Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (10): 4700-4719.doi: 10.11843/j.issn.0366-6964.2024.10.041
• Clinical Veterinary Medicine • Previous Articles Next Articles
Han FU1(), Chong LU1, Ronghao MIAO1, Yabin LU1, Jianlong LI1, Jianhua LIU1, Mingyang GENG2, Qingyong GUO1, Zhanhai MAI1,*(
), Ling KUANG1,*(
)
Received:
2024-02-27
Online:
2024-10-23
Published:
2024-11-04
Contact:
Zhanhai MAI, Ling KUANG
E-mail:2332300667@qq.com;mzh881231@126.com;kuangling62@126.com
CLC Number:
Han FU, Chong LU, Ronghao MIAO, Yabin LU, Jianlong LI, Jianhua LIU, Mingyang GENG, Qingyong GUO, Zhanhai MAI, Ling KUANG. Effects of Abortion on the Diversity of Vaginal and Intestinal Flora in Mares and the Isolation and Identification of Vaginal Bacteria[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4700-4719.
Fig. 1
Rank Abundance curves of vaginal and intestinal flora OTU Veen and vaginal intestinal and intestinal flora in different groups A. JK and LC group mare vagina; B. Intestinal tract of mares in JK and LC groups; C. Vaginal samples from mares in groups JK and LC; D. Intestinal samples from mares in groups JK and LC"
Table 1
Results of horizontal species abundance analysis of vaginal flora in aborted and healthy mares"
物种名称Species name | 健康组Health group | 流产组Abortion group | P值P value |
拟杆菌门Bacteroidetes | 0.333 2±0.103 8 | 0.314 3±0.127 7 | 0.764 |
厚壁菌门Firmicutes | 0.269 5±0.212 1 | 0.300 2±0.104 4 | 0.751 |
放线菌门Actinobacteria | 0.117 1±0.075 1 | 0.144 9±0.142 7 | 0.669 |
梭杆菌门Fusobacteria | 0.144 2±0.159 6 | 0.113 0±0.127 4 | 0.672 |
变形菌门Proteobacteria | 0.108 3±0.071 7 | 0.099 8±0.090 4 | 0.849 |
螺旋体门Spirochaetes | 0.003 2±0.003 2 | 0.004 7±0.009 2 | 0.725 |
疣微菌门Verrucomicrobia | 0.005 7±0.003 1 | 0.002 8±0.003 4 | 0.173 |
子囊菌门Candidatus_Saccharibacteria | 0.001 7±0.001 7 | 0.004 1±0.006 4 | 0.388 |
软壁菌门Tenericutes | 0.000 6±0.000 8 | 0.001 7±0.001 9 | 0.132 |
蓝菌门Cyanobacteria | 0.001 9±0.001 8 | 0.001 3±0.000 9 | 0.525 |
其它Others | 0.017 2±0.015 6 | 0.010 2±0.012 6 | 0.364 |
Table 2
Results of genus-level species abundance analysis of vaginal flora in aborted and healthy mares"
物种名称Species name | 健康组Health group | 流产组Abortion group | P值P value |
卟啉单胞菌属Porphyromonas | 0.265 7±0.135 8 | 0.259 9±0.165 6 | 0.944 |
梭杆菌属Fusobacterium | 0.099 6±0.150 9 | 0.084 7±0.125 2 | 0.834 |
棒状杆菌属Corynebacterium | 0.052 6±0.049 4 | 0.075 4±0.083 3 | 0.555 |
弯曲杆菌属Campylobacter | 0.094 7±0.072 7 | 0.045 5±0.052 5 | 0.137 |
链球菌属Streptococcus | 0.074 2±0.120 3 | 0.026 2±0.033 5 | 0.380 |
奥卡诺杆菌属Arcanobacterium | 0.043 3±0.041 2 | 0.028 1±0.061 9 | 0.605 |
链杆菌属Streptobacillus | 0.088 5±0.097 6 | 0.028 2±0.030 1 | 0.397 |
螺旋球菌属Helcococcus | 0.034 3±0.025 6 | 0.020 2±0.018 6 | 0.223 |
Mobiluncus | 0.013 4±0.011 9 | 0.022 0±0.037 2 | 0.665 |
嗜胨菌属Peptoniphilus | 0.012 5±0.008 2 | 0.017 5±0.019 6 | 0.567 |
其它Others | 0.218 8±0.165 9 | 0.292 4±0.183 4 | 0.435 |
Table 3
Results of horizontal species abundance analysis of intestinal flora in aborted and healthy mares"
物种名称Species name | 健康组Health group | 流产组Abortion group | P值P value |
厚壁菌门Firmicutes | 0.599 4±0.115 9 | 0.548 7±0.144 6 | 0.479 |
拟杆菌门Bacteroidetes | 0.214 5±0.058 8 | 0.202 8±0.055 3 | 0.695 |
螺旋体门Spirochaetes | 0.068 8±0.037 8 | 0.066 4±0.043 4 | 0.912 |
放线菌门Actinobacteria | 0.006 1±0.001 7 | 0.055 3±0.143 5 | 0.421 |
纤维杆菌门Fibrobacteres | 0.045 6±0.036 8 | 0.040 1±0.031 4 | 0.755 |
变形菌门Proteobacteria | 0.016 2±0.003 8 | 0.026 9±0.018 6 | 0.195 |
疣微菌门Verrucomicrobia | 0.011 2±0.003 3 | 0.009 7±0.004 2 | 0.493 |
软壁菌门Tenericutes | 0.002 4±0.001 6 | 0.004 2±0.002 1 | 0.087 |
互养菌门Synergistetes | 0.001 4±0.000 4 | 0.002 2±0.001 1 | 0.058 |
子囊菌门Candidatus_Saccharibacteria | 0.002 1±0.001 7 | 0.001 7±0.001 1 | 0.537 |
其它Others | 0.029 8±0.006 8 | 0.036 6±0.021 9 | 0.476 |
Table 4
Results of genus-level species abundance analysis of intestinal flora in aborted and healthy mares"
物种名称Species name | 健康组Health group | 流产组Abortion group | P值P value |
梭菌属Clostridium_XlVa | 0.079 0±0.015 8 | 0.057 3±0.023 1 | 0.063 |
密螺旋体属Treponema | 0.06602±0.036 2 | 0.061 6±0.041 2 | 0.825 |
幻杆菌属Phascolarctobacterium | 0.04308±0.008 1 | 0.057 0±0.040 6 | 0.345 |
纤维杆菌属Fibrobacter | 0.04506±0.036 8 | 0.040 1±0.031 4 | 0.755 |
棒状杆菌属Corynebacterium | 0.00004±0.000 2 | 0.064 8±0.144 7 | 0.375 |
链球菌属Streptococcus | 0.049 1±0.047 2 | 0.018 3±0.02 1 | 0.091 |
普雷沃菌属Prevotella | 0.024 6±0.009 0 | 0.022 7±0.009 1 | 0.693 |
振荡杆菌属Oscillibacter | 0.013 9±0.005 1 | 0.020 7±0.015 6 | 0.228 |
瘤胃球菌属Ruminococcus | 0.017 6±0.004 6 | 0.014 9±0.006 5 | 0.384 |
嗜胨菌属Peptoniphilus | 0.031 0±0.069 2 | ||
其它Others | 0.619 1±0.063 8 | 0.588 7±0.165 4 | 0.676 |
Fig. 4
LEfSe analysis results A.LEfSe analysis of vaginal flora; B.LEfSe analysis of intestinal flora; A1 and B1 represent the taxonomy of phyla genera from the inner circle to the outer circle, and the color of each node represents different groups. Light blue nodes represent the species that are relatively abundant in the aborted group and play an important role in the group grouping, and dark blue nodes represent the species that are relatively abundant in the healthy group and play an important role in the group grouping. Yellow indicates no difference between the two groups. A2 and B2 are the LDA scores of different species, and species with LDA scores>2 are selected for screening"
Fig. 6
Correlation analysis results of vaginal and intestinal flora abundance and metabolic pathways A.Correlation analysis between vaginal flora and vaginal metabolic pathways; B.Correlation analysis between intestinal flora and vaginal metabolic pathways; C.Correlation analysis between vaginal flora and intestinal flora; D.Correlation analysis of vaginal metabolic pathway and intestinal metabolic pathway"
Fig. 7
Results of the correlation network between vaginal and intestinal flora A. Vaginal microbiome correlation network diagram; B. Intestinal microbiome correlation network diagram. Each node in the figure represents a species, and the color of the dots indicates that among these groups, the relative abundance of the group is the highest. The larger the area of the dots, the higher the average relative abundance of the species. Straight lines are used to connect species to species, with pink indicating positive correlation, blue indicating negative correlation, and the thickness of the lines indicating the size of the correlation"
Fig. 8
Morphological characteristics of vaginal isolates A1. Colony morphology of Streptococcus on the blood plate; B1. Colony morphology of Salmonella on SS medium; C1. Colony morphology of Klebsiella on nutrient AGAR; D1. E. coli colony morphology on nutrient AGAR A2. Streptococcus isolated bacteria morphology after Gram staining (400×); B2. Morphology of Salmonella isolates after Gram staining (400×); C2. Morphology of isolated Klebsiella after Gram staining (400×); D2. Morphology of E. coli isolates after Gram staining (400×)"
Fig. 9
Results of PCR amplification of 16S rRNA gene of isolated strain and comparison of nucleotide similarity with reference strain 16S rRNA and results of evolutionary tree A.PCR Results (M. DL 2000 DNA marker; 1. Negative control; 2. Strains XJM; 3.Strains XJS; 4. Strains XJK; 5. Strains XJD); B1, C1, D1 and E1 were the results of similarity comparison between strains XJM of Streptococcus equi, XJS of Salmonella, XJK of Klebsiella and XJD of 16S rRNA of the corresponding reference strains, respectively; B2, C2, D2 and E2 were the results of 16S rRNA nucleotide phylogenetic analysis of Streptococcus equi subsp.zooepidemicus isolates XJM, Salmonella isolates XJS, Klebsiella isolates XJK and Escherichia coli isolates XJD, respectively"
1 | 姚新奎, 韩国才. 马生产管理学[M]. 北京: 中国农业大学出版社, 2008. |
YAO X K , HAN G C . Equine production management[M]. Beijing: China Agricultural University Press, 2008. | |
2 |
SNIDER T A . Reproductive disorders in horses[J]. Vet Clin North Am Equine Pract, 2015, 31 (2): 389- 405.
doi: 10.1016/j.cveq.2015.04.011 |
3 |
CANISSO I F , SEGABINAZZI L G T , FEDORKA C E . Persistent breeding-induced endometritis in mares-a multifaceted challenge: from clinical aspects to immunopathogenesis and pathobiology[J]. Int J Mol Sci, 2020, 21 (4): 1432.
doi: 10.3390/ijms21041432 |
4 |
TRAUB-DARGATZ J L , SALMAN M D , VOSS J L . Medical problems of adult horses, as ranked by equine practitioners[J]. J Am Vet Med Assoc, 1991, 198 (10): 1745- 1747.
doi: 10.2460/javma.1991.198.010.1745 |
5 |
TROEDSSON M H T . Uterine clearance and resistance to persistent endometritis in the mare[J]. Theriogenology, 1999, 52 (3): 461- 471.
doi: 10.1016/S0093-691X(99)00143-0 |
6 |
KÖHNE M , KUHLMANN M , TÖNIßEN A , et al. Diagnostic and treatment practices of equine endometritis-a questionnaire[J]. Front Vet Sci, 2020, 7, 547.
doi: 10.3389/fvets.2020.00547 |
7 |
WANG H , LIU K J , SUN Y H , et al. Abortion in donkeys associated with Salmonella abortus equi infection[J]. Equine Vet J, 2019, 51 (6): 756- 759.
doi: 10.1111/evj.13100 |
8 |
MADIĆ J , HAJSIG D , SOSTARI B , et al. An outbreak of abortion in mares associated with Salmonella abortusequi infection[J]. Equine Vet J, 1997, 29 (3): 230- 233.
doi: 10.1111/j.2042-3306.1997.tb01674.x |
9 | BUIGUES S , IVANISSEVICH A , VISSANI M A , et al. Outbreak of Salmonella abortus equi abortion in embryo recipient polo mares[J]. J Equine Vet Sci, 2012, 32 (10): S69- S70. |
10 | DI GENNARO E E , GUIDA N , FRANCO P G , et al. Infectious abortion caused by Salmonella enterica subsp enterica serovar Abortusequi in Argentina[J]. J Equine Vet Sci, 2012, 32 (10 Suppl): S74. |
11 |
郭奎, 王宁, 王金慧, 等. 马流产沙门氏菌的分离鉴定及其微量凝集抗体检测方法的建立与应用[J]. 中国农业科学, 2020, 53 (10): 2112- 2121.
doi: 10.3864/j.issn.0578-1752.2020.10.017 |
GUO K , WANG N , WANG J H , et al. Establishment and preliminary application of microagglutination detection method for Salmonella abortus equi[J]. Scientia Agricultura Sinica, 2020, 53 (10): 2112- 2121.
doi: 10.3864/j.issn.0578-1752.2020.10.017 |
|
12 | 杨康. 马流产沙门氏菌新疆分离株鉴定免疫及其FliC蛋白增强SeM蛋白及gD蛋白抗体应答的研究[D]. 乌鲁木齐: 新疆农业大学, 2016. |
YANG K. Study on the identification and immunization of Salmonella abortus equi isolated from Xinjiang and its FliC protein enhance effect on the humoral immune response of recombinant protein SeM and gD[D]. Urumqi: Xinjiang Agricultural University, 2016. (in Chinese) | |
13 | STRITOF Z , HABUS J , GRIZELJ J , et al. Two outbreaks of Salmonella abortusequi abortion in mares in Croatia[J]. J Equine Vet Sci, 2016, 39 (Suppl): S63. |
14 |
NIWA H , HOBO S , KINOSHITA Y , et al. Aneurysm of the cranial mesenteric artery as a site of carriage of Salmonella enterica subsp. enterica serovar Abortusequi in the horse[J]. J Vet Diagn Invest, 2016, 28 (4): 440- 444.
doi: 10.1177/1040638716649640 |
15 |
SROKA-OLEKSIAK A , GOSIEWSKI T , PABIAN W , et al. Next-generation sequencing as a tool to detect vaginal microbiota disturbances during pregnancy[J]. Microorganisms, 2020, 8 (11): 1813.
doi: 10.3390/microorganisms8111813 |
16 |
BAYAR E , BENNETT P R , CHAN D , et al. The pregnancy microbiome and preterm birth[J]. Semin Immunopathol, 2020, 42 (4): 487- 499.
doi: 10.1007/s00281-020-00817-w |
17 |
KUMAR M , MURUGESAN S , SINGH P , et al. Vaginal microbiota and cytokine levels predict preterm delivery in Asian women[J]. Front Cell Infect Microbiol, 2021, 11, 639665.
doi: 10.3389/fcimb.2021.639665 |
18 |
KARAER A , DOǦAN B , GVNAL S , et al. The vaginal microbiota composition of women undergoing assisted reproduction: a prospective cohort study[J]. Bjog, 2021, 128 (13): 2101- 2109.
doi: 10.1111/1471-0528.16782 |
19 |
DE SIENA M , LATERZA L , MATTEO M V , et al. Gut and reproductive tract microbiota adaptation during pregnancy: new insights for pregnancy-related complications and therapy[J]. Microorganisms, 2021, 9 (3): 473.
doi: 10.3390/microorganisms9030473 |
20 |
ZHANG Y X , CHEN S , CHEN X F , et al. Association between vaginal Gardnerella and tubal pregnancy in women with symptomatic early pregnancies in China: a nested case-control study[J]. Front Cell Infect Microbiol, 2022, 11, 761153.
doi: 10.3389/fcimb.2021.761153 |
21 | 张莹轩. 自然流产菌群特征及补肾安胎法干预流产菌群-代谢物-免疫调节的研究[D]. 广州: 广州中医药大学, 2021. |
ZHANG Y X. The characteristics of vaginal and gut microbiome in spontaneous abortion women and effect of Modified Shoutai Wan on microbiome-metabolites-immune regulation[D]. Guangzhou: Guangzhou University of Chinese Medicine, 2021. (in Chinese) | |
22 |
TILG H , MOSCHEN A R . Microbiota and diabetes: an evolving relationship[J]. Gut, 2014, 63 (9): 1513- 1521.
doi: 10.1136/gutjnl-2014-306928 |
23 | ZHANG Y , ZHANG H P . Microbiota associated with type 2 diabetes and its related complications[J]. Food Sci Hum Well, 2013, 2 (3/4): 167- 172. |
24 |
CAPORASO J G , KUCZYNSKI J , STOMBAUGH J , et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nat Methods, 2010, 7 (5): 335- 336.
doi: 10.1038/nmeth.f.303 |
25 |
SEGATA N , IZARD J , WALDRON L , et al. Metagenomic biomarker discovery and explanation[J]. Genome Biol, 2011, 12 (6): R60.
doi: 10.1186/gb-2011-12-6-r60 |
26 |
RALPH S G , RUTHERFORD A J , WILSON J D . Influence of bacterial vaginosis on conception and miscarriage in the first trimester: cohort study[J]. BMJ, 1999, 319 (7204): 220- 223.
doi: 10.1136/bmj.319.7204.220 |
27 |
VAN OOSTRUM N , DE SUTTER P , MEYS J , et al. Risks associated with bacterial vaginosis in infertility patients: a systematic review and meta-analysis[J]. Hum Reprod, 2013, 28 (7): 1809- 1815.
doi: 10.1093/humrep/det096 |
28 |
AL-MEMAR M , BOBDIWALA S , FOURIE H , et al. The association between vaginal bacterial composition and miscarriage: a nested case-control study[J]. BJOG: An Int J Obstetr Gynaecol, 2020, 127 (2): 264- 274.
doi: 10.1111/1471-0528.15972 |
29 |
MOR G , KWON J Y . Trophoblast-microbiome interaction: a new paradigm on immune regulation[J]. Am J Obstetr Gynecol, 2015, 213 (4): S131- S137.
doi: 10.1016/j.ajog.2015.06.039 |
30 |
GELLERSEN B , BROSENS J J . Cyclic decidualization of the human endometrium in reproductive health and failure[J]. Endocr Rev, 2014, 35 (6): 851- 905.
doi: 10.1210/er.2014-1045 |
31 |
GELLERSEN B , BROSENS I A , BROSENS J J . Decidualization of the human endometrium: mechanisms, functions, and clinical perspectives[J]. Semin Reprod Med, 2007, 25 (6): 445- 453.
doi: 10.1055/s-2007-991042 |
32 |
RÖNNQVIST P D J , FORSGREN-BRUSK U B , GRAHN-HÅKANSSON E E . Lactobacilli in the female genital tract in relation to other genital microbes and vaginal pH[J]. Acta Obstetr Gynecol Scand, 2006, 85 (6): 726- 735.
doi: 10.1080/00016340600578357 |
33 | ALDUNATE M , SRBINOVSKI D , HEARPS A C , et al. Antimicrobial and immune modulatory effects of lactic acid and short chain fatty acids produced by vaginal microbiota associated with eubiosis and bacterial vaginosis[J]. Front Physiol, 2015, 6, 164. |
34 |
PRINCE A L , CHU D M , SEFEROVIC M D , et al. The perinatal microbiome and pregnancy: moving beyond the vaginal microbiome[J]. Cold Spring Harbor Perspect Med, 2015, 5 (6): a023051.
doi: 10.1101/cshperspect.a023051 |
35 |
KOREN O , GOODRICH J K , CULLENDER T C , et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy[J]. Cell, 2012, 150 (3): 470- 480.
doi: 10.1016/j.cell.2012.07.008 |
36 | 孙璐, 李一卉, 袁庆新. 妊娠期糖尿病与肠道菌群关系的研究进展[J]. 中国临床医学, 2018, 25 (1): 141- 146. |
SUN L , LI Y H , YUAN Q X . Research progresses of the relationship between gestational diabetes mellitus and intestinal flora[J]. Chinese Journal of Clinical Medicine, 2018, 25 (1): 141- 146. | |
37 | 童昆周, 白文彬, 田枫岚, 等. 马流产沙门氏杆菌C系弱毒菌苗的研究[J]. 中国农业科学, 1980, (1): 80- 89. |
TONG K Z , BAI W B , TIAN F L , et al. Studies on a live attenuated vaccine against paratyphoid equine abortion[J]. Scientia Agricultura Sinica, 1980, (1): 80- 89. | |
38 |
GUZZARDI M A , EDERVEEN T H A , RIZZO F , et al. Maternal pre-pregnancy overweight and neonatal gut bacterial colonization are associated with cognitive development and gut microbiota composition in pre-school-age offspring[J]. Brain Behav Immun, 2022, 100, 311- 320.
doi: 10.1016/j.bbi.2021.12.009 |
39 |
MOLINA-VEGA M , PICÓN-CÉSAR M J , GUTIÉRREZ-REPISO C , et al. Metformin action over gut microbiota is related to weight and glycemic control in gestational diabetes mellitus: a randomized trial[J]. Biomed Pharmacother, 2022, 145, 112465.
doi: 10.1016/j.biopha.2021.112465 |
40 |
LOUIS P , FLINT H J . Formation of propionate and butyrate by the human colonic microbiota[J]. Environ Microbiol, 2017, 19 (1): 29- 41.
doi: 10.1111/1462-2920.13589 |
41 | 周海燕, 史俊奇, 裴宇, 等. 湿疹儿童肠道菌群特征及与病情的相关性[J]. 中国妇幼保健, 2023, 38 (14): 2570- 2573. |
ZHOU H Y , SHI J Q , PEI Y , et al. Characteristics of intestinal flora in children with eczema and its correlation with disease[J]. Maternal and Child Health Care of China, 2023, 38 (14): 2570- 2573. | |
42 | COLLADO M C , RAUTAVA S , AAKKO J , et al. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid[J]. Sci Rep, 2016, 6 (1): 23129. |
43 | CHEN X , LI P , LIU M , et al. Gut dysbiosis induces the development of pre-eclampsia through bacterial translocation[J]. Gut, 2020, 69 (3): 513- 522. |
44 | 郭奎, 张泽楠, 李帅杰, 等. 致马属动物流产沙门氏菌通用型间接ELISA抗体检测方法的建立与应用[J]. 中国农业科学, 2023, 56 (12): 2421- 2430. |
GUO K , ZHANG Z N , LI S J , et al. Development and application of a universal iELISA antibody assay for abortion-causing Salmonella in equidae[J]. Scientia Agricultura Sinica, 2023, 56 (12): 2421- 2430. | |
45 | 刘香, 梁佳平, 张灿, 等. 马流产沙门菌双重PCR检测方法的建立[J]. 中国兽医科学, 2023, 53 (3): 292- 297. |
LIU X , LIANG J P , ZHANG C , et al. Establishment of a duplex PCR method for detection of Salmonella abortus equi[J]. Chinese Veterinary Science, 2023, 53 (3): 292- 297. | |
46 | 李玉学. 群牧母马发生流产的原因及防制措施[J]. 畜牧兽医科技信息, 2014, (4): 32- 34. |
LI Y X . Causes and preventive measures of abortion in herd mares[J]. Chinese Journal of Animal Husbandry and Veterinary Medicine, 2014, (4): 32- 34. | |
47 | 王世民, 王彩蝶, 张艳楠, 等. 马流产沙门菌fimY基因同源性分析及蛋白表达[J]. 动物医学进展, 2015, 36 (6): 39- 42. |
WANG S M , WANG C D , ZHANG Y N , et al. Homology analysis and expression of gene fimY of Salmonella abortus equine[J]. Progress in Veterinary Medicine, 2015, 36 (6): 39- 42. | |
48 | STAZI M , PELLEGRINI M , RAMPACCI E , et al. A new MontanideTM Seppic IMS1313-adjuvanted autogenous vaccine as a useful emergency tool to resolve a Salmonella enterica subsp. enterica serovar abortus equi abortion outbreak in mares[J]. Open Vet J, 2022, 12 (2): 303- 307. |
49 | NEUSTROEV M P , PETROVA S G . Developmental results of a vaccine against salmonella-induced equine abortion[J]. Russ Agric Sci, 2020, 46 (5): 530- 533. |
50 | 胡哲, 郭奎, 王金慧, 等. 我国马、驴流产沙门氏菌病的研究进展[J]. 中国畜牧业, 2022, (12): 49- 50. |
HU Z , GUO K , WANG J H , et al. Research progress of Salmonella abortus in horses and donkeys in China[J]. China Animal Industry, 2022, (12): 49- 50. |
[1] | Meila NA, Kenan LI, Haidong DU, Wenliang GUO, Renhua NA. Study on the Differences of Fungal Diversity in Rumen and Feces of Inner Mongolia Cashmere Goats at Different Ages [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3526-3540. |
[2] | Huanqin ZHENG, Xiaomin JIANG, Hong YUE, Baoyan WANG, Yang LIU, Xingxiao ZHANG, Jianlong ZHANG, Hongwei ZHU. Isolation, Identification and Partial Biological Characteristics Analysis of Feline Herpesvirus-1 [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3040-3048. |
[3] | Congcong LI, Zike HUANG, Nianni HUANG, Shiyu MA, Han LIU, Zhibiao XIAO, Guo SONG, Liang JIANG, Weibo PENG, Lianxi YANG, Yuntao GUO, Shengqiang HUANG. Mitochondrial Genome Assembly and Phylogenetic Analysis of the Jiuyishan Rabbit [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4417-4427. |
[4] | ZHANG Daoliang, DING Hongyan, WANG Liuxing, TAI Wenjun, KONG Hao, ZHAO Chang, FENG Shibin, WANG Xichun, XUE Yanfeng, WU Jinjie, LI Yu. Effect of Rumen Acidosis on Gastrointestinal Function, Morphology, and Microflora in Goats [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4760-4772. |
[5] | WU Yicheng, RAN Tao, ZHOU Chuanshe, TAN Zhiliang. Evaluation of the Viral Community Composition in Goat Rumen Fluid, Based on Metagenomic Analysis [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2932-2941. |
[6] | LI Chao, ZHAO Xueyan, WANG Yongjun, WANG Yanping, REN Yifan, LI Jingxuan, WANG Huaizhong, WANG Jiying, SONG Qinye. Analysis on the Structural Composition and Function of Bacterial Microbiota of Caecum and Colon in Laiwu and DLY pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 5033-5045. |
[7] | CHEN Lu, CHANG Xinyu, SHEN Jiachen, SHEN Ruiting, ZHAO Zhenhua, HOU Xiaolin. Transcriptome Sequencing and Analysis of HD11 Cells Infected by Avian Infectious Bronchitis Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4860-4865. |
[8] | REN Man, LIU Xin, TANG Yulin, ZHANG Ruixue, QIN Junjie, ZHU Hao, GUO Yansheng. Regulation of Guiqiyimu Compound Preparation on Rumen Microbes and Short-chain Fatty Acids in Postpartum Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(12): 4461-4469. |
[9] | WANG Le, CHEN Hongcen, ZHANG Yonghong, WU Qiong, HOU Jiajia, WANG Tianyi, LU Tianhang, HUANG Chuanfa, ZHANG Hua, CUI Defeng. Effects of Radix Salviae Miltiorrhizae on Intestinal Microflora of Escherichia coli Infected Mice Based on Network Pharmacology and 16S rDNA High-throughput Sequencing Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3695-3711. |
[10] | WU Yicheng, RAN Tao, ZHOU Chuanshe, TAN Zhiliang. Rumen Bacteriophage in Ruminants: Metagenome Analytical Methods and Research Progress [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(1): 20-31. |
[11] | LI Ben, GUO Fuqiang, WANG Weiwei, JIN Ningyi, JIN Qiushi, MI Zhiqiang, LI Chang, WANG Maopeng. A Case Report of Feline Infectious Peritonitis based on High-throughput Sequencing Diagnosis and Small-molecule Nucleoside Analogues Treatment [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(1): 200-208. |
[12] | ZHU Jingjing, DAI Zhenglie, WANG Han, LI Xiangchen, ZHAO Ayong, ZHOU Xiaolong, YANG Songbai. Analysis of Differential Expression Profile of LncRNA in PK15 Cells Infected with Japanese Encephalitis Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(1): 272-281. |
[13] | WANG Xianjun, XIANG Hua, ZHANG Huanrong, REN Yupeng, ZHU Jiangjiang. Cloning, Sequence Analysis and Function Prediction of HABP4 Gene in Goat [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(12): 3426-3438. |
[14] | SUN Qian, WANG Qi, HUANG Jinxiu, QI Renli, YANG Feiyun, WANG Ruisheng, LAN Yunxian. Effect of Lactobacillus reuteri on the Expression Profile of miRNAs in the Jejunum of Piglets [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(9): 2156-2164. |
[15] | WANG Xinhua, ZHANG Xingxing, WANG Limin, HUANG Xin, HAN Mengli, ZHANG Yiyuan, GUO Yanhua, TANG Hong, HE Yanhua, ZHONG Fagang, ZHOU Ping. Differences of the Intestinal Microbial Flora Diversity and Composition in IGF-1 Transgenic Superfine Wool Sheep and Non-transgenic Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(10): 2387-2402. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||