
R: TTGGCAGGGATGGGCTTA | ||||
PRDM10 | XM_042237978.1 | F: TTCAAGTGCCGCCTCTGC | 134 | 60 |
R: TCACGGTTGGGCTTTATG | ||||
PRDM11 | XM_042233404.2 | F: GATGGTGACGGTGGTGAA | 146 | 60 |
R: TTTTGGGCATGATGAGGT | ||||
HDAC2 | XM_004011189.4 | F: TTATTACTACGGACAGGG | 125 | 58 |
R: CTTCAGCAGTGGCTTTAT | ||||
LOC101122351 | XM_027968888.2 | F: CCCTGCTTCTGATTCTTTG | 110 | 60 |
R: CTCTTCACTCCCGTCTATTT | ||||
SH3RF2 | XM_004008919.5 | F: TCAAGAAACAGCAGCGAGAA | 170 | 63 |
R: CGGTGGGCGAACAAGATG | ||||
IGF1 | NM_001009774.3 | F: AATCAGCAGTCTTCCAACCCAA | 120 | 62 |
R: AAGGCGAGCAAGCACAGG | ||||
SLC16A1 | XM_046946303.1 | F: ACCAGTTTTAGGTCGTCTCA | 207 | 60 |
R: GGCTTCTCAGCAACATCTACA | ||||
β-Actin | NM_001009784.3 | F: TGGACTTCGAGCAGGAGATG | 139 | 60 |
R: AGGAAGGAAGGCTGGAAGAG |
Table 3
Effects of different developmental stages on the morphology of lamb rumen papillae"
项目 Item | 胚胎期 Embryonic period | 胎儿期 Fetal period | 新生期 Newborn period | 成熟期 Mature period |
乳头长度/mm Nipple length | 0.09±0.001Cc | 0.13±0.003Cc | 0.32±0.008Bb | 2.46±0.027Aa |
乳头宽度/mm Nipple width | 0.03±0.003Cd | 0.06±0.003Bc | 0.08±0.004Bb | 0.71±0.007Aa |
乳头密度/(个·cm-2) Nipple density | 471.33±4.097Aa | 394.67±3.180Bb | 292.67±2.428Cc | 42.67±2.603Dd |
乳头表面积/(mm2·cm-2) Nipple surface area | 2.37±0.142Bb | 6.47±0.183Bb | 16.70±0.177Bb | 148.48±9.84Aa |
总厚度/μm Total thickness | 30.86±0.820Dd | 50.78±1.066Cc | 70.55±1.676Bb | 247.60±2.52Aa |
角质层/μm Stratum corneum | 4.52±0.366Bc | 8.19±0.189Bb | 9.11±0.166Bb | 41.82±1.477Aa |
颗粒层/μm Granular layer | 8.47±0.303Cc | 13.83±1.138Bb | 16.28±0.263Bb | 68.60±1.168Aa |
棘层和颗粒层/μm Spinous layer and granular layer | 17.94±0.511Dd | 28.76±0.382Cc | 45.16±1.517Bb | 137.18±1.07Aa |
Table 4
Statistical analysis of transcriptome sequencing data of rumen tissues in lambs at different developmental stages"
样本名 Sample | 高质量序列/Mb Clean read | 高质量碱基数/Gb Clean base | Q20/% | Q30/% | GC/% |
ER1 | 21.67 | 6.33 | 97.51 | 93.13 | 50.78 |
ER2 | 22.96 | 6.68 | 97.35 | 92.65 | 50.56 |
ER3 | 22.07 | 6.44 | 97.60 | 93.30 | 51.52 |
ER4 | 21.75 | 6.36 | 96.75 | 90.97 | 50.05 |
ER5 | 20.99 | 6.14 | 96.62 | 90.56 | 49.81 |
LR1 | 21.01 | 6.15 | 96.61 | 90.58 | 49.70 |
LR2 | 21.28 | 6.22 | 96.69 | 90.70 | 50.74 |
LR3 | 23.22 | 6.80 | 96.65 | 90.60 | 49.86 |
LR4 | 22.98 | 6.72 | 96.87 | 91.38 | 50.46 |
LR5 | 21.19 | 6.21 | 96.71 | 90.85 | 50.32 |
FR1 | 22.66 | 7.12 | 97.25 | 92.70 | 48.20 |
FR2 | 25.55 | 8.00 | 97.09 | 92.28 | 46.51 |
FR3 | 20.56 | 6.46 | 97.00 | 92.02 | 49.01 |
FR4 | 21.13 | 6.64 | 97.65 | 93.40 | 49.05 |
FR5 | 26.50 | 8.31 | 97.41 | 93.13 | 49.33 |
AR1 | 21.34 | 6.24 | 96.79 | 90.96 | 48.22 |
AR2 | 21.66 | 6.34 | 96.95 | 91.39 | 49.23 |
AR3 | 20.18 | 5.90 | 96.80 | 90.96 | 49.08 |
AR4 | 20.40 | 5.97 | 96.74 | 90.87 | 49.94 |
AR5 | 20.92 | 6.12 | 96.45 | 90.10 | 47.59 |
Fig. 2
Comparison of differentially expressed genes among rumen tissues at different developmental stages ER represents the embryonic stage; LR represents the fetal stage; FR represents the neonatal stage; AR represents the mature stage. Figure A-C. Pair-wise comparison of differentially expressed genes among rumen tissues at different developmental stages: The X-axis represents the logarithmic fold change (log2 FC) of gene expression, a positive value indicates up-regulation of genes, while a negative value indicates down-regulation; The Y-axis represents-log10(FDR), reflecting the statistical significance of the differences, the smaller the FDR value, the larger the Y-axis value, indicating that the difference of the gene is more significant. The red dots in the figures represent genes with significant differences (FDR < 0.05). Figure D. Correlation analysis of differentially expressed genes among different rumen tissues"
Table 5
KEGG and GO annotation results"
分类 Category | 编号 ID | 条目 Term | 模块 ME |
脂肪酸代谢相关功能注释Functional annotations related to fatty acid metabolism | |||
BP | GO: 0033539 | 酰基辅酶A脱氢酶介导的脂肪酸β -氧化 | 7 |
BP | GO: 0006635 | 脂肪酸β -氧化 | 7 |
BP | GO: 0019367 | 脂肪酸延长 | 1 |
CC | GO: 0005739 | 线粒体 | 1、7、20 |
CC | GO: 0005783 | 内质网 | 1、4、20 |
CC | GO: 0031410 | 胞质囊泡 | 4、7 |
MF | GO: 0009922 | 脂肪酸延长酶活性 | 1 |
MF | GO: 0070403 | NAD+结合 | 1、4 |
MF | GO: 0004497 | 单加氧酶活性 | 16 |
KEGG | oas01212 | 脂肪酸代谢 | 1、7 |
KEGG | oas00071 | 脂肪酸降解 | 1、7 |
KEGG | oas00062 | 脂肪酸延长 | 1、7 |
KEGG | oas01240 | 辅因子生物合成 | 1、4、7、16 |
KEGG | oas00640 | 丙酸代谢 | 7 |
免疫屏障相关功能注释Functional annotations related to immune barrier | |||
BP | GO: 0071222 | 细胞对脂多糖的应答 | 4 |
BP | GO: 0030855 | 上皮细胞分化 | 4 |
BP | GO: 0050829 | 对革兰氏阴性菌的防御反应 | 4 |
CC | GO: 0031012 | 细胞外基质 | 1、4 |
CC | GO: 0005765 | 溶酶体膜 | 4、16 |
CC | GO: 0008305 | 整合素复合体 | 15 |
MF | GO: 0005149 | 白细胞介素-1受体结合 | 4 |
MF | GO: 0003796 | 溶菌酶活性 | 4 |
MF | GO: 0050839 | 细胞黏附分子结合 | 1 |
KEGG | oas00980 | 细胞色素P450对外源物的代谢 | 1 |
KEGG | oas04520 | 黏着连接 | 1 |
KEGG | oas04530 | 紧密连接 | 4 |
KEGG | oas00480 | 谷胱甘肽代谢 | 1、15 |
KEGG | oas05150 | 金黄色葡萄球菌感染 | 4 |
物质转运相关功能注释Functional annotations related to substance transport | |||
BP | GO: 0006730 | 一碳代谢 | 1、4、15 |
BP | GO: 0055085 | 跨膜运输 | 4 |
BP | GO: 0006814 | 钠离子转运 | 4 |
CC | GO: 0005794 | 高尔基体 | 1 |
CC | GO: 0005922 | 连接蛋白复合体 | 1 |
CC | GO: 0016324 | 顶质膜 | 4 |
MF | GO: 1903763 | 参与电耦联细胞通讯的缝隙连接通道活性 | 1 |
MF | GO: 0005246 | 钙通道调节活性 | 15 |
MF | GO: 0046872 | 金属离子结合 | 1、7、16 |
KEGG | oas04976 | 胆汁分泌 | 1 |
KEGG | oas04978 | 矿物质吸收 | 4 |
KEGG | oas04530 | 紧密连接 | 4 |
KEGG | oas04520 | 黏着连接 | 1 |
KEGG | oas01200 | 碳代谢 | 4 |
Fig. 5
The expression of IGF1 protein in rumen at different developmental stages DAPI in blue, IGF1 in green, and MERGE in merged colors. IGF1 is expressed in the basal and spinous layers of the rumen at embryonic (ER) and fetal (LR) stages, and in the spinous layer at the neonatal stage of the rumen (FR) as the rumen develops, and in the granular layer at the mature stage (AR). Scale bar=100 μm"
Fig. 6
The expression of MCT1 protein in rumen at different developmental stages Blue indicates DAPI, green indicates MCT1, and the merged color is MERGE. MCT1 is expressed in the basal and spinous layers during the embryonic (ER) and fetal (LR) stages. With the development of the rumen, it is expressed in the spinous layer during the neonatal stage, and in the granular layer during the mature stage. Scale bar=100 μm"
1 |
YUAN Y , SUN D M , QIN T , et al. Single-cell transcriptomic landscape of the sheep rumen provides insights into physiological programming development and adaptation of digestive strategies[J]. Zool Res, 2022, 43 (4): 634- 647.
doi: 10.24272/j.issn.2095-8137.2022.086 |
2 |
MEALE S J , CHAUCHEYRAS-DURAND F , BERENDS H , et al. From pre-to postweaning: Transformation of the young calf's gastrointestinal tract[J]. J Dairy Sc i, 2017, 100 (7): 5984- 5995.
doi: 10.3168/jds.2016-12474 |
3 |
WU J J , ZHU S L , GU F F , et al. Cross-tissue single-cell transcriptomic landscape reveals the key cell subtypes and their potential roles in the nutrient absorption and metabolism in dairy cattle[J]. J Adv Res, 2022, 37, 1- 18.
doi: 10.1016/j.jare.2021.11.009 |
4 | 李双宏, 张博彦, 张晗, 等. 高精料饲粮对滩羊瘤胃上皮发育及转录组变化的影响[J]. 动物营养学报, 2023, 35 (4): 2651- 2660. |
LI S H , ZHANG B Y , ZHANG H , et al. Effects of high-concentrate diet on rumen epithelium development and transcriptome change of Tan sheep[J]. Chinese Journal of Animal Nutrition, 2023, 35 (4): 2651- 2660. | |
5 |
WANG X J , ZHANG D Y , WANG W M , et al. Transcriptome profiling reveals differential gene expression in the rumen of Hu lambs at different developmental stages[J]. Anim Biotechnol, 2023, 34 (3): 471- 481.
doi: 10.1080/10495398.2021.1975728 |
6 |
ZHANG J Z , DEQING Z G , ZHANG X Q , et al. Different feeding strategies can affect growth performance and rumen functions in Gangba sheep as revealed by integrated transcriptome and microbiome analyses[J]. Front Microbiol, 2022, 13, 908326.
doi: 10.3389/fmicb.2022.908326 |
7 |
SHA Y Z , HE Y Y , LIU X , et al. Rumen epithelial development-and metabolism-related genes regulate their micromorphology and VFAs mediating plateau adaptability at different ages in Tibetan sheep[J]. Int J Mol Sci, 2022, 23 (24): 16078.
doi: 10.3390/ijms232416078 |
8 |
XIANG R , ODDY V H , ARCHIBALD A L , et al. Epithelial, metabolic and innate immunity transcriptomic signatures differentiating the rumen from other sheep and mammalian gastrointestinal tract tissues[J]. PeerJ, 2016, 4, e1762.
doi: 10.7717/peerj.1762 |
9 |
HONG L Y , LIANG H , MAN W Q , et al. Estrogen and bacterial infection[J]. Front Immunol, 2025, 16, 1556683.
doi: 10.3389/fimmu.2025.1556683 |
10 | EVANGELISTA DE LIMA TERCEIRO. Delineating the role of prolactin-inducible protein (Pip) in breast cancer lung metastasis[D]. Manitoba: University of Manitoba, 2023. |
11 |
FALCIONI R , ANTONINI A , NISTICÒ P , et al. α6β4 and α6β1 integrins associate with ErbB-2 in human carcinoma cell lines[J]. Exp Cell Res, 1997, 236 (1): 76- 85.
doi: 10.1006/excr.1997.3695 |
12 |
YU X , MIYAMOTO S , MEKADA E . Integrin α2β1-dependent EGF receptor activation at cell-cell contact sites[J]. J Cell Sci, 2000, 113 (12): 2139- 2147.
doi: 10.1242/jcs.113.12.2139 |
13 |
ODONGO N , ALZAHAL O , LINDINGER M , et al. Effects of mild heat stress and grain challenge on acid-base balance and rumen tissue histology in lambs[J]. J Anim Sci, 2006, 84 (2): 447- 455.
doi: 10.2527/2006.842447x |
14 |
MALHI M , GUI H , YAO L , et al. Increased papillae growth and enhanced short-chain fatty acid absorption in the rumen of goats are associated with transient increases in cyclin D1 expression after ruminal butyrate infusion[J]. J Dairy Sci, 2013, 96 (12): 7603- 7616.
doi: 10.3168/jds.2013-6700 |
15 |
PATRO R , DUGGAL G , LOVE M I , et al. Salmon provides fast and bias-aware quantification of transcript expression[J]. Nat Methods, 2017, 14 (4): 417- 419.
doi: 10.1038/nmeth.4197 |
16 |
HAAS B J , PAPANICOLAOU A , YASSOUR M , et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis[J]. Nat Protoc, 2013, 8 (8): 1494- 1512.
doi: 10.1038/nprot.2013.084 |
17 | LANGFELDER P , HORVATH S . Fast R functions for robust correlations and hierarchical clustering[J]. J Stat Softw, 2012, 46 (11): i11. |
18 |
ROBERTSON D , SAVAGE K , REIS-FILHO J S , et al. Multiple immunofluorescence labelling of formalin-fixed paraffin-embedded (FFPE) tissue[J]. BMC Cell Biol, 2008, 9, 1- 10.
doi: 10.1186/1471-2121-9-1 |
19 |
LI D P , LIU Z J , DUAN X M , et al. Rumen development of Tianhua Mutton sheep was better than that of gansu alpine fine wool sheep under grazing conditions[J]. Animals, 2024, 14 (9): 1259.
doi: 10.3390/ani14091259 |
20 |
LEITE E R , CONDE JÚNIOR A M , FONSECA C M B , et al. Impact of feeding native Caatinga pasture on the rumen histomorphometry of sheep raised in semi-extensive management[J]. Anat Histol Embryol, 2024, 53 (2): e13029.
doi: 10.1111/ahe.13029 |
21 |
XIANG R , MCNALLY J , ROWE S , et al. Gene network analysis identifies rumen epithelial cell proliferation, differentiation and metabolic pathways perturbed by diet and correlated with methane production[J]. Sci Rep, 2016, 6 (1): 39022.
doi: 10.1038/srep39022 |
22 | 李科南. 初始补饲苜蓿时间和日龄对湖羊羔羊生长和瘤胃发育的影响及其机制研究[D]. 呼和浩特: 内蒙古农业大学, 2024. |
LI K. Study on the effects and mechanism of initial alfalfa supplementation time and age on growth and rumen development of Hu sheep lambs[D]. Hohhot: Inner Mongolia Agricultural University, 2024. (in Chinese) | |
23 | 马学义, 李乔, 祁成虎, 等. 花椒籽对湖羊羔羊生产性能, 内脏器官指数和瘤胃组织形态发育的影响[J]. 甘肃农业大学学报, 2024, 59 (5): 1- 9. |
MA X Y , LI Q , QI C H , et al. Effects of Zanthoxylum bungeanum seeds on growth performance, visceral organ indices, and rumen tissue morphological development in Hu sheep lambs[J]. Journal of Gansu Agricultural University, 2024, 59 (5): 1- 9. | |
24 | 周广琛. 基于剩余采食量探究宿主及胃肠道微生物对绵羊饲料利用效率的影响机制[D]. 咸阳: 西北农林科技大学, 2024. |
ZHOU G C. Exploring the influence mechanism of host and gastrointestinal microbiota on feed utilization efficiency in sheep based on residual feed intake[D]. Xianyang: Northwest A & F University, 2024. (in Chinese) | |
25 |
THOMPSON G E . Circulating prolactin levels in the newborn lamb[J]. J Dairy Res, 1993, 60 (2): 255- 258.
doi: 10.1017/S0022029900027576 |
26 | URBANIAK A , JABLONSKA K , PODHORSKA-OKOLOW M , et al. Prolactin-induced protein (PIP)-characterization and role in breast cancer progression[J]. Am J Cancer Res, 2018, 8 (11): 2150- 2164. |
27 | FREY M R , BRENT POLK D . ErbB receptors and their growth factor ligands in pediatric intestinal inflammation[J]. Pediatr Res, 2014, 75 (1): 127- 132. |
28 |
YANG C L , LAN W , YE S J , et al. Transcriptomic analyses reveal the protective immune regulation of conjugated linoleic acids in sheep ruminal epithelial cells[J]. Front Physiol, 2020, 11, 588082.
doi: 10.3389/fphys.2020.588082 |
29 |
LUO N J , CHENG W Q , ZHOU Y M , et al. Screening candidate genes regulating placental development from trophoblast transcriptome at early pregnancy in Dazu Black goats (Capra hircus)[J]. Animals, 2021, 11 (7): 2132.
doi: 10.3390/ani11072132 |
30 |
HU R , ZOU H W , WANG Z S , et al. Nutritional interventions improved rumen functions and promoted compensatory growth of growth-retarded yaks as revealed by integrated transcripts and microbiome analyses[J]. Front Microbiol, 2019, 10, 318.
doi: 10.3389/fmicb.2019.00318 |
31 | GEBEYEW K , MI H , LIU Y , et al. Differential immunological responses in lamb rumen and colon to alfalfa hay and wheat straw in a concentrate-rich diet: insights into microbe-host interactions[J]. mSystems, 2024, 9 (10): e00483- 24. |
32 |
GARCIA M , BRADFORD B , NAGARAJA T . Invited review: ruminal microbes, microbial products, and systemic inflammation[J]. Prof Anim Sci, 2017, 33 (6): 635- 650.
doi: 10.15232/pas.2017-01663 |
33 |
LANE M , JESSE B . Effect of volatile fatty acid infusion on development of the rumen epithelium in neonatal sheep[J]. J Dairy Sci, 1997, 80 (4): 740- 746.
doi: 10.3168/jds.S0022-0302(97)75993-9 |
34 |
BALDWIN VI R L , LIU M , CONNOR E E , et al. Transcriptional reprogramming in rumen epithelium during the developmental transition of pre-ruminant to the ruminant in cattle[J]. Animals, 2021, 11 (10): 2870.
doi: 10.3390/ani11102870 |
35 |
YANG B , CHEN H W , CAO J W , et al. Transcriptome analysis reveals that alfalfa promotes rumen development through enhanced metabolic processes and calcium transduction in Hu lambs[J]. Front Genet, 2019, 10, 929.
doi: 10.3389/fgene.2019.00929 |
36 |
YANG W X , SHA Y Z , CHEN X W , et al. Effects of the interaction between rumen microbiota density-VFAs-hepatic gluconeogenesis on the adaptability of Tibetan sheep to plateau[J]. Int J Mol Sci, 2024, 25 (12): 6726.
doi: 10.3390/ijms25126726 |
37 |
SUN D M , YIN Y Y , GUO C Z , et al. Transcriptomic analysis reveals the molecular mechanisms of rumen wall morphological and functional development induced by different solid diet introduction in a lamb model[J]. J Anim Sci Biotechnol, 2021, 12, 1- 15.
doi: 10.1186/s40104-020-00531-5 |
38 |
GÄBEL G , ASCHENBACH J , MVLLER F . Transfer of energy substrates across the ruminal epithelium: implications and limitations[J]. Anim Health Res Rev, 2002, 3 (1): 15- 30.
doi: 10.1079/AHRR200237 |
39 |
BENESCH F , DENGLER F , MASUR F , et al. Monocarboxylate transporters 1 and 4:expression and regulation by PPARα in ovine ruminal epithelial cells[J]. Am J Physiol Regul Integr Comp Physiol, 2014, 307 (12): R1428- R1437.
doi: 10.1152/ajpregu.00408.2013 |
40 | 姜茂成. MCT1介导高谷物日粮调控泌乳奶牛瘤胃SCFAs吸收机制的研究[D]. 扬州: 扬州大学, 2024. |
JIANG M C. Study on the mechanism of MCT1-mediated regulation of short-chain fatty acids (SCFAs) absorption in the rumen of lactating cows fed a high-grain diet[D]. Yangzhou: Yangzhou University, 2024. (in Chinese) |
[1] | Xiaoxu ZHANG, Hao LI, Pingjie FENG, Hao YANG, Xinyue LI, Ran LÜ, Zhangyuan PAN, Mingxing CHU. Application of Single-Cell Transcriptome Sequencing Technology in Domesticated Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3276-3287. |
[2] | Mingliang HE, Xiaoyang LÜ, Yongqing JIANG, Zhenghai SONG, Yeqing WANG, Huiguo YANG, Shanhe WANG, Wei SUN. Function Analysis of SOX18 in Hu Sheep Hair Follicle Dermal Papilla Cells Based on Transcriptome Sequencing [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2409-2420. |
[3] | WANG Xin, NIE Tong, LI Aqun, MA Jun. Hesperidin Alleviates High-fat-diet Induced Hepatic Oxidative Stress in Mice via Oxidative Phosphorylation Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1302-1313. |
[4] | MIN Xiangyu, WEI Jiali, XU Biao, LIU Huitao, ZHENG Junjun, WANG Guiwu. Full-length Transcriptome Sequencing of Sika Deer Antler and Mining of Antler Yield-related Genes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12): 5549-5566. |
[5] | HU Ting, ZHANG Yonghong, HOU Xiaolin, YAO Hua, CUI Defeng, PAN Zaozao, ZHANG Lingyu, ZHANG Jiaxi, WU Qiong. The Effects of Bisphenol A on Inflammation and Amino Acid Metabolism Pathways in Porcine Testis Sertoli Cells Based on Transcriptome Analysis [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2858-2871. |
[6] | SUN Meijie, CAO Liwen, ZHENG Wenjin, SHEN Junshi, ZHU Weiyun. Effect of Dietary Urea Supplementation on Liver Ammonia Metabolism in Fattening Hu Lambs Based on Transcriptome Sequencing [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1148-1159. |
[7] | LIU Yuanyi, LI Xinyu, Bayinnamula, CUI Fang, MANG Lai, DU Ming. Single-Cell Transcriptome Sequencing Technology and its Application in Animal Reproduction [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 421-433. |
[8] | LI Xiaobo, LIU Zhanfa, LIU Yue, CHEN Qian, MA Yuehui, ZHAO Qianjun, YE Shaohui. Mining Genes Related to Wool Bending of Zhongwei Goat Based on WGCNA and GSEA [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 2930-2943. |
[9] | MAO Yanni, CHANG Jiawei, LI Na, WANG Xin, KANG Xinyun, MA Qiang, MA Liang, WANG Guiqin. Transcriptome Differential Expression Analysis of Staphylococcus aureus in Biofilm State and Planktonic State [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2697-2707. |
[10] | LUO Jinhong, CHEN Xiang, SHANG Yishun, AO Ye, LI Pengcheng. Transcriptome Sequencing Screening the Genes Related to Goat Embryo Attachment in Early Pregnancy [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(5): 1465-1474. |
[11] | WANG Luyao, HAO Xuepiao, LEI Baishi, ZHAO Kuan, ZHANG Wuchao, YUAN Wanzhe. Differential Expression of Transcriptome in Liver, Thymus and Ileum of Ducks Infected with Novel Goose Parvovirus [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(2): 654-657. |
[12] | LI Jie, ZHAO Ruipeng, CHEN Chuwen, YANG Chaowu, WU Jinbo, LI Zhixiong. Screening of the Differentially Expressed mRNA and lncRNA and the Construction of Their Competitive Regulatory Network in Embryonic Leg Muscles of Different Chicken Breeds [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(12): 4207-4220. |
[13] | TIAN Yaqing, CUI Lixin, HAO Haisheng, ZOU Huiying, PANG Yunwei, ZHAO Xueming, ZHU Huabin, DU Weihua. Effects of ASH1L Knockdown on mRNA Profiling in Bovine Cumulus Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(1): 151-160. |
[14] | LI Zhixiong, XU Yaou, LIN Yaqiu, YANG Chaowu, YU Chunlin, WU Jinbo, CHEN Ling. Effect of miR-499-5p Injection on Transcriptome in Gastrocnemius Muscle of Broiler [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(9): 2098-2108. |
[15] | PAN Yong, LIU Lijuan, YANG Yang, LI Chen, MA Guangqiang, YANG Qi. Prediction and Validation of Small RNA GcvB Target Gene of Salmonella Typhimurium [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(4): 894-898. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||