Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (9): 3887-3896.doi: 10.11843/j.issn.0366-6964.2024.09.014
• Animal Genetics and Breeding • Previous Articles Next Articles
Xiangchen LI(), Linnan WANG, Zhengqing YU, Li ZHANG, Chenchen YANG, Liangli SONG*()
Received:
2024-02-18
Online:
2024-09-23
Published:
2024-09-27
Contact:
Liangli SONG
E-mail:lixiangchen199906@163.com;sll2019@nxu.edu.cn
CLC Number:
Xiangchen LI, Linnan WANG, Zhengqing YU, Li ZHANG, Chenchen YANG, Liangli SONG. Quercetin Inhibits Autophagy to Restore LTA-induced Tight Junction Function in Mammary Alveolar Cells-large T Antigen[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3887-3896.
Fig. 1
The effects of LTA and quercetin on the viability of MAC-T cells A. The effect of different concentrations of LTA on cell viability; B. The effect of different concentrations of quercetin on cell viability. *. P < 0.05 indicates a significant difference, **. P < 0.01 indicates an extremely significant difference, the same as below"
Fig. 3
The effects of quercetin on the expression of tight junction and autophagy-related proteins induced by LTA in MAC-T cells A, B. The expression results of tight junction proteins; C, D. The expression results of autophagy-related proteins; E-G. The immunofluorescence results of tight junction proteins ZO-1, Occludin, and Claudin-1; H. The immunofluorescence results of autophagy protein LC3, scale bar=50 μm. "#" indicates significant difference compared to the control group, with #P < 0.05 indicating significant difference and ##P < 0.01 indicating extremely significant difference. "*" indicates significant difference compared to the LTA group, with *P < 0.05 indicating significant difference and **P < 0.01 indicating extremely significant difference"
Fig. 4
The action mechanism of quercetin on the tight junction function induced by LTA in MAC-T cells A, B. The expression results of tight junction proteins; C, D. The expression results of autophagy proteins. "#" indicates a significant difference compared to the control group, where "#P < 0.05" indicates significant difference, and "##P < 0.01" indicates extremely significant difference. "*" indicates a significant difference compared to the LTA group, where" *P < 0.05" indicates significant difference, and " **P < 0.01" indicates extremely significant difference"
1 |
ZIGO F , VASIL' M , ONDRAŠOVIČOVÁ S , et al. Maintaining optimal mammary gland health and prevention of mastitis[J]. Front Vet Sci, 2021, 8, 607311.
doi: 10.3389/fvets.2021.607311 |
2 | 孙雅君. 奶牛乳腺炎源金黄色葡萄球菌耐药性相关基因的检测与耐药菌株表型异质性分析[D]. 杨凌: 西北农林科技大学, 2021. |
SUN Y J. Resistance-related genes in Staphylococcus aureus from bovine mastitis and phenotypic heterogeneity in the resistant isolate[D]. Yangling: Northwest A & F University, 2021. (in Chinese) | |
3 | 郭上朝. 34味中药对牛源金黄色葡萄球菌耐药性和生物被膜的影响[D]. 秦皇岛: 河北科技师范学院, 2023. |
GUO S C. Effects of 34 traditional Chinese medicines on drug resistance and biofilm of Staphylococcus aureus of bovine origin[D]. Qinhuangdao: Hebei Normal University of Science & Technology, 2023. (in Chinese) | |
4 |
KLEIN R C , FABRES-KLEIN M H , BRITO M A V P , et al. Staphylococcus aureus of bovine origin: genetic diversity, prevalence and the expression of adhesin-encoding genes[J]. Vet Microbiol, 2012, 160 (1-2): 183- 188.
doi: 10.1016/j.vetmic.2012.05.025 |
5 |
RANA E A , FAZAL M A , ALIM M A . Frequently used therapeutic antimicrobials and their resistance patterns on Staphylococcus aureus and Escherichia coli in mastitis affected lactating cows[J]. Int J Vet Sci Med, 2022, 10 (1): 1- 10.
doi: 10.1080/23144599.2022.2038494 |
6 |
ZHU L L , LAI Y X , LI X W , et al. Molecular and epidemiological characterization of Staphylococcus aureus causing bovine mastitis in China[J]. Microb Pathog, 2024, 191, 106640.
doi: 10.1016/j.micpath.2024.106640 |
7 |
BURTCHETT T A , SHOOK J C , HESSE L E , et al. Crucial role for lipoteichoic acid assembly in the metabolic versatility and antibiotic resistance of Staphylococcus aureus[J]. Infect Immun, 2023, 91 (7): e0055022.
doi: 10.1128/iai.00550-22 |
8 |
RAINARD P , GILBERT F B , GERMON P . Immune defenses of the mammary gland epithelium of dairy ruminants[J]. Front Immunol, 2022, 13, 1031785.
doi: 10.3389/fimmu.2022.1031785 |
9 |
LIU M J , SONG S X , LI H R , et al. The protective effect of caffeic acid against inflammation injury of primary bovine mammary epithelial cells induced by lipopolysaccharide[J]. J Dairy Sci, 2014, 97 (5): 2856- 2865.
doi: 10.3168/jds.2013-7600 |
10 |
TSUGAMI Y , SUZUKI N , KAWAHARA M , et al. Establishment of an in vitro culture model to study milk production and the blood-milk barrier with bovine mammary epithelial cells[J]. Anim Sci J, 2020, 91 (1): e13355.
doi: 10.1111/asj.13355 |
11 |
VISSER J , ROZING J , SAPONE A , et al. Tight junctions, intestinal permeability, and autoimmunity: celiac disease and type 1 diabetes paradigms[J]. Ann N Y Acad Sci, 2009, 1165 (1): 195- 205.
doi: 10.1111/j.1749-6632.2009.04037.x |
12 |
WANG Y , LI X R , HAN Z Q , et al. iE-DAP induced inflammatory response and tight junction disruption in bovine mammary epithelial cells via NOD1-dependent NF-κB and MLCK signaling pathway[J]. Int J Mol Sci, 2023, 24 (7): 6263.
doi: 10.3390/ijms24076263 |
13 |
BÄSLER K , BRANDNER J M . Tight junctions in skin inflammation[J]. Pflugers Arch, 2017, 469 (1): 3- 14.
doi: 10.1007/s00424-016-1903-9 |
14 |
DE BENEDETTO A , RAFAELS N M , MCGIRT L Y , et al. Tight junction defects in patients with atopic dermatitis[J]. J Allergy Clin Immunol, 2011, 127 (3): 773- 786.e7.
doi: 10.1016/j.jaci.2010.10.018 |
15 | STELWAGEN K . Effect of milking frequency on mammary functioning and shape of the lactation curve[J]. J Dairy Sci, 2001, 84 Suppl, E204- E211. |
16 |
VAZIRI N D , YUAN J , RAHIMI A , et al. Disintegration of colonic epithelial tight junction in uremia: a likely cause of CKD-associated inflammation[J]. Nephrol Dial Transplant, 2012, 27 (7): 2686- 2693.
doi: 10.1093/ndt/gfr624 |
17 |
KOBAYASHI K , OYAMA S , NUMATA A , et al. Lipopolysaccharide disrupts the milk-blood barrier by modulating claudins in mammary alveolar tight junctions[J]. PLoS One, 2013, 8 (4): e62187.
doi: 10.1371/journal.pone.0062187 |
18 |
AL-SADI R , DHARMAPRAKASH V , NIGHOT P , et al. Bifidobacterium bifidum enhances the intestinal epithelial tight junction barrier and protects against intestinal inflammation by targeting the toll-like receptor-2 pathway in an NF-κB-independent manner[J]. Int J Mol Sci, 2021, 22 (15): 8070.
doi: 10.3390/ijms22158070 |
19 |
秦士贞, 杨敏敏, 任志雄, 等. 枯草芽孢杆菌对脂多糖应激肉仔鸡肠道免疫、肠道组织形态以及肠道屏障的影响[J]. 畜牧兽医学报, 2023, 54 (11): 4676- 4690.
doi: 10.11843/j.issn.0366-6964.2023.11.022 |
QIN S Z , YANG M M , REN Z X , et al. Effects of Bacillus subtilis on intestinal immunity, intestinal tissue morphology and intestinal barrier of broilers challenged with lipopolysaccharide[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (11): 4676- 4690.
doi: 10.11843/j.issn.0366-6964.2023.11.022 |
|
20 | LI Y J , ZHANG P , ZHANG J , et al. Role of autophagy inducers and inhibitors in intestinal barrier injury induced by intestinal ischemia-reperfusion (I/R)[J]. J Immunol Res, 2022, 2022, 9822157. |
21 |
ZHANG C , DENG Y A , ZHANG Y S , et al. CXCR3 Inhibition blocks the NF-κB signaling pathway by elevating autophagy to ameliorate lipopolysaccharide-induced intestinal dysfunction in mice[J]. Cells, 2023, 12 (1): 182.
doi: 10.3390/cells12010182 |
22 |
DENG S W , HU Q , CHEN X Q , et al. GM130 protects against blood-brain barrier disruption and brain injury after intracerebral hemorrhage by regulating autophagy formation[J]. Exp Gerontol, 2022, 163, 111772.
doi: 10.1016/j.exger.2022.111772 |
23 |
BATIHA G E S , BESHBISHY A M , IKRAM M , et al. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: quercetin[J]. Foods, 2020, 9 (3): 374.
doi: 10.3390/foods9030374 |
24 |
XU D , HU M J , WANG Y Q , et al. Antioxidant activities of quercetin and its complexes for medicinal application[J]. Molecules, 2019, 24 (6): 1123.
doi: 10.3390/molecules24061123 |
25 |
SUN W L , SHAHRAJABIAN M H . Therapeutic potential of phenolic compounds in medicinal plants-natural health products for human health[J]. Molecules, 2023, 28 (4): 1845.
doi: 10.3390/molecules28041845 |
26 |
KERANMU A , PAN L B , YU H , et al. The potential biological effects of quercetin based on pharmacokinetics and multi-targeted mechanism in vivo[J]. J Asian Nat Prod Res, 2022, 24 (5): 403- 431.
doi: 10.1080/10286020.2022.2045965 |
27 |
WICIŃSKI M , ERDMANN J , NOWACKA A , et al. Natural phytochemicals as SIRT activators-focus on potential biochemical mechanisms[J]. Nutrients, 2023, 15 (16): 3578.
doi: 10.3390/nu15163578 |
28 |
SULTANA R , MCBAIN A J , O'NEILL C A . Strain-dependent augmentation of tight-junction barrier function in human primary epidermal keratinocytes by Lactobacillus and Bifidobacterium lysates[J]. Appl Environ Microbiol, 2013, 79 (16): 4887- 4894.
doi: 10.1128/AEM.00982-13 |
29 |
BAZZONI G , DEJANA E . Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis[J]. Physiol Rev, 2004, 84 (3): 869- 901.
doi: 10.1152/physrev.00035.2003 |
30 |
SCHWAYER C , SHAMIPOUR S , PRANJIC-FERSCHA K , et al. Mechanosensation of tight junctions depends on ZO-1 phase separation and flow[J]. Cell, 2019, 179 (4): 937- 952.e18.
doi: 10.1016/j.cell.2019.10.006 |
31 | IONESCU POPESCU C , LILIAC L , CEAUŞU R A , et al. CLDN3 expression and significance- breast carcinoma versus ovarian carcinoma[J]. Rom J Morphol Embryol, 2013, 54 (1): 99- 106. |
32 |
高志光, 秦环龙. 肠上皮细胞紧密连接的生物学功能及在肠屏障中的作用[J]. 肠外与肠内营养, 2005, 12 (5): 299- 302.
doi: 10.3969/j.issn.1007-810X.2005.05.014 |
GAO Z G , QIN H L . The biological functions of intestinal epithelial tight junctions and its role in intestinal barrier[J]. Parenteral & Enteral Nutrition, 2005, 12 (5): 299- 302.
doi: 10.3969/j.issn.1007-810X.2005.05.014 |
|
33 | 杨斐, 杨艳红, 张馨月, 等. 细胞连接分子对上皮组织物质转运的调控机制[J]. 生物技术, 2019, 29 (2): 199- 204. |
YANG F , YANG Y H , ZHANG X Y , et al. Regulatory mechanism of cell-linked molecules on epithelial material transport[J]. Biotechnology, 2019, 29 (2): 199- 204. | |
34 |
ITOH M , BISSELL M J . The organization of tight junctions in epithelia: implications for mammary gland biology and breast tumorigenesis[J]. J Mammary Gland Biol Neoplasia, 2003, 8 (4): 449- 462.
doi: 10.1023/B:JOMG.0000017431.45314.07 |
35 |
NGUYEN D A D , NEVILLE M C . Tight junction regulation in the mammary gland[J]. J Mammary Gland Biol Neoplasia, 1998, 3 (3): 233- 246.
doi: 10.1023/A:1018707309361 |
36 | 沈义媛, 童津津, 熊本海, 等. 多组学技术在奶牛瘤胃微生物与宿主互作机制中的研究进展[J]. 中国乳业, 2021, (8): 68- 75. |
SHEN Y Y , TONG J J , XIONG B H , et al. Progress of Multi-omics in interaction mechanism between rumen microorganism and host in dairy cows[J]. China Dairy, 2021, (8): 68- 75. | |
37 | 宋洁. 黄花蒿醇提物缓解LPS诱导奶牛乳腺上皮细胞炎症损伤的作用机制研究[D]. 呼和浩特: 内蒙古农业大学, 2023. |
SONG J. Mechanism of Artemisia annua ethanol extract alleviating LPS-induced inflammatory injury in bovine mammary epithelial cells[D]. Hohhot: Inner Mongolia Agricultural University, 2023. (in Chinese) | |
38 |
CUI Y J , LIU L , DOU X X , et al. Lactobacillus reuteri ZJ617 maintains intestinal integrity via regulating tight junction, autophagy and apoptosis in mice challenged with lipopolysaccharide[J]. Oncotarget, 2017, 8 (44): 77489- 77499.
doi: 10.18632/oncotarget.20536 |
39 |
LI M X , LUO T , HUANG Y , et al. Polysaccharide from Pycnoporus sanguineus ameliorates dextran sulfate sodium-induced colitis via helper T cells repertoire modulation and autophagy suppression[J]. Phytother Res, 2020, 34 (10): 2649- 2664.
doi: 10.1002/ptr.6695 |
40 |
曹璐, 王桃, 陈艳, 等. 槲皮素对LPS诱导小鼠乳腺上皮细胞炎症的保护机制[J]. 农业生物技术学报, 2023, 31 (6): 1218- 1228.
doi: 10.3969/j.issn.1674-7968.2023.06.010 |
CAO L , WANG T , CHEN Y , et al. Protective mechanism of quercetin against LPS-induced inflammation in mouse (Mus musculus) mammary epithelial cells[J]. Journal of Agricultural Biotechnology, 2023, 31 (6): 1218- 1228.
doi: 10.3969/j.issn.1674-7968.2023.06.010 |
|
41 |
ZHENG J Y , XU H , HUANG C L , et al. Quercetin protects against intestinal barrier disruption and inflammation in acute necrotizing pancreatitis through TLR4/MyD88/p38?MAPK and ERS inhibition[J]. Pancreatology, 2018, 18 (7): 742- 752.
doi: 10.1016/j.pan.2018.08.001 |
42 |
GENG N , LIU K P , LU J W , et al. Autophagy of bovine mammary epithelial cell induced by intracellular Staphylococcus aureus[J]. J Microbiol, 2020, 58 (4): 320- 329.
doi: 10.1007/s12275-020-9182-8 |
43 |
黄超, 黄庆华, 尤荻, 等. 槲皮素在创伤性脑损伤治疗中潜在分子机制和临床应用的可行性[J]. 中国组织工程研究, 2019, 23 (23): 3760- 3766.
doi: 10.3969/j.issn.2095-4344.1325 |
HUANG C , HUANG Q H , YOU D , et al. Molecular mechanism of quercetin in the treatment of traumatic brain injury: its feasibility of clinical application[J]. Chinese Journal of Tissue Engineering Research, 2019, 23 (23): 3760- 3766.
doi: 10.3969/j.issn.2095-4344.1325 |
[1] | Yi WANG, Juan GAO, Yuemin HU, Yuefei YANG, Bojun FAN, Huiming JU. Effect of Transient Serum Starvation on Metabolism and Autophagy of Porcine Skeletal Muscle Satellite Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3408-3417. |
[2] | Xinyu CAO, Jiawei CAI, Zhiyuan BAO, Shuyu YAO, Yunpeng LI, Yang CHEN, Xinsheng WU, Bohao ZHAO. The Function Analysis of ATG14 Regulates the Autophagy Process in Rabbit Hair Follicle Dermal Papilla Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3472-3481. |
[3] | Yuanyuan LI, Tianyu WANG, Meng LI, Wenhui ZHANG, Yinghui WANG, Tianrui ZHAO, Haojie LI, Yangfei ZHAO, Jinming WANG. Selenomethionine, through PINK1/Parkin-mediated Mitochondrial Autophagy, Alleviates Fluoride-induced Depressive-like Behavior [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3213-3224. |
[4] | LI Feifei, ZHANG Chenmiao, TONG Jinjin, JIANG Linshu. Research Progress on the Mechanism of Mitochondrial Autophagy Regulating the Activity of NLRP3 Inflammatory Corpuscles to Improve Animal Health [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1446-1455. |
[5] | QIN Yi, HU Wenjie, FANG Xiaowei, GUO Qian, TIAN Lanxin, LIU Fang, FANG Chun. Effect of Deletion of the Lipoteichoic Acid Synthase ltaS Gene on the Pathogenicity of Listeria monocytogenes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 670-679. |
[6] | QIU Wenyue, SU Yiman, YE Jiali, ZHANG Xinting, PANG Xiaoyue, WANG Rongmei, XIE Zimao, ZHANG Hui, TANG Zhaoxin, SU Rongsheng. Study on Asiatic Acid Alleviates LPS-induced Acute Kidney Injury by Regulating Apoptosis and Autophagy of Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 809-821. |
[7] | LIU Yueyang, LI Mengyuan, NIE Xueyi, MA Yabo, HOU Yuxin, MA Boli, YANG Yi, XU Jinrui. The Regulation of Calcium-binding Protein S100A4 on Autophagy in THP-1 Cells Infected with Bacillus Calmette-Guérin [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 311-322. |
[8] | DU Haidong, NA Renhua. Study on Gastrointestinal Epithelial Barrier Function and Interaction with Microorganisms in Ruminants [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1804-1814. |
[9] | WANG Chongnian, YU Jialin, GONG Zhaoqian, WU Xiaoling, DENG Guangcun. Regulation of BCG-induced Autophagy in Macrophages RAW264.7 by PLIN2 [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 2134-2146. |
[10] | WANG Han, MENG Lijie, LIU Wenjiao, XU Yongjian, GONG Ting. Effect of TAS1R3 Gene Interference on Autophagy Related Factors in Leydig Cells of Xiang Pig [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(4): 1525-1534. |
[11] | ZHANG Chengcheng, SUN Jiahao, WANG Xiuling, ZHANG Xiaorong, WU Yantao. Beclin1 Interacts with the Nonstructural Protein NS5A of CSFV and Promotes Virus Proliferation [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 715-725. |
[12] | MA Tianwen, YU Yue, LÜ Liangyu, JIA Lina, RUAN Hongri, WANG Haoran, WANG Xinyu, ZHANG Yuxin, ZHANG Jiantao, GAO Li. Effects of Bilobalide on Autophagy, Proliferation and Apoptosis of IL-1β-induced ATDC5 Chondrocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 837-846. |
[13] | MENG Meijuan, WANG Yan, HUO Ran, LI Xuerui, CHANG Guangjun, SHEN Xiangzhen. Effect of Inhibition of PERK on LPS Induced Autophagy in Bovine Mammary Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 351-360. |
[14] | WEN Shuangquan, WANG Li, ZHANG Wenhua, XU Mingchang, ZOU Hui, GU Jianhong, LIU Xuezhong, BIAN Jianchun, LIU Zongping, YUAN Yan. Effects of Fas on Autophagosomes Formation Induced by Cadmium Exposure in Rat Cerebral Cortex [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(5): 1608-1614. |
[15] | CAO Qianying, ZHENG Hao, WANG Yaling, ZOU Hui, GU Jianhong, YUAN Yan, LIU Xuezhong, LIU Zongping, BIAN Jianchun. Mechanism of Autophagy Block in PC12 Cells Induced by Zearalenone [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(4): 1270-1279. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||