[1] 王浩然.杨树NAC转录因子可变剪接初步研究[D].南京:南京林业大学,2018. WANG H R.A preliminary study on the alternative cleavage and polyadenylation of NAC transcription factor genes in Populus[D].Nanjing:Nanjing Forestry University,2018.(in Chinese) [2] ZHANG Y J,QIAN J J,GU C Y,et al.Alternative splicing and cancer:a systematic review[J].Signal Transduct Target Ther,2021,6(1):78. [3] 宋代玲,翁雅娟,特日格乐,等.基因的可变剪接对哺乳动物精子生成作用的研究进展[J].黑龙江畜牧兽医,2023(1):27-31,126. SONG D L,WENG Y J,TE R G L,et al.Research progress on the effects of gene alternative splicing on mammalian spermatogenesis[J]. Heilongjiang Animal Science and Veterinary Medicine,2023(1):27-31,126.(in Chinese) [4] SENOO M,TAKIJIRI T,YOSHIDA N,et al.PTBP1 contributes to spermatogenesis through regulation of proliferation in spermatogonia[J].J Reprod Dev,2019,65(1):37-46. [5] 张 姹,魏易焓,卢静怡,等.不同运动方式和运动时间对小鼠睾酮分泌和精子生成的影响[J].中国畜牧杂志,2021, 57(2):96-100. ZHANG C,WEI Y H,LU J Y,et al.Effects of different exercise modes and exercise time on testosterone secretion and spermatogenesis in mice[J].Chinese Journal of Animal Science,2021,57(2):96-100.(in Chinese) [6] 崔迎迎.MEI1基因可变剪切事件对蒙古马精子生成的调控作用[D].呼和浩特:内蒙古农业大学,2021. CUI Y Y.Regulatory role of MEI1 with alternative splicing event on spermatogenesis in Mongolian horse[D].Hohhot:Inner Mongolia Agricultural University,2021.(in Chinese) [7] 王丽佳.Trib3基因敲除对雄性大鼠精子生成影响的相关研究[D].呼和浩特:内蒙古医科大学,2020. WANG L J.Effects of Trib3 gene knockout on spermatogenesis in male rats[D].Hohhot:Inner Mongolia Medical University,2020.(in Chinese) [8] 王颖洁.gga-miR-31-5p调控鸡减数分裂和精子生成的机制解析[D].扬州:扬州大学,2020. WANG Y J.Mechanism of gga-miR-31-5p regulating meiosis and spermatogenesis in chicken[D].Yangzhou:Yangzhou University, 2020.(in Chinese) [9] MUSTAFA S.白藜芦醇对束缚应激以及母体束缚应激小鼠睾丸发育和精子生成的影响[D].南京:南京农业大学,2020. MUSTAFA S.Roles of resveratrol on testicular development and spermatogenesis under the condition of restraint and maternal restraint stress in mice[D].Nanjing:Nanjing Agricultural University,2020.(in Chinese) [10] 刘 勇.DNA甲基化与可变剪接影响荷斯坦公牛睾丸FBXW11基因表达和精子活力[D].邯郸:河北工程大学,2019. LIU Y.DNA methylation and alternative splicing affect FBXW11 gene expression and sperm motility in Holstein bulls testis[D].Handan:Hebei University of Engineering,2019.(in Chinese) [11] CHEN Y,ZHENG Y X,GAO Y,et al.Single-cell RNA-seq uncovers dynamic processes and critical regulators in mouse spermatogenesis[J].Cell Res,2018,28(9):879-896. [12] PENG Q,ZHOU Y J,OYANG L,et al.Impacts and mechanisms of alternative mRNA splicing in cancer metabolism, immune response,and therapeutics[J].Mol Ther,2022,30(3):1018-1035. [13] 苏明强.HnRNP F通过调控TPX2表达促进膀胱癌细胞增殖[D].广州:南方医科大学,2019. SU M Q.HnRNP F promotes the proliferation of bladder cancer cells via regulating the TPX2 expression[D]. Guangzhou:Southern Medical University,2019.(in Chinese) [14] WAITHAKA A,MAIAKOVSKA O,GRIMM D,et al.Sequences and proteins that influence mRNA processing in Trypanosoma brucei:Evolutionary conservation of SR-domain and PTB protein functions[J].PLoS Negl Trop Dis,2022,16(10):e0010876. [15] CHEN M,ZHANG J,MANLEY J L.Turning on a fuel switch of cancer:HnRNP proteins regulate alternative splicing of pyruvate kinase mRNA[J].Cancer Res,2010,70(22):8977-8980. [16] HUANG H L,ZHANG J,HARVEY S E,et al.RNA G-quadruplex secondary structure promotes alternative splicing via the RNA-binding protein hnRNPF[J].Genes Dev,2017,31(22):2296-2309. [17] DU J G,WANG Q,ZIEGLER S F,et al.FOXP3 interacts with hnRNPF to modulate pre-mRNA alternative splicing[J].J Biol Chem,2018,293(26):10235-10244. [18] FENG S L,LI J M,WEN H,et al.hnRNPH1 recruits PTBP2 and SRSF3 to modulate alternative splicing in germ cells[J]. Nat Commun,2022,13(1):3588. [19] 高 源.安格斯牛睾丸组织非编码RNA鉴定及单细胞转录图谱绘制[D].杨凌:西北农林科技大学,2021. GAO Y.Non-coding RNA identification and single-cell transcriptome atlas of angus bull testis[D].Yangling:Northwest A&F University,2021.(in Chinese) [20] ZAGORE L L,GRABINSKI S E,SWEET T J,et al.RNA binding protein Ptbp2 is essential for male germ cell development[J].Mol Cell Biol,2015,35(23):4030-4042. [21] SENOO M,HOZOJI H,ISHIKAWA-YAMAUCHI Y,et al.RNA-binding protein Ptbp1 regulates alternative splicing and transcriptome in spermatogonia and maintains spermatogenesis in concert with Nanos3[J].J Reprod Dev,2020,66(5):459-467. [22] LIU W B,WANG F C,XU Q H,et al.BCAS2 is involved in alternative mRNA splicing in spermatogonia and the transition to meiosis[J].Nat Commun,2017,8:14182. [23] 孙 武.整合RNA-seq和全基因组测序数据解析控制湖羊睾丸发育的基因和调控网络[D].兰州:兰州大学,2019. SUN W.Identification of the candidate genes and regulatory network related to testicular development in Hu sheep based on RNA-seq and re-sequencing data[D].Lanzhou:Lanzhou University,2019.(in Chinese) [24] 杨旭辉,汪惠琴,朱照平,等.畸形精子症发生的分子机制研究进展[J].新乡医学院学报,2023,40(8):796-800. YANG X H,WANG H Q,ZHU Z P,et al.Research progress on the molecular mechanism of teratozoospermia[J].Journal of Xinxiang Medical University,2023,40(8):796-800.(in Chinese) [25] 李 琳,王景尚,阴赪宏,等.人类无头精子症的遗传学研究进展[J].中华男科学杂志,2019,25(9):838-842. LI L,WANG J S,YIN C H,et al.Advances in the molecular genetic studies of acephalic spermatozoa syndrome[J].National Journal of Andrology,2019,25(9):838-842.(in Chinese) [26] LI B,HE X L,ZHAO Y P,et al.Transcriptome profiling of developing testes and spermatogenesis in the Mongolian horse[J].BMC Genet,2020,21(1):46. [27] 宋连杰,崔迎迎,赵一萍,等.蒙古马睾丸支持细胞的体外分离培养与鉴定[J].中国畜牧兽医,2020,47(9):2751-2758. SONG L J,CUI Y Y,ZHAO Y P,et al.Isolation,culture and identification of testis Sertoli cells in Mongolian horses in vitro[J].China Animal Husbandry & Veterinary Medicine,2020,47(9):2751-2758.(in Chinese) [28] OUD M S,SMITS R M,SMITH H E,et al.A de novo paradigm for male infertility[J].Nat Commun,2022,13(1):154. [29] YANG J B,ZHANG Z W,ZHANG Y Y,et al.CLOCK interacts with RANBP9 and is involved in alternative splicing in spermatogenesis[J].Gene,2018,642:199-204. [30] XU Q H,WANG F C,XIANG Y L,et al.Maternal BCAS2 protects genomic integrity in mouse early embryonic development[J].Development,2015,142(22):3943-3953. [31] BLÖCHER S,BEHR R,WEINBAUER G F,et al.Different CREM-isoform gene expression between equine and human normal and impaired spermatogenesis[J].Theriogenology,2003,60(7):1357-1369. [32] GEUENS T,BOUHY D,TIMMERMAN V.The hnRNP family:insights into their role in health and disease[J].Hum Genet,2016,135(8):851-867. [33] TYSON-CAPPER A,GAUTREY H.Regulation of Mcl-1 alternative splicing by hnRNP F,H1 and K in breast cancer cells[J].RNA Biol,2018,15(12):1448-1457. [34] WANG L Y,YAN F.Molecular insights into the specific recognition between the RNA binding domain qRRM2 of hnRNP F and G-tract RNA:A molecular dynamics study[J].Biochem Biophys Res Commun,2017,494(1-2):95-100. [35] WANG X L,LI J M,YUAN S Q.Characterization of[LL] the protein expression and localization of hnRNP family members during murine spermatogenesis[J].Asian J Androl,2023,25(3):314-321. [36] MOLZAN M,OTTMANN C.Synergistic binding of the phosphorylated S233-and S259-binding sites of C-RAF to one 14-3-3ζ dimer[J].J Mol Biol,2012,423(4):486-495. [37] LIU K,ZHENG M Y,LU R,et al.The role of CDC25C in cell cycle regulation and clinical cancer therapy:a systematic review[J].Cancer Cell Int,2020,20(1):213. [38] HU Y Y,GONG C L,LI Z B,et al.Demethylase ALKBH5 suppresses invasion of gastric cancer via PKMYT1 m6A modification[J].Mol Cancer,2022,21(1):34. [39] ZHANG G,KRUSE T,GUASCH BOLDÚ C,et al.Efficient mitotic checkpoint signaling depends on integrated activities of Bub1 and the RZZ complex[J].EMBO J,2019,38(7):e100977. [40] MOYLE M W,KIM T,HATTERSLEY N,et al.A Bub1-Mad1 interaction targets the Mad1-Mad2 complex to unattached kinetochores to initiate the spindle checkpoint[J].J Cell Biol,2014,204(5):647-657. [41] WELLARD S R,SKINNER M W,ZHAO X Q,et al.PLK1 depletion alters homologous recombination and synaptonemal complex disassembly events during mammalian spermatogenesis[J].Mol Biol Cell,2022,33(5):ar37. [42] WELLARD S R,ZHANG Y J,SHULTS C,et al.Overlapping roles for PLK1 and Aurora A during meiotic centrosome biogenesis in mouse spermatocytes[J].EMBO Rep,2021,22(4):e51023. |