

Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (10): 4889-4902.doi: 10.11843/j.issn.0366-6964.2025.10.011
• Animal Genetics and Breeding • Previous Articles Next Articles
MA Jing'e1,2(
), WAN Shuxing1,2, LEI Wenjing1,2, ZHANG Yingzhi1,2, YU Zixuan1,2, LIU Zige1,2, XU Jiguo1,2,*(
)
Received:2025-03-05
Online:2025-10-23
Published:2025-11-01
Contact:
XU Jiguo
E-mail:382646281@qq.com;3425614@qq.com
CLC Number:
MA Jing'e, WAN Shuxing, LEI Wenjing, ZHANG Yingzhi, YU Zixuan, LIU Zige, XU Jiguo. Identification of Candidate Genes and Key Pathways Associated with Body Weight at 16 Weeks of Age in Kangle Yellow Chickens Based on Omics Data[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(10): 4889-4902.
Table 1
Correlation between genotype of SNPs and body weight at 16 weeks"
| 染色体 Chromosome | 物理位置/bp Position | P值 P-value | 基因型(个体数) Genotype (Number) | 基因型频率 Genotype frequency | 16周龄体重(平均值±标准差)/g Body weight at 16 weeks (Mean±standard deviation) |
| 3 | 81 641 565 | 4.00×10-8 | CC (386) | 0.970 | 790.73±138.97a |
| TC (12) | 0.030 | 920.83±80.26b | |||
| 4 | 1 860 041 | 2.88×10-9 | CC (376) | 0.945 | 968.09±135.34a |
| TC (21) | 0.053 | 988.10±177.89a | |||
| TT (1) | 0.002 | 1 000b | |||
| 4 | 33 409 710 | 2.83×10-6 | CC (385) | 0.967 | 970.78±138.95a |
| TC (13) | 0.033 | 923.08±86.86b | |||
| 4 | 33 716 131 | 2.83×10-6 | GG (385) | 0.967 | 970.78±138.95a |
| AG (13) | 0.033 | 923.08±86.86b | |||
| 4 | 33 925 946 | 2.83×10-6 | TT (385) | 0.967 | 970.78±138.95a |
| CT (13) | 0.033 | 923.08±86.86b | |||
| 6 | 23 563 123 | 6.00×10-7 | GG(8) | 0.020 | 969.74±138.33a |
| AG (390) | 0.980 | 943.75±107.35b | |||
| 6 | 35 324 210 | 7.68×10-8 | AA (1) | 0.002 | 1 000a |
| AC (21) | 0.053 | 973.81±111.93b | |||
| CC (376) | 0.945 | 968.88±139.30ab | |||
| 11 | 15 294 113 | 3.48×10-7 | TT(386) | 0.969 | 970.73±138.45a |
| CT(12) | 0.031 | 920.83±105.00b | |||
| 11 | 15 346 007 | 3.48×10-7 | CC(386) | 0.969 | 970.73±138.45a |
| TC(12) | 0.031 | 920.83±150.00b | |||
| 12 | 2 503 065 | 1.79×10-12 | GG(2) | 0.005 | 950±50a |
| GT(10) | 0.027 | 995±145.69b | |||
| TT(358) | 0.968 | 968.65±137.86c | |||
| 12 | 2 504 749 | 1.79×10-12 | AA(358) | 0.968 | 968.65±137.86a |
| CA(10) | 0.027 | 995±145.69b | |||
| CC(2) | 0.005 | 950±50c | |||
| 18 | 1 994 686 | 1.30×10-7 | TT(387) | 0.972 | 970.80±138.14a |
| CT(11) | 0.028 | 913.64±113.00b | |||
| 18 | 2 307 607 | 5.84×10-9 | AG(8) | 0.020 | 925±129.90a |
| GG(390) | 0.980 | 970.13±137.84b |
Table 2
Primers information"
| 引物名称 Primer name | SNP位置/bp Position | 方向 Direction | 引物序列(5′→3′) Primer sequence | 退火温度/℃ Temperature | 片段长度/bp Length |
| 1 | Chr3:81 641 565 | Forward | CATGCAAAGCACCGAACTCC | 60 | 233 |
| Reverse | AGAAAAGCGCTCCAGTGTCT | ||||
| 2 | Chr4:1 860 041 | Forward | CTGGGTCCCTATATCCACATACATT | 61 | 418 |
| Reverse | GCCAGCTGGACAAAAGCCTG | ||||
| 3 | Chr4:33 409 710 | Forward | TAAAGTTGAGGTGCTTGACC | 55 | 322 |
| Reverse | TGGACAGTTACACAGAACAT | ||||
| 4 | Chr4:33 716 131 | Forward | GGACATTTGCACACACCGTT | 60 | 280 |
| Reverse | TTGCTTGCTCCTGCTAGCTC | ||||
| 5 | Chr4:33 925 946 | Forward | TACGTTCAGAGTGACGTTTGTATG | 60 | 393 |
| Reverse | CTTCAAGCCAGGATGGAGCAT | ||||
| 6 | Chr6:23 563 123 | Forward | GTGAACGTGTCAGCCAACTG | 60 | 372 |
| Reverse | GCCTGAAGACAAGCGCATAG | ||||
| 7 | Chr6:35 324 210 | Forward | GTTGGCAATGGGGTGTTTGA | 59 | 280 |
| Reverse | CCTGGGTTCTGGGCTAACTT | ||||
| 8 | Chr11:15 294 113 | Forward | CATATCAGCACCCCAAGCCTC | 60 | 297 |
| Reverse | TGCAGAAAACACCTACAGCTTC | ||||
| 9 | Chr11:15 346 007 | Forward | ATCTCAGCCACAGTGGTCCT | 61 | 235 |
| Reverse | AGTATGGGGGCAGTTTGGGA | ||||
| 10 | Chr12:2 503 065 | Forward | TTTCCAGTTGTTCCAGCTGAC | 59 | 295 |
| Reverse | TGCCAACCTGAAAGGTCTTCT | ||||
| 11 | Chr12:2 504 749 | Forward | GTGCCTTGAGCTAGCATTGTG | 61 | 523 |
| Reverse | TTTCAGACATGCCGTGCGTT | ||||
| 12 | Chr18:1 994 686 | Forward | GCTCACATCATGCAGAGAAACA | 60 | 534 |
| Reverse | CCAGGCCAAGACACTGGAAG | ||||
| 13 | Chr18:2 307 607 | Forward | TGTCAAAGCCAACTCCCTCTT | 60 | 339 |
| Reverse | GACAGCGTCACTTCCCACG |
Fig. 2
The detection results of partial SNPs typing A. Electropherogram of PCR products: M. DNA Marker DS2000; 1. The PCR amplification product of primer 4; 2. The PCR amplification product of primer 3; 3. The PCR amplification product of primer 9; 4. The PCR amplification product of primer 10. B. Sequencing peak map of SNP Chr3: 81 641 565. C. Sequencing peak map of SNP Chr4: 33 409 710. D. Sequencing peak map of SNP Chr4: 33 716 131. E. Sequencing peak map of SNP Chr6: 23 563 123. F. Sequencing peak map of SNP Chr11: 15 294 113. G. Sequencing peak map of SNP Chr11: 15 346 007. H. Sequencing peak map of SNP Chr12: 2 504 749. I. Sequencing peak map of SNP Chr18: 1 994 686. J. Sequencing peak map of SNP Chr18: 2 307"
Table 3
Gene functional analysis of key candidate genes"
| 基因 Gene | 染色体 Chromosome | 区域/bp Position | 功能 Function |
| TMEM30A | 3 | 80 772 707~80 786 202 | TMEM30A在小鼠骨骼肌再生中有重要作用[ |
| KCNQ5 | 3 | 81 552 966~81 817 022 | 猪生长相关候选基因[ |
| P2RY10 | 4 | 1 435 115~1 442 506 | 与阳原驴体尺性状和延边牛生长性状相关[ |
| ITM2A | 4 | 1 468 932~1 477 914 | 参与德州驴骨骼肌的生长和发育[ |
| TBX22 | 4 | 1 505 219~1 510 388 | Wnt信号通路通过TBX22调节鸡胚上颌骨形态发生和生长[ |
| PHKA1 | 4 | 1 863 361~1 879 695 | 可能参与调节鸡肉早期生长[ |
| SH3D19 | 4 | 33 241 343~33 322 918 | 与斑马鱼胚胎发育、体节发生相关[ |
| RBPMS | 4 | 34 740 148~34 745 550 | 对于斑马鱼心脏发育具有重要调控作用[ |
| PGAM1 | 6 | 23 308 079~23 310 457 | 参与藏羊细胞增殖以及精子发生[ |
| BTRC | 6 | 23 789 857~23 907 913 | 与鸡生长性状相关[ |
| CYP17A1 | 6 | 24 341 475~24 343 952 | 参与鸡卵泡和睾丸的生长和发育[ |
| SLK | 6 | 25 039 625~25 086 733 | 与成人肌肉发育有关[ |
| EBF3 | 6 | 35 109 889~35 223 910 | 与鸡胚骨骼发育有关[ |
| BNIP3 | 6 | 35 758 032~35 763 615 | 与动物肌肉发育有关[ |
| ATMIN | 11 | 15 376 764~15 396 951 | 对于小鼠正常肾脏发育至关重要[ |
| BCO1 | 11 | 15 458 803~15 472 637 | 参与调节鸡成肌细胞的增殖[ |
| CDH13 | 11 | 15 966 410~16 399 105 | 调节牛早期生殖发育[ |
| KCNG4 | 11 | 16 658 646~16 675 825 | 与俄罗斯原住民卡拉柴山羊臀部高度、体长和胸围相关[ |
| TNNC1 | 12 | 975 844~981 282 | 调控鹌鹑肌肉分化和生长性能[ |
| MUSTN1 | 12 | 1 237 476~1 240 740 | 与鸡、鸭肌肉发育有关[ |
| GNAI2 | 12 | 3 602 465~3 612 992 | 为绵羊生长相关基因[ |
| MYH1F | 18 | 407 274~424 973 | 在家禽肌肉生成中起关键作用[ |
| MYH1A | 18 | 458 828~477 172 | 海扬黄鸡生长发育的候选基因[ |
| MYH10 | 18 | 1 725 821~1 818 952 | 可能参与调节鸡肉组织早期生长[ |
| PIK3R5 | 18 | 1 984 538~2 033 615 | 与绵羊体型特征相关的基因[ |
| ARHGAP44 | 18 | 2 210 621~2 231 195 | 调控猪的腰肌面积[ |
| 1 | 谢欣怡,陈俊赫,王文浩.康乐黄鸡肌肉生长抑制素基因多态性对上市日龄体重的遗传效应分析[J].畜牧与兽医,2023,55(10):6-9. |
| XIEX Y,CHENJ H,WANGW H.Polymorphism of MSTN gene in Kangle yellow chicken and its genetic effect of market weight of the bird[J].Animal Husbandry and Veterinary Medicine,2023,55(10):6-9. | |
| 2 | 谢鑫峰,钟梓奇,王子轶,等.基于全基因组关联分析研究文昌鸡初生重性状相关的候选基因[J].畜牧与兽医,2024,56(7):1-5. |
| XIEX F,ZHONGZ Q,WANGZ Y,et al.Genome-wide association analysis revealed candidate genes related with birthweight traits in Wenchang chicken[J].Animal Husbandry and Veterinary Medicine,2024,56(7):1-5. | |
| 3 | 彭秋玲,汪会文,王䶮,等.利用线粒体CoI基因探讨江西五个地方鸡种的遗传多样性[J].粮油与饲料科技,2022(3):9-13. |
| PENGQ L,WANGH W,WANGY,et al.Exploring the genetic diversity of five local chicken breeds in Jiangxi using mitochondrial CoI gene[J].Grain Oil And Feed Technology,2022(3):9-13. | |
| 4 | 曹原, 彭瑞妮, 郑文亚, 等. Diquat诱导的氧化应激对康乐黄鸡睾丸组织结构及睾酮合成相关基因表达的影响[C]. 西安: 中国畜牧兽医学会兽医产科学分会第八届会员代表大会暨第十五次学术研讨会, 2021. |
| CAO Y, PENG R N, ZHENG W Y, et al. Effects of Diquat-Induced oxidative stress on testicular tissue structure and testosterone synthesis-related gene expression in Kangle yellow chicken[C]. Xian: The 8th Member Representative Congress and the 15th Academic Symposium of the Veterinary Obstetrics and Gynecology Branch of the Chinese Association of Animal Science and Veterinary Medicine, 2021. (in Chinese) | |
| 5 | 孙汉,欧阳建华,潘珂,等.从万载康乐黄鸡的产蛋规律探讨地方鸡种产蛋性能的选择[J].中国畜牧杂志,2004(8):53-55. |
| SUNH,OUYANGJ H,PANK,et al.Exploring the selection of egg-laying performance of local chicken breeds from the egg-laying pattern of Wanzai Kangle yellow chicks[J].Chinese Journal of Animal Science,2004(8):53-55. | |
| 6 | 周洁蕊,马忠文,李园园,等.蚯蚓发酵液对康乐黄鸡生产性能、蛋品质及脂质指标的影响[J].中国兽医学报,2022,42(8):1697-1702. |
| ZHOUJ R,MAZ W,LIY Y,et al.Effect of fermented earthworm broth on production performance, egg quality and lipid index of Kangle yellow chicken[J].Chinese Journal of Veterinary Science,2022,42(8):1697-1702. | |
| 7 | 孙汉,欧阳建华,熊建华,等.羽速基因对万载康乐黄鸡蛋用性能的影响[J].动物科学与动物医学,2002(11):12-14. |
| SUNH,OUYANGJ H,XIONGJ H,et al.Effect of the feather speed gene on production performance in Wanzai Kangle yellow chicks[J].Swine Industry Science,2002(11):12-14. | |
| 8 | 欧阳建华,熊建华,孙汉,等.羽速基因对万载康乐黄鸡肉用性能的影响[J].江西农业大学学报(自然科学),2002(4):508-512. |
| OUYANGJ H,XIONGJ H,SUNH,et al.A study on the effect of the feather speed gene on meat traits in Wanzai Kangle yellow chicks[J].Acta Agriculturae Universitatis Jiangxiensis,2002(4):508-512. | |
| 9 | 杨梦园,宁中华.鸡重要性状GWAS分析的研究进展[J].中国家禽,2023,45(4):105-110. |
| YANGM Y,NINGZ H.Research progress on GWAS analysis of important traits in chicken[J].China Poultry,2023,45(4):105-110. | |
| 10 | 杨燕. 京海黄鸡分子标记与生长及屠宰性状关系的研究[D]. 扬州: 扬州大学, 2007. |
| YANG Y. Study on the relationship between molecular markers and growth & carcass characteristics in Jinghai yellow chicken[D]. Yangzhou: Yangzhou University, 2007. (in Chinese) | |
| 11 |
ZHANGG X,FANQ C,ZHANGT,et al.Genome-wide association study of growth traits in the Jinghai Yellow chicken[J].Genet Mol Res,2015,14(4):15331-15338.
doi: 10.4238/2015.November.30.10 |
| 12 |
WANGW H,WANGJ Y,ZHANGT,et al.Genome-wide association study of growth traits in Jinghai Yellow chicken hens using SLAF-seq technology[J].Animal genetics,2019,50(2):175-176.
doi: 10.1111/age.12346 |
| 13 |
ZHANGG X,DINGF X,WANGJ Y,et al.Polymorphism in exons of the myostatin gene and its relationship with body weight traits in the Bian chicken[J].Biochem Genet,2011,49(1-2):9-19.
doi: 10.1007/s10528-010-9380-x |
| 14 |
范晨宇,单艳菊,章明,等.立华麻黄鸡体重和肉品质性状全基因组关联分析[J].畜牧兽医学报,2023,54(12):4982-4992.
doi: 10.11843/j.issn.0366-6964.2023.12.010 |
|
FANGC Y,SHANY J,ZHANGM,et al.Genome-wide association study of body weight and meat quality traits in Lihua Mahuang chickens[J].Acta Veterinaria et Zootechnica Sinica,2023,54(12):4982-4992.
doi: 10.11843/j.issn.0366-6964.2023.12.010 |
|
| 15 |
ZHONGC H,LIX C,GUAND L,et al.Age-dependent genetic architectures of chicken body weight explored by multidimensional GWAS and molQTL analyses[J].J Genet Genomics,2024,51(12):1423-1434.
doi: 10.1016/j.jgg.2024.09.003 |
| 16 |
WANGJ,LIUJ,LEIQ X,et al.Elucidation of the genetic determination of body weight and size in Chinese local chicken breeds by large-scale genomic analyses[J].BMC Genomics,2024,25(1):296.
doi: 10.1186/s12864-024-10185-6 |
| 17 |
樊庆灿,王金玉,张跟喜,等.运用四种线性模型对京海黄鸡上市体重进行全基因组关联分析[J].畜牧兽医学报,2014,45(7):1053-1059.
doi: 10.11843/j.issn.0366-6964.2014.07.004 |
|
FANQ C,WANGJ Y,ZHANGG X,et al.A genome-wide association study of market weight using four statistic models in Jinghai yellow chicken[J].Acta Veterinaria et Zootechnica Sinica,2014,45(7):1053-1059.
doi: 10.11843/j.issn.0366-6964.2014.07.004 |
|
| 18 | NY/T 33-2004, 鸡饲养标准[S]. |
| NY/T 33-2004, Feeding standard of chicken[S]. (in Chinese) | |
| 19 |
PURCELLS,NEALEB,TODD-BROWNK,et al.PLINK: a tool set for whole-genome association and population-based linkage analyses[J].Am J Hum Genet,2007,81(3):559-575.
doi: 10.1086/519795 |
| 20 |
ZHOUX,STEPHENSM.Genome-wide efficient mixed-model analysis for association studies[J].Nat Genet,2012,44(7):821-824.
doi: 10.1038/ng.2310 |
| 21 |
YEJ,COULOURISG,ZARETSKAYAI,et al.Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction[J].BMC Bioinformatics,2012,13(1):134.
doi: 10.1186/1471-2105-13-134 |
| 22 | BUD,LUOH,HUOP,et al.KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis[J].Nucleic Acids Res,2021,49(1):317-325. |
| 23 |
SZKLARCZYKD,KIRSCHR,KOUTROULIM,et al.The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest[J].Nucleic Acids Res,2023,51(D1):D638-D646.
doi: 10.1093/nar/gkac1000 |
| 24 | MAJEEDA,MUKHTARS.Protein-protein interaction network exploration using Cytoscape[J].Methods Mol Biol,2023,2690(1):419-427. |
| 25 | 马荆鄂,曾配君,万淑敏,等.基于肝脏转录组测序筛选康乐黄鸡开产相关基因和关键通路[J].华北农学报,2025,40(3):207-214. |
| MAJ E,ZENGP J,WANS M,et al.Screening of genes and key pathways related to egg-laying in Kangle yellow chickens based on liver transcriptome sequencing[J].Acta Agriculturae Boreali-Sinica,2025,40(3):207-214. | |
| 26 | 马荆鄂,兰岚,刘梓阁,等.基于垂体转录组测序筛选康乐黄鸡开产性状相关基因和信号通路[J].广东农业科学,2025,52(4):73-87. |
| MAJ E,LANL,LIUZ G,et al.Pituitary transcriptome analysis of genes and pathways related to traits at the first egg in Kangle yellow chicken[J].Guangdong Agricultural Sciences,2025,52(4):73-87. | |
| 27 | XIONGX W,ZHOUM,ZHUX N,et al.RNA sequencing of the pituitary gland and association analyses reveal PRKG2 as a candidate gene for growth and carcass traits in Chinese Ningdu yellow chickens[J].Front Vet Sci,2022,9(1):892024. |
| 28 |
SUNK X,JIANGX Y,LIX,et al.Deletion of phosphatidylserine flippase β-subunit Tmem30a in satellite cells leads to delayed skeletal muscle regeneration[J].Zool Res,2021,42(5):650-659.
doi: 10.24272/j.issn.2095-8137.2021.195 |
| 29 | SHIL Y,WANGL G,FANGL Z,et al.Integrating genome-wide association studies and population genomics analysis reveals the genetic architecture of growth and backfat traits in pigs[J].Front Genet,2022,13(1):1078696. |
| 30 | 宋双,常丝雨,赵威森,等.阳原驴P2RY10基因多态性及其与体尺性状的相关分析[J].中国畜牧杂志,2023,59(6):91-94. |
| SONGS,CHANGS Y,ZHAOW S,et al.Analysis of P2RY10 gene polymorphism and its correlation with body size traits in Yangyuan donkeys[J].Chinese Journal of Animal Science,2023,59(6):91-94. | |
| 31 | 王卓. 延边牛FABP5、FABP6、DGAT1、USP43、P2RY10和FUBP3多态性与生长性状关联分析[D]. 延吉: 延边大学, 2023. |
| WANG Z. Association analysis of polymorphisms FABP5, FABP6, DGAT1, USP43, P2RY10, and FUBP3 genes with growth traits in Yanbian cattle[D]. Yanji: Yanbian University, 2023. (in Chinese) | |
| 32 |
YUJ,YANGG,LIS P,et al.Identification of Dezhou donkey muscle development-related genes and long non-coding RNA based on differential expression analysis[J].Anim Biotechnol,2023,34(7):2313-2323.
doi: 10.1080/10495398.2022.2088549 |
| 33 |
SHIMOMURAT,KAWAKAMIM,TATSUMIK,et al.The role of the Wnt signaling pathway in upper jaw development of chick embryo[J].Acta Histochem Cytochem,2019,52(1):19-26.
doi: 10.1267/ahc.18038 |
| 34 |
XUEQ,ZHANGG X,LIT T,et al.Transcriptomic profile of leg muscle during early growth in chicken[J].PLoS One,2017,12(3):e0173824.
doi: 10.1371/journal.pone.0173824 |
| 35 | 冷平,陈欣,夏佳敏,等.斑马鱼sh3d19基因的结构和表达分析[J].成都医学院学报,2022,17(5):550-555. |
| LENGP,CHENX,XIAJ M,et al.Structure and expression analysis of sh3d19 gene in zebrafish[J].Journal of Chengdu Medical College,2022,17(5):550-555. | |
| 36 | 黄姣, 霍锦倩, 刘姣, 等. RBPMS基因在斑马鱼心脏早期发育过程中的作用初步研究[C]. 西安: 2018年中国水产学会学术年会, 2018. |
| HUANG J, HUO J Q, LIU J, et al. Preliminary study of RBPMS gene on the cardiacdevelopment of zebrafish[C]. Xian: 2018 Annual Meeting of the China Society of Fisheries, 2018. (in Chinese) | |
| 37 | ANX J,LIT T,CHENN N,et al.PGAM1 regulates the glycolytic metabolism of SCs in tibetan sheep and its influence on the development of SCs[J].Gene,2021,804(1):145897. |
| 38 |
LIC,CAOY F,RENY G,et al.The adiponectin receptor agonist, AdipoRon, promotes reproductive hormone secretion and gonadal development via the hypothalamic-pituitary-gonadal axis in chickens[J].Poult Sci,2023,102(2):102319.
doi: 10.1016/j.psj.2022.102319 |
| 39 | 冯宇. 绵羊CYP17A1基因克隆分析及其在睾丸表达的研究[D]. 长春: 吉林农业大学, 2024. |
| FENG Y. Cloning analysis of sheep CYP17A1 genes and their expression in the testes[D]. Changchun: Jilin Agricultural University, 2024. (in Chinese) | |
| 40 |
CHRISTOPHERJ S,KHALIDN A,ROSHANS,et al.Distinct roles for Ste20-like kinase SLK in muscle function and regeneration[J].Skelet Muscle,2013,3(1):16.
doi: 10.1186/2044-5040-3-16 |
| 41 |
EL-MAGDM A,ALLENS,MCGONNELLI,et al.Bmp4 regulates chick Ebf2 and Ebf3 gene expression in somite development[J].Dev Growth Differ,2013,55(8):710-722.
doi: 10.1111/dgd.12077 |
| 42 |
OOSTL J,KUSTERMANNM,ARMANIA,et al.Fibroblast growth factor 21 controls mitophagy and muscle mass[J].J Cachexia Sarcopenia Muscle,2019,10(3):630-642.
doi: 10.1002/jcsm.12409 |
| 43 |
GOGGOLIDOUP,HADJIRINN F,BAKA,et al.Atmin mediates kidney morphogenesis by modulating Wnt signaling[J].Hum Mol Genet,2014,23(20):5303-5316.
doi: 10.1093/hmg/ddu246 |
| 44 |
PRAUDC,AHMADIEHS A,VOLDOIREE,et al.Beta-carotene preferentially regulates chicken myoblast proliferation withdrawal and differentiation commitment via BCO1 activity and retinoic acid production[J].Exp Cell Res,2017,358(2):140-146.
doi: 10.1016/j.yexcr.2017.06.011 |
| 45 |
COENS,KEOGHK,LONERGANP,et al.Early life nutrition affects the molecular ontogeny of testicular development in the young bull calf[J].Sci Rep,2023,13(1):6748.
doi: 10.1038/s41598-022-23743-3 |
| 46 |
EASAA A,SELIONOVAM,AIBAZOVM,et al.Identification of genomic regions and candidate genes associated with body weight and body conformation traits in Karachai goats[J].Genes (Basel),2022,13(10):1773.
doi: 10.3390/genes13101773 |
| 47 |
PARKJ W,LEEJ H,KIMS W,et al.Muscle differentiation induced up-regulation of calcium-related gene expression in quail myoblasts[J].Asian-Australas J Anim Sci,2018,31(9):1507-1515.
doi: 10.5713/ajas.18.0302 |
| 48 | GUS,HUANGQ,JIEY C,et al.Transcriptomic and epigenomic landscapes of muscle growth during the postnatal period of broilers[J].Journal of Animal Science and Biotechnology,2024,15(5):1851-1865. |
| 49 |
WANGZ X,LIANGW S,LIX X,et al.Characterization and expression of MUSTN1gene from different duck breeds[J].Anim Biotechnol,2022,33(4):723-730.
doi: 10.1080/10495398.2020.1828905 |
| 50 |
YANGP F,SHANGM Y,BAOJ J,et al.Whole-genome resequencing revealed selective signatures for growth traits in Hu and Gangba sheep[J].Genes (Basel),2024,15(5):551.
doi: 10.3390/genes15050551 |
| 51 | 杨培福. 基于全基因组重测序筛选绵羊生长性状候选基因[D]. 北京: 中国农业科学院, 2024. |
| YANG P F. Screening of sheep growth traits based on whole-genome resequencing candidate gene[D]. Beijing: Chinese Academy of Agricultural Sciences, 2024. (in Chinese) | |
| 52 |
RENP,CHENM Y,LIJ J,et al.MYH1F promotes the proliferation and differentiation of chicken skeletal muscle satellite cells into myotubes[J].Anim Biotechnol,2023,34(7):3074-3084.
doi: 10.1080/10495398.2022.2132953 |
| 53 |
YINX M,WUY L,ZHANGS S,et al.Transcriptomic profile of leg muscle during early growth and development in Haiyang yellow chicken[J].Arch Anim Breed,2021,64(2):405-416.
doi: 10.5194/aab-64-405-2021 |
| 54 |
KOMINAKISA,HAGER-THEODORIDESA L,ZOIDISE,et al.Combined GWAS and 'guilt by association'-based prioritization analysis identifies functional candidate genes for body size in sheep[J].Genet Sel Evol,2017,49(1):41.
doi: 10.1186/s12711-017-0316-3 |
| 55 |
LUANM H,RUAND L,QIUY B,et al.Genome-wide association study for loin muscle area of commercial crossbred pigs[J].Anim Biosci,2023,36(6):861-868.
doi: 10.5713/ab.22.0407 |
| 56 | 罗威,郑茗,唐盈盈,等.中国地方家鸡群体遗传与表型多样性及其保护现状[J].养禽与禽病防治,2023(8):29-35. |
| LUOW,ZHENGM,TANGY Y,et al.Genetic and phenotypic diversity and conservation status of native Chinese domestic chicken populations[J].Poultry Husbandry and Disease Control,2023(8):29-35. | |
| 57 |
CARLBORGO,KERJES,SCHVTZK,et al.A global search reveals epistatic interaction between QTL for early growth in the chicken[J].Genome Res,2003,13(3):413-421.
doi: 10.1101/gr.528003 |
| [1] | WANG Youdong, CAO Zhiping, LI Yumao, LUAN Peng, LI Hui, BAI Xue. The Principle of SNP Chip Technology and Its Application in Chicken Genetic Breeding [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4165-4175. |
| [2] | LIU Sha, YANG Caichun, ZHANG Xiaoyu, CHEN Qiong, LIU Xiong, CHEN Hongbo, ZHOU Huanhuan, SHI Liangyu. Population Genetic Structure and Genome-wide Runs of Homozygosity Analysis in Meihuaxing Pigs Based on 80K SNP Chip [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3749-3760. |
| [3] | ZHANG Jialiang, HUANG Chang, YANG Yonglin, YANG Hua, BAI Wenlin, MA Yuehui, ZHAO Qianjun. Genetic Structure and Wool Trait Selection Signatures Analysis of Chinese Sheep Populations Based on 50K Liquid SNP Chip [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3164-3176. |
| [4] | MIAO Junjie, ZHANG Riquan, WU Houyi, YOU Xinming, HUANG Yiwen, HUANG Xiaoying, GUO Zhenyang, LIU Jianlin, XIAO Weihua, GUO Tianhua, CHEN Hao, KANG Dongliu. Genome-Wide SNP Analysis Revealed the Characteristics of Germplasm Resources and Genetic Diversity of Jinggang Black-Palm Geese [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3199-3209. |
| [5] | WU Jianliang, SU Yang, MAO Ruihan, ZHOU Lei, YAN Tiantian, LI Zhi, LIU Jianfeng. Design and Effect Evaluation of A Whole-Genome Low-Density SNP Chip in Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2733-2740. |
| [6] | SUN Guoxin, LI Yunhua, SAI Yin, GUO Wenhua, ZHAO Yanhong, ZHANG Manxin, LIU Jiasen. Population Structure Analysis and Economic Traits Related Selection Signal Detection of Hu Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2168-2181. |
| [7] | YAO Boyuan, YANG Zhiwen, SUN Yapeng, YANG Yanan, ZHANG Yaru, WANG Xinrong. Analysis of Novel Transcripts, Alternative Splicing, and SNP in Porcine Heart Tissue Based on RNA-Seq Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1664-1675. |
| [8] | HUANG Yani, TANG Xi, LI Jingquan, WEI Jiacheng, WU Zhenfang, LI Xinyun, XIAO Shijun, ZHANG Zhiyan. Large-scale Population Analysis of Potential Causal Genes for Daily Weight Gain and Age at 100 kg in Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1100-1109. |
| [9] | WU Jiahao, WU Ziyi, DOU Tengfei, BAI Liyao, ZHANG Yongqian, DONG Lianhe, LI Pengfei, LI Xinjian, HAN Xuelei, LI Xiuling. Genome-wide Association Study of Copy Number Variation in Growth-Related Traits of Yunong-Black Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1110-1119. |
| [10] | JIA Wanli, WANG Jiying, LI Jingxuan, WANG Yanping, GENG Liying, ZHANG Chuansheng, ZHAO Xueyan. Identification of Key Genes Affecting Drip Loss in Laiwu Pigs Based on Transcriptome Sequencing Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1134-1146. |
| [11] | ZHOU Taizeng, YANG Yiting, ZHU Yuehua, QIAN Hongxi, LIU Yihui, GAN Mailin, ZHU Li, SHEN Linyuan. Genome-wide Association Study of Stillbirths and Mummies in Sows [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1231-1241. |
| [12] | YANG Xiaowen, NING Wenqing, ZHOU Shizhong, YUAN Yaqin, HOU Xuexin, DING Jiabo. Establishment of a Quantitative Real-time PCR Detection Method for Trimethoprim-Sulfamethoxazole-resistance Strains of Brucella melitensis [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1465-1472. |
| [13] | CAO Yu, ZHOU Bohan, XU Qi, YUAN Zi'ao, SU Rui, LÜ Qi, LI Jinquan, ZHANG Yanjun, WANG Ruijun, WANG Zhiying. Research Progress on Integrated eQTL-GWAS Data Analysis for Potential Functional Genetic Loci Identification in Animal Breeding [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(10): 4759-4773. |
| [14] | GUO Jun, SHAO Dan, MA Meng, LU Jian, DOU Taocun, HU Yuping, WANG Xingguo, WANG Qiang, LI Yongfeng, GUO Wei, TONG Haibing, QU Liang. Genetic Dissection on Body Weight and Age at the first Egg in Resource Population between White Leghorn and Dongxiang Blue Shelled Chickens [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(10): 4903-4913. |
| [15] | LI Aixin, LI Ziyang, CHEN Wenjie, TIAN Yuyang, LEI Chuzhao, LI Zhigang, CHEN Ningbo. Advantages of Using Population-specific Reference Genome for SNP Calling in Chinese Indicine Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(10): 4963-4972. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||